Archivo de la etiqueta: matrices

Álgebra Lineal I: Más ejemplos de reducción gaussiana

Por Ayax Calderón

Introducción

En esta entrada veremos varios ejemplos que nos ayudarán a comprender que la reducción gaussiana es una herramienta muy poderosa a la hora de resolver sistemas de ecuaciones lineales.

Problemas resueltos

Problema 1. Implementa el algoritmo de reducción gaussiana en la matriz
\begin{align*}
A=\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}
\end{align*}

Solución. Para este problema usaremos la siguiente notación para indicar las operaciones elementales que estamos efectuando :

  • $R_i \leftrightarrow R_j$ para intercambiar el renglón $i$ con el renglón $j$.
  • $kR_i$ para multiplicar el renglón $i$ por el escalar $k$.
  • $R_i + kR_j$ para sumarle $k$ veces el renglón $j$ al renglón $i$.


\begin{align*}
A=&\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_1 \leftrightarrow R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_4 – R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 + 3R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
\frac{1}{2}R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 – 4R_2
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}
\end{align*}
\begin{align*}
R_1 – R_2
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
-1\cdot R_3
&\begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_4 – R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}\\
R_2 – \frac{1}{2} R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix} \\
R_1 + \frac{1}{2}R_3
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}
\end{align*}
\begin{align*}
\frac{1}{3} R_4
&\begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
R_3 + 4R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_2 – \frac{5}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_1 + \frac{1}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & 0 & -\frac{1}{3}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
=&A_{red}
\end{align*}

$\triangle$

Problema 2. Resuelve el siguiente sistema homogéneo.
\begin{align*}
\begin{cases}
x+2y-3z &=0\\
2x+5y+2z &=0\\
3x-y-4z &=0
\end{cases}
\end{align*}

Solución. La matriz asociada al sistema anterior es
\begin{align*}
\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}
\end{align*}
Para resolver el sistema $AX=0$ nos bastará con encontrar $A_{red}$, pues el sistema $A_{red}X=0$ es equivalente al sistema $AX=0$.
\begin{align*}
&\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}\\
R_2 -2R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
3 & -1 & -4
\end{pmatrix}\\
R_3 – 3R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_1 – 2R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_3 + 7R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & 0 & 61
\end{pmatrix}\\
R_2 – \frac{8}{61}R_3
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
R_1 + \frac{19}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
\frac{1}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=A_{red}
\end{align*}

De lo anterior se sigue que para resolver el sistema $AX=0$ basta con resolver el sistema
\begin{align*}
\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z
\end{pmatrix}= \begin{pmatrix}
0\\
0\\
0
\end{pmatrix}.
\end{align*}
Pero este sistema es el sistema

\begin{align*}
\begin{cases} x = 0\\ y = 0 \\ z = 0. \end{cases}
\end{align*}

De esta forma, $x=y=z=0$ es la (única) solución al sistema original.

$\triangle$

Problema 3. Determina las soluciones fundamentales del sistema homogéneo $AX=0$, donde $A$ es la matriz
\begin{align*}
A=\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix}.
\end{align*}

Solución. Sea $AX=0$ el sistema
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}

Para este problema nuevamente nos interesa llevar la matriz asociada al sistema a su forma escalonada reducida.

Aunque es muy importante saber cómo se hacen estos procedimientos, es cierto que también existen herramientas que nos ayudan a hacer estos cálculos de manera más rápida. En esta ocasión usaremos una calculadora de forma reducida escalonada disponible en línea, la cual nos indica que la forma escalonada reducida de la matriz $A$ es
\begin{align*}
A_{red}=\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix}.
\end{align*}

De esta forma, el sistema del problema es equivalente al sistema $A_{red}X=0$
\begin{align*}
\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}
Las variables pivote son $x$ y $z$. Las variables libres son $y$ y $w$.

Como se mencionó en una entrada anterior, para encontrar las soluciones fundamentales hay que expresar a las variables pivote en términos de las variables libres. En el sistema anterior podemos notar que
\begin{align*}
\begin{cases}
x =2y+w\\
z=-w.
\end{cases}
\end{align*}
por lo que
\begin{align*}
\begin{pmatrix}
x\\
y\\
z\\
w
\end{pmatrix}&=\begin{pmatrix}
2y+w\\
y\\
-w\\
w
\end{pmatrix}\\
&=y\begin{pmatrix}
2\\
1\\
0\\
0
\end{pmatrix} + w \begin{pmatrix}
1\\
0\\
-1\\
1
\end{pmatrix}
\end{align*}
siendo los vectores columna de la última igualdad las soluciones fundamentales del sistema $AX=0$, es decir que con estas soluciones se pueden generar todas las demás.

$\triangle$

Hasta ahora hemos visto ejemplos de reducción gaussiana de matrices de tamaño muy concreto y entradas muy concretas. Sin embargo, otra habilidad importante es aprender a usar reducción gaussiana en una matriz de tamaño arbitrario, con algunas entradas específicas. Veamos un ejemplo de cómo hacer esto.

Problema 4. Sea $n>2$ un número entero. Resuelve en números reales el sistema
\begin{align*}
x_2=\frac{x_1+x_3}{2}, x_3= \hspace{2mm} \frac{x_2+x_4}{2}, \hspace{2mm} \dots , \hspace{2mm}, x_{n-1}=\frac{x_{n-2}+x_n}{2}.
\end{align*}

Solución. Este es un sistema lineal homogéneo de ecuaciones. Esto se puede verificar multiplicando cada ecuación por $2$ e igualándola a $0$. Por ejemplo, la primer ecuación se puede escribir como $x_1-2x_2+x_3=0$. Transformando el resto de las ecuaciones, obtenemos que el sistema se puede escribir en forma matricial como $AX=0$, donde$A$ es la matriz en $M_{n-2,n}(F)$ dada por
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Esta matriz se ve algo intimidante, pero igual se le puede aplicar reducción gaussiana. Hagamos esto.

Afortunadamente, en cada fila ya tenemos un pivote y están «escalonados». Basta con hacer transvecciones para asegurar que en cada columna de un pivote, el pivote es la única entrada no cero. Haremos los primeros pasos para encontrar un patrón de qué va sucediendo.

En el primer paso, sumamos dos veces la fila $2$ a la primer fila. Al hacer esto obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & -3 & 2 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Con esto la segunda columna ya queda lista. El el siguiente paso, multiplicamos por 3 (y 2) la tercer fila y se lo sumamos a la primera fila (y segunda, respectivamente). Obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & -3 & 2 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Para el siguiente paso, ahora hay que multiplicar por 4 (3, 2) la cuarta fila y sumárselo a la primera (segunda, tercera, respectivamente), y obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -5 & 4 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -3 & 2 &\cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & 0 &\cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

El patrón es ahora claro. Conforme arreglamos la columna $j$, luego la columna $j+1$ tiene a los números $-(j+1), -j, \ldots, -3, -2$ y la columna $j+2$ tiene a los números $j,j-1,j-2,\ldots,1,-2,1$. Esto puede demostrarse formalmente por inducción. Al arreglar la columna $n-2$, la matriz queda en la siguiente forma escalonada reducida:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & -(n-1) & n-2 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & -(n-2) & n-3 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & -(n-3) & n-4 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & -(n-4) & n-5 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -3 & 2\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1
\end{pmatrix}.
\end{align*}

Estamos listos para resolver el sistema asociado. Las variables libres son $x_{n-1}$ y $x_n$, que podemos darles valores arbitrarios $a$ y $b$. Las variables pivote son todas las demás, y de acuerdo a la forma de la matriz anterior, están dadas por

\begin{align*}
x_1&=(n-1)a – (n-2) b\\
x_2&=(n-2)a – (n-3) b\\
x_3&=(n-3)a – (n-4) b\\
&\vdots\\
x_{n-2}&=2a- b.
\end{align*}

Esto determina todas las soluciones.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de sistemas de ecuaciones y forma escalonada reducida

Por Ayax Calderón

Introducción

En esta entrada nos encargaremos de resolver algunos problemas de sistemas de ecuaciones lineales y de dar algunos ejemplos más de matrices en forma escalonada reducida.

Problemas resueltos

Problema 1. ¿Para cuáles números reales $a$ se tiene que el siguiente sistema es consistente?. Resuelve el sistema para estos casos.

\begin{align*}
\begin{cases}
x + 2y &=1\\
4x+8y &=a.
\end{cases}
\end{align*}

Solución. Tomando la primera ecuación y multiplicandola por $4$ vemos que

\begin{align*}
4x+8y=4
\end{align*}

De lo anterior se sigue que el único número real $a$ para el cuál el sistema es consistente es $a=4$, pues en otro caso tendríamos ecuaciones lineales que se contradicen entre sí.

Cuando $a=4$, tenemos entonces una única ecuación $x+2y=1$. Para encontrar todas las soluciones a esta ecuación lineal, podemos fijar el valor de $y$ arbitrariamente como un número real $r$. Una vez fijado $y$, obtenemos que $x=1-2y=1-2r$. Así, el conjunto de soluciones es $$\{(1-2r,r): r \in \mathbb{R}\}.$$

$\triangle$

Problema 2. Encuentra todos $a,b\in\mathbb{R}$ para los cuales los sistemas

\begin{align*}
\begin{cases}
2x + 3y &=-2\\
x – 2y &=6
\end{cases}
\end{align*}
y
\begin{align*}
\begin{cases}
x + 2ay &=3\\
-x – y &=b
\end{cases}
\end{align*}
son equivalentes.

Solución. Para resolver el primer sistema tomamos la segunda ecuación y despejamos $x$:
\begin{align*}
x=6+2y.
\end{align*}
Sustituyendo lo anterior en la primera ecuación se tiene
\begin{align*}
2(6+2y)+3y&=-2\\
12+7y&=-2\\
7y&=-14\\
y&=-2.
\end{align*}
Luego sustituimos el valor de $y$ para encontrar $x$
\begin{align*}
x&=6+2y\\
&=6+2(-2)\\
&=2.
\end{align*}
Ahora, para encontrar los valores de $a$ y $b$, sustituimos los valores de $x$ y $y$ que encontramos en el primer sistema y de esta forma garantizamos que ambos sistemas tendrán el mismo conjunto de soluciones, es decir, son equivalentes.
\begin{align*}
\begin{cases}
x + 2ay &=3\\
-x – y &=b
\end{cases}
\end{align*}
\begin{align*}
\begin{cases}
2 + 2a(-2) &=3\\
-2 – (-2) &=b
\end{cases}
\end{align*}
De la segunda ecuación es inmediato que $b=0$.
Por otro lado, despejando $a$ de la primera ecuación se tiene
\begin{align*}
2-4a&=3\\
-4a&=1\\
a&=-\frac{1}{4}
\end{align*}
Concluimos que los sistemas son equivalentes cuando
\begin{align*}
a=-\frac{1}{4}, \hspace{4mm} b=0.
\end{align*}

$\triangle$

Más ejemplos de forma escalonada reducida

Para finalizar con esta entrada veremos más ejemplos de matrices que están en forma escalonada reducida y de matrices que no lo están.

Ejemplo 1. La matriz
\begin{align*}
\begin{pmatrix}
2 & -1 & 3 & 1\\
1 & 0 & 2 & 2\\
3 & 1 & 7 & 0\\
1 & 2 & 4 & -1\end{pmatrix}
\end{align*}
no está en forma escalonada reducida, pues todas las entradas de la primera columna son distintas de cero.
En cambio, la matriz
\begin{align*}
\begin{pmatrix}
1 & 0 & 2 & 0\\
0 & 1 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0\end{pmatrix}
\end{align*}
sí está en forma escalonada reducida. Queda como tarea moral verificar que esto es cierto.

$\triangle$

Ejemplo 2. La matriz
\begin{align*}
\begin{pmatrix}
0 & 0 & 0 & 0 & 0\\
0 & 1 & -5 & 2 & 0\\
0 & 0 & 0 & 0 & 3\\
0 & 0 & 0 & 0 & 0\end{pmatrix}
\end{align*}
no está en forma escalonada reducida, pues hay filas cero por encima de filas no cero. Otro problema que tiene es que el pivote de la tercer fila no es igual a $1$.


En cambio
\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -1\\
0 & 1 & 0 & 0 & 2\\
0 & 0 & 1 & 0 & 1\\
0 & 0 & 0 & 1 & 1\end{pmatrix}
\end{align*}
sí está en forma escalonada reducida.

$\triangle$

Ejemplo 3. La matriz $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$ no está en forma escalonada reducida pues el pivote de la segunda fila está más a la izquierda que el de la primera. Sin embargo, si intercambiamos las filas, la matriz $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$ sí está en forma escalonada reducida.

$\triangle$

Más adelante veremos un método para llevar una matriz a su forma escalonada reducida y veremos que esto es muy útil para resolver sistemas de ecuaciones lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices de bloques

Por Julio Sampietro

Introducción

En esta entrada definimos el concepto de submatriz y estudiamos las llamadas matrices de bloques que esencialmente son matrices grandes obtenidas por matrices más pequeñas (esto tendrá sentido después de algunos ejemplos). Las matrices de bloque aparecen frecuentemente en muchas áreas y permiten realizar cálculos que podrían ser bastante complicados de otra manera.

Dentro de este curso, nos encontraremos con las matrices de bloque cuando hablemos de solución de ecuaciones lineales y de encontrar inversas de matrices usando el método de reducción gaussiana.

Definición de matrices de bloques

Definición. Una submatriz de una matriz $A\in M_{m,n}(F)$ es una matriz que se obtiene al quitar filas y/o columnas de $A$.

Notamos que $A$ es submatriz de si misma. Una matriz puede partirse en submatrices marcando líneas verticales u horizontales en la matriz. Llamamos a una matriz de este estilo una matriz de bloques y a las submatrices marcadas las llamamos bloques.

Unos ejemplos de matrices de bloques:

\begin{align*}
\left( \begin{array}{c|cc}
1 & 2 & 3\\
0& 5 & 6\\
0 & 0&9
\end{array}\right)
,\hspace{2mm} \left( \begin{array}{c|cc} 1 & 0 & 1 \\ \hline 2 & 5 & -3\end{array}\right),\\ \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2\\ \hline 5 & 16 & 2 & 0\\ 17 & 19 & -5 & 3\\ 117 & 0 & 0 & 11\end{array}\right). \end{align*}

Como mencionamos en la introducción, podemos ver a una matriz de bloques como una ‘matriz de matrices’: una matriz de bloques en $M_{m,n}(F)$ típica se ve como

\begin{align*}
\begin{pmatrix}
A_{11} & A_{12} & \dots & A_{1k}\\
A_{21} & A_{22} & \dots & A_{2k}\\
\vdots & \vdots & \ddots & \vdots\\
A_{l1} & A_{l2} & \dots & A_{lk}
\end{pmatrix},
\end{align*}

en donde cada submatriz $A_{ij}$ es una matriz de tamaño $m_i\times n_j$ para algunos enteros positivos $m_1,\dots, m_l$ y $n_1,\dots, n_k$ tales que $m_1+\dots +m_l=m$ y $n_1+\dots+n_k=n$. La matriz tiene entonces $l$ filas de bloques y $k$ columnas de bloques.

Si $l=k$, llamamos a los bloques $A_{11}, \dots, A_{kk}$ los bloques diagonales y decimos que $A$ es diagonal por bloques si todos los bloques aparte de los diagonales son la matriz cero del tamaño correspondiente. Es decir, una matriz diagonal por bloques es de la forma

\begin{align*}
A=\begin{pmatrix} A_{11} & 0 &\dots & 0\\
0 & A_{21} & \dots & 0\\
\vdots & \vdots & \ddots &\vdots\\
0 & 0 &\dots & A_{kk}.
\end{pmatrix}
\end{align*}

Observa que sólo estamos pidiendo que $k=l$, es decir, que haya la misma cantidad de filas de bloques y de columnas de bloques. Sin embargo, no es necesario que la matriz $A$ sea cuadrada para que sea diagonal por bloques.

Por más que la definición en abstracto pueda ocultar su sentido práctico, uno siempre reconoce una matriz diagonal por bloques cuando la ve.

Ejemplo. La matriz

\begin{align*}
\begin{pmatrix}
1& -1 & 0 & 0\\
0& 2 & 0 & 0\\
0&0 & 3 &0\\
0 & 0 & 15 & -2
\end{pmatrix}
\end{align*}

es diagonal por bloques, y los resaltamos con las líneas de división

\begin{align*}
\left( \begin{array}{cc|cc}
1& -1 & 0 & 0\\
0& 2 & 0 & 0\\ \hline
0&0 & 3 &0\\
0 & 0 & 15 & -2
\end{array}\right).\end{align*}

La matriz
\begin{align*}
\begin{pmatrix}
2 & -1 & 0 & 0\\
8 & 3 & 0 & 0\\
0& 3 & 0 &0\\
0&0 & 0 & -2\\
0 & 0 & 1 & 0
\end{pmatrix}
\end{align*}

también es diagonal por bloques, aunque los bloques no necesariamente sean cuadrados. Resaltamos la lineas divisorias a continuación:

\begin{align*}
\left( \begin{array}{cc|cc}
2& -1 & 0 & 0\\
8 & 3 & 0 & 0\\
2 & 3 & 0 & 0\\ \hline
0 & 0 & 0 &-2\\ 0 & 0 & 1 & 0
\end{array}\right).\end{align*}

Los bloques diagonales son \begin{align*}\begin{pmatrix} 2 & -1 \\ 8 & 3 \\2 & 3 \end{pmatrix}\end{align*} y \begin{align*}\begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}. \end{align*}

$\triangle$

Operaciones con matrices de bloques

Al ser ‘matrices de matrices’, las matrices de bloques se comportan adecuadamente con las operaciones de suma y producto de matrices que conocemos. Enunciamos esto con más detalle en la siguiente proposición que no demostraremos. Las demostraciones son directas pero tediosas.

Proposición.

  • Si
    \begin{align*}
    A= \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1k}\\ A_{21} & A_{22} & \dots & A_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1} & A_{l2} & \dots & A_{lk} \end{pmatrix}\end{align*} y \begin{align*} B=\begin{pmatrix} B_{11} & B_{12} & \dots & B_{1k}\\ B_{21} & B_{22} & \dots & B_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ B_{l1} & B_{l2} & \dots & B_{lk} \end{pmatrix} \end{align*}
    son matrices de bloques con $A_{ij}$ y $B_{ij}$ del mismo tamaño para cada $i,j$ (es decir, la partición es igual) entonces
    \begin{align*}
    A+B=\begin{pmatrix} A_{11} +B_{11} & A_{12}+B_{12} & \dots & A_{1k}+B_{1k}\\ A_{21} +B_{21}& A_{22}+B_{22} & \dots & A_{2k}+B_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1}+B_{l1} & A_{l2}+B_{l2} & \dots & A_{lk}+B_{lk} \end{pmatrix}
    \end{align*}
  • Si
    \begin{align*}
    A=\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1k}\\ A_{21} & A_{22} & \dots & A_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1} & A_{l2} & \dots & A_{lk} \end{pmatrix}\end{align*} y \begin{align*} B=\begin{pmatrix} B_{11} & B_{12} & \dots & B_{1r}\\ B_{21} & B_{22} & \dots & B_{2r}\\ \vdots & \vdots & \ddots & \vdots\\ B_{k1} & B_{k2} & \dots & B_{kr} \end{pmatrix} \end{align*}
    son de tamaño $m\times n$ y $n\times p$ respectivamente tal que $A_{ij}$ es de tamaño $m_i \times n_j$y $B_{ij}$ de tamaño $n_i\times p_j$, entonces
    \begin{align*}
    AB=\begin{pmatrix} C_{11} & C_{12} & \dots & C_{1r}\\ C_{21} & C_{22} & \dots & C_{2r}\\ \vdots & \vdots & \ddots & \vdots\\ C_{l1} & C_{l2} & \dots & C_{lr} \end{pmatrix}
    \end{align*}
    donde
    \begin{align*}
    C_{ij}=\sum_{u=1}^{k} A_{iu} B_{uj}.
    \end{align*}

Más adelante…

En unas cuantas entradas hablaremos del algoritmo de reducción gaussiana y lo usaremos para resolver sistemas de ecuaciones y encontrar inversas de matrices. Nos encontraremos con matrices de bloque muy específicas, por ejemplo, las que resultan de «pegarle» un vector columna a una matriz, por ejemplo

\begin{align*}
\left( \begin{array}{cccc|c}
-3& -1 & 3 & -11 & 0\\
8 & 3 & 0 & 2 & -1\\
1 & -5 & 0 & 0 & 0
\end{array}\right).\end{align*}

y las que resultan de «pegarle» la matriz identidad a una matriz cuadrada, por ejemplo

\begin{align*}
\left( \begin{array}{ccc|ccc}
-3& -1 & 3 & 1 & 0 & 0\\
8 & 3 & 0 & 0 & 1 & 0\\
1 & -5 & 0 & 0 & 0 & 1
\end{array}\right).\end{align*}

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cómo se portan las matrices de bloques respecto a la transposición?
  • Escribe todas las formas en las que puedes dividir a la matriz $I_3$ para que quede como una matriz de bloques. Aquí hay algunas: \begin{align*}\left(\begin{array}{c|cc} 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \left(\begin{array}{c|c|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1\end{array}\right), \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right). \end{align*}
  • Demuestra que toda matriz diagonal puede verse como una matriz diagonal por bloques. Muestra que no toda matriz diagonal por bloques es una matriz diagonal.
  • Escribe todas las formas en las que puedes dividir a la matriz $I_4$ para que quede como una matriz diagonal por bloques.
  • ¿Cómo es la inversa de una matriz diagonal por bloques?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de producto de matrices y matrices invertibles

Por Julio Sampietro

Introducción

Esta sección consta de puros problemas para practicar los conceptos vistos en entradas previas. Las entradas anteriores correspondientes son la de producto de matrices y la de matrices invertibles.

Problemas resueltos

Problema. Encuentra todas las matrices $B\in M_3(\mathbb{C})$ que conmutan con la matriz

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 &2
\end{pmatrix}.
\end{align*}

Solución. Sea

\begin{align*}
B=\begin{pmatrix} a & b & c\\ d & e & f \\ g & h & i \end{pmatrix}\in M_3(\mathbb{C}).
\end{align*}

Calculamos usando la regla del producto:

\begin{align*}
AB=\begin{pmatrix}
a & b & c\\ 0 & 0 & 0\\ 2 g & 2h & 2i \end{pmatrix}
\end{align*}

y

\begin{align*}
BA= \begin{pmatrix} a & 0 & 2c\\ d & 0 & 2f\\ g & 0 & 2i\end{pmatrix}.
\end{align*}

Igualando ambas matrices obtenemos que $A$ y $B$ conmutan si y sólo si se satisfacen las condiciones

\begin{align*}
\begin{cases}
b=d=f=h=0\\
2c=c\\
2g=g\end{cases}.
\end{align*}

Las últimas dos condiciones son equivalentes a que $c=g=0$. Cualquier matriz que conmuta con $A$ satisface estas condiciones y conversamente (por nuestro cálculo) si satisface estas ecuaciones conmuta con $A$. Esto nos deja como parámetros libres a $a,e,i$, es decir $B$ puede ser cualquier matriz diagonal.

$\triangle$

Problema. Considerando las matrices

\begin{align*}
A=\begin{pmatrix} 1 & 1 & 1\\ 0& 4 &-1\\ 9& 6 & 0 \end{pmatrix}, \hspace{2mm} B= \begin{pmatrix} -1 & 1\\ 0 & -2 \\ 1 &0 \end{pmatrix},
\end{align*}

¿cuáles de los productos $A^2, AB, BA, B^2$ tienen sentido? Calcula los que si lo tienen.

Solución. Recordamos que los productos tienen sentido si el número de columnas de la matriz de la izquierda sea el mismo que el número de filas de la matriz de la derecha. Entonces no podemos realizar los productos $BA$ o $B^2$ pues esta condición no se cumple (por ejemplo, $B$ tiene $3$ columnas, $A$ tiene $2$ filas, y estos números difieren). Calculamos entonces usando la regla del producto:

\begin{align*}
A^2 = \begin{pmatrix}
10 & 11 & 0\\
-9 & 10 & -4\\
9 & 33 & 3\end{pmatrix}, \hspace{2mm} AB= \begin{pmatrix} 0 & -1\\ -1 & -8\\ -9 &-3\end{pmatrix}.
\end{align*}

$\triangle$

Problema. Considera la matriz \begin{align*}
A=\begin{pmatrix} 1 & 1& 0 \\ 0 & 1 &1\\ 0 &0 & 1 \end{pmatrix}
\end{align*}

  • Demuestra que $A$ satisface que $(A-I_3)^3=O_3$
  • Calcula $A^{n}$ para cualquier entero positivo $n$.

Solución.

  • Hacemos el cálculo directamente:
    \begin{align*}
    (A-I_3)^3&= \begin{pmatrix} 0 & 1 & 0\\0 & 0 &1\\ 0 & 0 &0 \end{pmatrix}^{2} \cdot \begin{pmatrix} 0 & 1 &0 \\ 0 & 0 & 1\\ 0 & 0 &0 \end{pmatrix} \\&= \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 &0 &0\end{pmatrix}\cdot \begin{pmatrix} 0 & 1 &0 \\ 0 & 0 & 1\\ 0 & 0 &0 \end{pmatrix}\\&=O_3. \end{align*}
  • Para este tipo de problemas, una estrategia que funciona es hacer casos pequeños para hacer una conjetura, y luego demostrarla por inducción. Probando para algunos valores de $n$ conjeturamos que
    \begin{align*}
    A^{n}=\begin{pmatrix} 1 & n & \frac{n(n-1)}{2}\\ 0 & 1 & n\\ 0 & 0 &1 \end{pmatrix}.
    \end{align*}
    Lo demostramos por inducción sobre $n$, dando por cierto el caso base con $n=1$.
    Hagamos ahora el paso inductivo. Para esto usamos que $1+\dots + (n-1)= \frac{n(n-1)}{2}$.
    Nuestra hipótesis de inducción nos dice entonces que para cierto $n$ se tiene que $A^{n}=\begin{pmatrix} 1 & n & 1+\dots +(n-1) \\ 0 & 1 & n\\ 0 & 0 & 1\end{pmatrix}$. Usando que $A^{n+1}=A^{n}\cdot A$ con nuestra hipótesis de inducción se sigue:
    \begin{align*}
    A^{n+1}= A^{n}\cdot A&= \begin{pmatrix} 1 & n & 1+\dots +(n-1)\\ 0 & 1 &n\\ 0 & 0 &1\end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1\end{pmatrix}\\ &= \begin{pmatrix} 1 & 1+n & 1+\dots + (n-1)+n\\ 0 & 1 & n+1\\ 0 & 0 &1\end{pmatrix}.\end{align*}
    Luego el resultado es cierto para $n+1$ y así queda demostrado el resultado.

$\square$

El siguiente problema combina temas de números complejos y de matrices invertibles. Para que lo entiendas a profundidad, es útil recordar la teoría de raíces $n$-ésimas de la unidad. Puedes revisar esta entrada del blog. El ejemplo puede parecer un poco artificial. Sin embargo, las matrices que se definen en él tienen muchas aplicaciones, por ejemplo, en procesamiento de señales.

Problema. Sea $n>1$ un natural y sea

\begin{align*}
\zeta= e^{\frac{2\pi i}{n}}= \cos \left( \frac{2\pi}{n}\right)+i\sin \left( \frac{2\pi}{n}\right).
\end{align*}

Este número puede parecer muy feo, pero es simplemente la raíz $n$-ésima de la unidad de menor argumento.

Definimos la matriz de Fourier de orden $n$, denotada por $\mathcal{F}_n$ como la matriz tal que su $(j,k)-$ésima entrada es $\zeta^{(j-1)(k-1)}$ para $1\leq j,k\leq n$.

  • a) Sea $\overline{\mathcal{F}_n}$ la matriz cuya $(j,k)-$ésima entrada es el conjugado complejo de la $(j,k)-$ésima entrada de $\mathcal{F}_n$. Demuestra que
    \begin{align*}
    \mathcal{F}_n\cdot \overline{\mathcal{F}_n} = \overline{\mathcal{F}_n}\cdot \mathcal{F}_n= nI_n.
    \end{align*}
  • b) Deduce que $\mathcal{F}_n$ es invertible y calcule su inversa.

Solución.

  • a) Sean $1\leq j,k\leq n$. Usando la regla del producto, podemos encontrar la entrada $(j,k)$ como sigue:
    \begin{align*}
    \left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n} \right)_{jk} &= \sum_{l=1}^{n} \left(\mathcal{F}_n\right)_{jl} \cdot \left(\overline{\mathcal{F}_n}\right)_{lk}\\
    &= \sum_{l=1}^{n} \zeta^{(j-1)(l-1)} \cdot \overline{\zeta^{(l-1)(k-1)}}\\
    &= \sum_{l=1}^{n} \zeta^{(j-1)(l-1)-(l-1)(k-1)},
    \end{align*}
    la última igualdad se debe a que $\overline{\zeta}= \zeta^{-1}$. Así
    \begin{align*}
    \left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n}\right)_{jk}=\sum_{l=1}^{n}\zeta^{(l-1)(j-k)}=\sum_{l=0}^{n-1}\left( \zeta^{j-k}\right)^{l}.
    \end{align*}
    Y la suma de la derecha es la suma de una sucesión geométrica con razón $\zeta^{j-k}$. Si $j=k$, entonces $\zeta^{j-k}=1$, así que la suma es igual a $n$ ya que cada termino es $1$ y lo sumamos $n$ veces. Si $j\neq k$ entonces $\zeta^{j-k}\neq 1$ y usamos la fórmula para una suma geométrica:
    \begin{align*}
    \sum_{l=0}^{n-1} \left( \zeta^{j-k}\right)^{l}= \frac{1-\left(\zeta^{j-k}\right)^{n}}{1-\zeta^{j-k}}=\frac{1-(\zeta^{n})^{j-k}}{1-\zeta^{j-k}}=0.\end{align*}
    Usamos en la última igualdad que $\zeta^{n}=1$. Se sigue que $\left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n}\right)_{jk}$ es $n$ si $j=k$ y $0$ de otra manera, es decir
    \begin{align*}
    \mathcal{F}_n\cdot\overline{\mathcal{F}_n}=n\cdot I_n.
    \end{align*}
    La igualdad simétrica $\overline{\mathcal{F}_n}\cdot \mathcal{F}_n=n \cdot I_n$ se prueba de la misma manera y omitimos los detalles.
  • b) Por el inciso anterior, sugerimos $\frac{1}{n} \overline{\mathcal{F}_n}$, y esta satisface

    \begin{align*}
    \mathcal{F}_n \cdot \frac{1}{n} \overline{\mathcal{F}_n} = \frac{1}{n} \cdot n I_n= I_n
    \end{align*}
    y la otra igualdad se verifica de la misma manera. Por lo tanto, $\mathcal{F}_n$ es invertible y su inversa es $\frac{1}{n} \overline{\mathcal{F}_n}$.

$\square$

Problema. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que

\begin{align*}
A+B=I_n \hspace{5mm} A^2+B^2=O_n
\end{align*}

Demuestra que $A$ y $B$ son invertibles y que satisfacen

\begin{align*}
(A^{-1}+B^{-1})^{n}=2^{n} I_n
\end{align*}

Solución. Observamos que las propiedades dadas nos permiten calcular

\begin{align*}
A(I_n+B-A)&= (I_n-B) (I_n+B-A)\\&=I_n+B-A-B-B^2+BA\\
&= I_n -A-B^2+BA \\&=I_n+(B-I_n)A-B^2\\ &=I_n-A^2-B^2\\&= I_n.
\end{align*}

Es decir $A^{-1}=I_n+B-A$ (falta demostrar que con esta propuesta, también se cumple $A^{-1}A=I_n$, omitimos los cálculos). Similarmente $B^{-1}= I_n+A-B$ y por tanto $A^{-1}+B^{-1}= 2\cdot I_n$ y de esta igualdad se sigue la segunda parte del problema, pues

\begin{align*}
\left(A^{-1}+B^{-1}\right)^{n}= \left( 2\cdot I_n\right)^{n}=2^{n} \cdot I_n.\end{align*}

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Matrices invertibles

Por Julio Sampietro

Introducción

Siguiendo el hilo de la entrada pasada, por la correspondencia entre transformaciones lineales y matrices así como la composición y su producto, podemos traducir el problema de invertibilidad de transformaciones lineales en términos de matrices, a las que llamaremos matrices invertibles. Es decir, si tenemos $\varphi: F^n\to F^n$, $\psi: F^n\to F^n$ transformaciones lineales tales que

\begin{align*}
\varphi\circ \psi= Id_{F^n}, \hspace{2mm} \psi \circ \varphi=Id_{F^n}
\end{align*}

¿cómo se traduce esto en términos de sus matrices asociadas?

Veremos que la respuesta yace en matrices que tienen inverso multiplicativo, a diferencia de un campo $F$, donde todo $x$ tiene un $x^{-1}$, cuando trabajamos con matrices no todas tienen una matriz inversa y las que si son de especial importancia.

Definición de matrices invertibles

Definición. Decimos que una matriz $A\in M_n (F)$ es invertible o bien no singular si existe una matriz $B\in M_n(F)$ tal que

\begin{align*}
AB=BA=I_n
\end{align*}

Ejemplo. Veamos que la matriz $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ es invertible. Para ello, tenemos que exhibir una matriz $B$ tal que $AB=I_2=BA$. Proponemos a la matriz $B=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Haciendo la multiplicación con la regla del producto, tenemos que

\begin{align*}
AB&=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + 1 \cdot 0 & 1 \cdot (-1) + 1\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot (-1)+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

¡Aún no hemos terminado! Para satisfacer la definición, también tenemos que mostrar que $BA=I_2$:

\begin{align*}
BA&=\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\\
&=\begin{pmatrix} 1 \cdot 1 + (-1) \cdot 0 & 1 \cdot 1 + (-1)\cdot 1\\ 0 \cdot 1 + 1 \cdot 0 & 0\cdot 1+ 1\cdot 1\end{pmatrix}\\
&=\begin{pmatrix}1 & 0 \\ 0 & 1\end{pmatrix}\\
&=I_2.
\end{align*}

Ahora sí, podemos concluir que la matriz $A$ es invertible.

$\square$

Observación. Una primera cosa que hay que notar es que en la definición se pide que tanto $AB$ como $BA$ sean la matriz identidad $I_n$. Es importante verificar ambas, pues como sabemos, el producto de matrices no siempre conmuta.

Otra observación importante es que si la matriz $B$ como en la definición existe, entonces es necesariamente única: En efecto, si $C\in M_n(F)$ es otra matriz tal que

\begin{align*}
AC=CA=I_n,
\end{align*}

entonces manipulando las expresiones en juego:

\begin{align*}
C&= I_n C \\&= (BA)C\\
&=B(AC)\\&= B I_n \\&=B.
\end{align*}

Entonces no hay ambigüedad al hablar de la matriz inversa de $A$. Ya no tiene mucho sentido usar una letra diferente para ella. Simplemente la denotaremos por $A^{-1}$.

Primeras propiedades de matrices invertibles

Resumimos algunas propiedades de las matrices invertibles en la siguiente proposición.

Proposición.

  1. Para $c\in F$ es un escalar distinto de cero, se tiene que $c I_n$ es invertible.
  2. Si $A$ es invertible, entonces $A^{-1}$ también lo es, y $\left(A^{-1}\right)^{-1}=A$
  3. Si $A,B\in M_n(F)$ son invertibles, entonces $AB$ también lo es y

    \begin{align*}
    \left(AB\right)^{-1}= B^{-1}A^{-1}.
    \end{align*}

Demostración:

  1. Como $c\neq 0$ y $F$ es un campo, entonces existe $c^{-1}$ en $F$ y así $c^{-1} I_n$ satisface (por la compatibilidad del producto por escalares de esta entrada)

    \begin{align*}
    (cI_n)\cdot (c^{-1}I_n)&= (cc^{-1})\cdot (I_n I_n)\\&= I_n\\
    &= (c^{-1} c) \cdot(I_n)\\&= (c^{-1} I_n) \cdot (c I_n).
    \end{align*}
    Luego $c^{-1}I_n$ es la matriz inversa de $c I_n$.
  2. Para evitar alguna confusión con la notación, denotemos a $A^{-1}$ por $B$. Así

    \begin{align*}
    AB=BA=I_n.
    \end{align*}
    Luego $B$ es invertible y su inversa es $A$.
  3. Si $A,B\in M_n(F)$ son invertibles entonces existen $A^{-1}$ y $B^{-1}$. Sea $C= B^{-1} A^{-1}$. Así

    \begin{align*}
    (AB)C=ABB^{-1}A^{-1}= A I_n A^{-1}= AA^{-1} =I_n.
    \end{align*}
    Y análogamente

    \begin{align*}
    C(AB)= B^{-1}A^{-1} A B= B^{-1} I_n B= B^{-1} B=I_n.
    \end{align*}
    Mostrando así que $AB$ es invertible con inversa $C$.

$\square$

Observación. Es importante notar que el ‘sacar inverso’ invierte el orden de los productos. Es decir, en el producto $AB$ aparece primero $A$ y luego $B$, mientras que el inverso $(AB)^{-1}$ es $B^{-1}A^{-1}$, en donde aparece primero $B^{-1}$ y luego $A^{-1}$. Esto es muy importante en vista de que la multiplicación de matrices no es conmutativa y por lo tanto en general

\begin{align*}
(AB)^{-1}\neq A^{-1} B^{-1}.
\end{align*}

También es importante notar que si bien la invertibilidad se preserva bajo productos (el producto de matrices invertibles es invertible) ésta no se preserva bajo sumas. Por ejemplo, tanto $I_n$ como $-I_n$ son invertibles en virtud del teorema, sin embargo su suma es $I_n+(-I_n)=O_n$, que no es invertible.

Ya hablamos de cuándo una matriz $A$ en $M_n(F)$ es invertible. ¿Qué sucede si consideramos a todas las matrices invertibles en $M_n(F)$? Introducimos el siguiente objeto de importancia fundamental en muchas áreas de las matemáticas:

Definición. El conjunto de matrices invertibles $A\in M_n(F)$ es llamado el grupo lineal general y es denotado por $GL_n(F)$.

En la tarea moral hay un ejercicio en el que se pide mostrar que $GL_n(F)$ es un grupo bajo la operación de producto de matrices. En realidad en este curso no hablaremos mucho de $GL_n(F)$ como grupo. Pero es importante que sepas de su existencia y que conozcas su notación, pues será importante en tu preparación matemática futura.

Invirtiendo matrices

Si bien el concepto de invertibilidad es sencillo de introducir, gran parte de la herramienta para determinar (irónicamente, a través de los determinantes) la invertibilidad de una matriz o propiedades relacionadas (por ejemplo, una computación efectiva de matrices inversas) todavía no está a nuestra disposición. Por tanto, lo único que podemos hacer es uso de ‘fuerza bruta’ para encontrar las inversas de matrices invertibles, y eso haremos en los siguientes ejemplos para al menos familiarizarnos con los cálculos.

Problema. Sea la matriz $A=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}$. ¿Es $A$ invertible? De serlo, calcula su inversa.

Solución. Como mencionamos, con la teoría que hemos desarrollado hasta ahora solo podemos atacar el problema directamente. Buscamos una matriz

\begin{align*}
B= \begin{pmatrix} a & b & c\\ x & y & z\\ u & v & w\end{pmatrix}
\end{align*}

tal que $AB=I_3=BA$. Usando la regla del producto, calculamos

\begin{align*}
AB=\begin{pmatrix} x & y & z\\ a & b &c \\ u & v & w \end{pmatrix}.
\end{align*}

Igualando esta matriz a $I_3$ obtenemos las condiciones

\begin{align*}
\begin{cases} x=b=w=1\\ y=z=a=c=u=v=0. \end{cases}
\end{align*}

Esto muestra que una buena candidata a ser la inversa de $A$ es la matriz

\begin{align*}
A^{-1}= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}.
\end{align*}

Falta un paso más: hay que verificar que $BA=I_3$. Afortunadamente esto es cierto. Su verificación queda como tarea moral.

$\triangle$

Resaltamos que el método usado no es eficiente, y tampoco es general (pues funcionó solo por la particularidad de la matriz $A$). Dicho esto, exhibimos un método que puede ser útil cuando la matriz por invertir es suficientemente ‘bonita’ (por ejemplo si tiene muchos ceros).

Sea $A\in M_n(F)$ una matriz y $b\in F^n$ un vector. Supongamos que el sistema $AX=b$ en el vector variable $X$ tiene una única solución $X\in F^n$. Un resultado que probaremos más adelante nos dice que entonces $A$ es invertible y que la solución es $X=A^{-1}b$ (es decir, que podemos ‘despejar’ $X$ multiplicando por $A^{-1}$ del lado izquierdo ambos lados). Así, si el sistema resulta fácil de resolver, podemos obtener una expresión de $A^{-1}$ en términos de cualquier vector $b$, y ésto basta para determinar a $A^{-1}$. En la práctica, la resolución del sistema mostrará que

\begin{align*}
A^{-1} b = \begin{pmatrix}
c_{11}b_1 + c_{12} b_2 +\dots + c_{1n}b_n\\
c_{21}b_1+c_{22}b_2 + \dots + c_{2n} b_n\\
\vdots\\
c_{n1} b_1 + c_{n2} b_2 +\dots + c_{nn}b_n
\end{pmatrix}
\end{align*}

para algunos escalares $c_{ij}$ independientes de $b$. Escogiendo $b=e_i$ el $i-$ésimo vector de la base canónica, el lado izquierdo es simplemente la $i-$ésima columna de $A^{-1}$ y el lado derecho es la $i-$ésima columna de $[c_{ij}]$. Como ambas matrices son iguales columna a columna, deducimos que

\begin{align*}
A^{-1}=[c_{ij}]
\end{align*}

Subrayamos que, una vez el sistema resuelto, el resto es relativamente sencillo pues solo es fijarnos en los coeficientes. La dificultad reside entonces en resolver el sistema $AX=b$, y la dificultad de este sistema depende fuertemente de la matriz $A$, por lo que nos limitaremos por lo pronto a ejemplos sencillos.

Retomemos el problema anterior para ver cómo funciona este método recién expuesto.

Problema. Resuelve el problema anterior usando el método que acabamos de describir.

Solución. Sea $b=\begin{pmatrix} b_1 \\ b_2 \\ b3 \end{pmatrix}\in F^3$, tratemos de resolver $AX=b$ para $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. El sistema se escribe entonces

\begin{align*}
\begin{pmatrix} b_1 \\ b_2 \\ b_3\end{pmatrix}=AX= \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} x_2 \\ x_1 \\ x_3\end{pmatrix}.
\end{align*}

O equivalentemente

\begin{align*}
\begin{cases} x_1=b_2\\ x_2= b_1 \\ x_3=b_3.\end{cases}
\end{align*}

Como el sistema siempre se puede resolver dado $b\in F^3$, podemos afirmar que $A$ es invertible, y tenemos que

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1\\ x_2 \\ x_3\end{pmatrix}= \begin{pmatrix} b_2\\ b_1 \\ b_3\end{pmatrix}= \begin{pmatrix} 0\cdot b_1 + 1\cdot b_2 + 0 \cdot b_3\\ 1\cdot b_1 +0\cdot b_2 +0\cdot b_3\\ 0\cdot b_1 + 0\cdot b_2 +1\cdot b_3\end{pmatrix}. \end{align*}

Fijándonos en los coeficientes del lado derecho, vemos que la primera fila de $A^{-1}$ es $(0 \ 1 \ 0)$, la segunda $(1\ 0 \ 0)$ y la tercera $(0\ 0\ 1)$. Luego

\begin{align*}
A^{-1}=\begin{pmatrix}
0 & 1& 0\\
1 & 0&0\\
0 & 0 & 1\end{pmatrix}\end{align*}

$\triangle$

Problema. Sea la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 1 & 1 & 1\\ 0 & 1 & 1 &1 \\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix} \end{align*}

Demuestre que $A$ es invertible y encuentre su inversa.

Solución. Usamos el mismo método. Sea $b= \begin{pmatrix} b_1\\ b_2 \\ b_3 \\ b_4 \end{pmatrix}\in F^4$ y resolvemos $AX=b$ con $X=\begin{pmatrix} x_1\\ x_2 \\ x_3 \\ x_4\end{pmatrix}$. Esta vez el sistema asociado es el siguiente (omitimos los cálculos de la regla del producto):

\begin{align*}
\begin{cases}
x_1+x_2+x_3+x_4=b_1\\
x_2+x_3+x_4=b_2\\
x_3+x_4=b_3\\
x_4=b_4
\end{cases}.
\end{align*}

Este sistema lo podemos resolver de manera más o menos sencilla: De la última ecuación tenemos que $x_4=b_4$, luego sustituyendo en la penúltima obtenemos $x_3+b_4=b_3$ o bien $x_3=b_3-b_4$. Sustituyendo esto a su vez en la segunda ecuación obtenemos que $x_2+b_3=b_2$, es decir $x_2=b_2-b_3$ y finalmente $x_1= b_1-b_2$. Así el sistema siempre tiene solución y estas están dadas por

\begin{align*}
A^{-1}b= X= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4\end{pmatrix} = \begin{pmatrix} b_1-b_2\\ b_2-b_3\\ b_3-b_4\\ b_4 \end{pmatrix}.
\end{align*}

De esto se sigue que (fijándonos en los coeficientes) la primera fila de $A^{-1}$ es $(1\ -1 \ 0 \ 0)$, y análogamente obtenemos las demás, de manera que

\begin{align*}
A^{-1}=\begin{pmatrix}
1 & -1 & 0 &0\\
0 & 1 & -1 & 0\\
0&0 &1 &-1\\
0 & 0 & 0 &1
\end{pmatrix}.
\end{align*}

Un buen ejercicio es verificar que en efecto con esta inversa propuesta se cumple que $AA^{-1}=I_4=A^{-1}A$.

$\triangle$

Matrices invertibles diagonales

Concluimos esta sección con un último problema de matrices invertibles. Para resolverlo no usamos el método expuesto, sino un argumento particular para las matrices diagonales.

Problema. Demuestre que una matriz diagonal $A\in M_n(F)$ es invertible si y sólo si todas sus entradas en la diagonal son distintas de cero. Más aún, de ser el caso, $A^{-1}$ también es diagonal.

Solución. Sea $A=[a_{ij}]\in M_n(F)$ una matriz diagonal y $B=[b_{ij}]\in M_n(F)$ cualquier matriz. Usando la regla del producto tenemos que

\begin{align*}
(AB)_{ij}= \sum_{k=1}^{n} a_{ik} b_{kj}.
\end{align*}

Como $a_{ik}=0$ para $k\neq i$ (por ser $A$ diagonal) muchos de los términos en la suma desaparecen y nos quedamos con

\begin{align*}
(AB)_{ij}= a_{ii} b_{ij}
\end{align*}

y de manera similar se puede verificar que

\begin{align*}
(BA)_{ij}=a_{jj}b_{ij}.
\end{align*}

Aprovechemos estas observaciones para proponer a la inversa de $A$.

Si $a_{ii}\neq 0$ para todo $i\in \{1,\dots, n\}$ entonces podemos considerar a $B$ como la matriz diagonal con entradas $b_{ii}=\frac{1}{a_{ii}}$. Las fórmulas que acabamos de calcular nos dan que $AB=BA=I_n$ y así $A$ es invertible y su inversa $B$ es diagonal.

Conversamente, supongamos que $A$ es invertible y diagonal. Así, existe una matriz $B$ tal que $AB=BA=I_n$. Luego para toda $i\in \{1, \dots, n\}$ se cumple

\begin{align*}
1= (I_n)_{ii}= (AB)_{ii}= a_{ii}b_{ii}
\end{align*}

Así $a_{ii}\neq 0$ para $i\in \{1, \dots, n\}$ y así todas las entradas en la diagonal son distintas de cero.

$\square$

Más adelante…

En esta entrada hablamos del concepto de matrices invertibles, vimos algunas de sus propiedades y esbozamos un método para encontrar la inversa de una matriz. Hay mejores métodos para encontrar dicha inversa. Uno de ellos, que es muy rápido, es el método de reducción gaussiana, que sirve para mucho más que invertir matrices. Para llegar a él, aún tenemos que desarrollar algo de teoría. Pero antes de eso, hablaremos de otros tipos particulares de matrices.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Aunque para determinar inversos de matrices generales necesitamos desarrollar más teoría, las matrices invertibles de $2\times 2$ son fáciles de entender. Muestra que si se tiene una matriz $A$ en $M_2(F)$ con entradas $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ y $ad-bc\neq 0$, entonces la matriz $$B=\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ es la inversa de $A$. Para ello verifica explícitamente usando la regla del producto que tanto $AB=I_2$, como que $BA=I_2$.
  • En el primer problema de invertir matrices, muestra que $BA$ también es $I_3$.
  • La matriz $$A=\begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \sqrt{2}\end{pmatrix}$$ es invertible. Encuentra su inversa.
  • Verifica que $GL_n(F)$ es en efecto un grupo bajo la operación de multiplicación de matrices. Debes mostrar que:
    • El producto de dos matrices invertibles es invertible.
    • Existe un neutro multiplicativo $E$ (¿quién sería?).
    • Para matriz $A$ en $GL_n(F)$ existe una matriz $B$ en $GL_n(F)$ tal que $AB=BA=E$.
  • Explica por qué la matriz $O_n$ no es invertible. Explica por que si una matriz en $M_n(F)$ tiene una columna (o fila) tal que todas sus entradas sen iguales a $0$, entonces la matriz no es invertible. Este ejercicio lo puedes hacer directamente de la definición, sin tener que recurrir a herramientas más fuertes.
  • Generaliza el penúltimo problema a una matriz de tamaño $n\times n$ con puros unos sobre y por encima de la diagonal, es decir, para la cual $[a_{ij}]=1$ si $j\geq i$ y $0$ en otro caso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»