Archivo de la etiqueta: matematicas

Cálculo Diferencial e Integral II: Propiedades de la integral indefinida

Por Moisés Morales Déciga

Introducción

En la entrada anterior se dio el paso de generalizar la integral. Ya no solo considerarla como un valor, si no como una función.

Al momento de precisar esta generalización, pudimos encontrar el paralelismo que existe con la integral definida, lo podemos ver de la siguiente forma.

$$\text{Integral Definida} \Rightarrow \int \limits_a^b f(u) \ du.$$

$$\text{Integral Indefinida} \Rightarrow \int \limits_a^x f(u) \ du.$$

Como lo mencionamos anteriormente, la diferencia reside en el intervalo de integración, como se observa arriba sería el límite superior.

Pero, sin perdida de generalidad, se puede considerar el límite inferior o ambos, ya que el hecho de que sea indefinida es que no tiene un inicio o fin especifico, si no que estos dependen de una variable.

Entonces, el resultado de la integral no es un número real, ahora es una función que depende de la variable $x$, en este caso.

Y, dado que esta es nuestra única diferencia, se puede hacer analogía con las propiedades propuestas con la integral definida.

I. Aditividad

Considere un intervalo de integración $[a,x]$, y un punto $c$ dentro de este intervalo. $a<c<x.$

Entonces, la integral se puede separar de la siguiente forma.

$$ \int \limits_a^x f(u) \ du = \int \limits_a^c f(u) \ du + \int \limits_c^x f(u) \ du.$$

En este caso, se genera una integral definida y una integral indefinida.

Ejemplo:

Sea $f(u)$ la siguiente función.

$$f(u) =\left\lbrace\begin{array}{c} u^2 \ \ [0, 3] \\ sin(u) \ \ (3,10] \end{array}\right.$$

Se pueden tener diferentes casos al momento de pedir la integral de la función, ya que se puede partir el intervalo dependiendo del valor de $x$.

a) Si $ 0 \leq x \leq 3.$

Entonces, la integral de $f(u)$ se plantea como sigue.

$$\int \limits_0^x u^2 \ du.$$

Ya que es la parte donde la función tiene el dominio que se quiere integrar.

b) Si $ 3 < x \leq 10.$

Entonces la integral se ve de la siguiente manera.

$$\int \limits_3^x sin(u) \ du.$$

Y tenemos el mismo argumento que en el caso anterior.

c) Si $x \in [0,10] \ y \ x > 3.$

En este caso la $x$ corre en todo el intervalo y está condicionado que $x$ tiene que ser mayor que 3, entonces la integral se ve de la siguiente manera.

$$\int \limits_0^x f(u) \ du = \int \limits_0^3 u^2 \ du + \int \limits_3^x sin(u) \ du.$$

Y este caso, como se mencionó en la propiedad de la Aditividad, genera una integral definida y una integral indefinida.

d) Si $x \in [0,10] .$

Este caso solo condiciona a que el valor de $x$ tiene que estar dentro del dominio de la función, por lo que la integral queda de la siguiente manera.

$$ \int \limits_a^x f(u) \ du .$$

Y que se podrá dar solución en el momento en que se defina el valor de $x$.

II. Suma

Sea $h(u)$ una función tal que:

$$h(u) = f(u) + g(u).$$

Donde $f(u)$ y $g(u)$ también son funciones. Entonces, para calcular la integral de $h(x)$, tenemos la siguiente propiedad.

$$\int \limits_a^x h(u) \ du = \int \limits_a^x [f(u) \ + \ g(u)] \ du = \int \limits_a^x f(u) \ du + \int \limits_a^x g(u) \ du. $$

Entonces, la integral de una suma, es la suma de las integrales.

III. Producto por una constante

Sea $h(u)$ una función tal que $h(u)= c \cdot f(u)$, donde $c$ es cualquier real y $f(u)$ una función. Entonces,

$$\int \limits_a^x h(u) \ du = \int \limits_a^x c \cdot f(u) \ du = c \int \limits_a^x f(u) \ du.$$

Las constantes que se encuentran multiplicando a una función pueden entrar y salir de la integral.

IV. Linealidad

Sean $f(x)$ y $h(x)$ dos funciones y sean $\alpha$ y $\beta$ dos números reales. Entonces:

$$\int \limits_a^x [\alpha \ f(u) + \beta \ g(u)] \ du = \alpha \int \limits_a^x f(u) \ du + \beta \int \limits_a^x g(u) \ du.$$

Esta propiedad contiene a las dos anteriores (suma y producto), lo que la hace sumamente útil y provoca que se mencione en múltiples ocasiones.

Más adelante…

Ya que tenemos estás propiedades, podemos simplificar el proceso para desarrollar la integral y poder descomponerla en integrales más simples ó, en caso contrario, podemos aplicarlas para poder simplificarlas (reducirlas) o encontrar una sustitución adecuada para que se pueda integrar con mayor facilidad.

En la siguiente sección, tendremos un recordatorio de derivadas. Esto es necesario ya que existe una relación importante entre la derivada y la integral. Es posible que para este momento de tu formación, haz escuchado que la integral es el proceso contrario a o la inversa de la derivación.

Entonces, para poder explicar esta relación entre ambos procesos, es necesario recordar como funciona la derivada, que significa y como se calcula.

Tarea moral

  1. Utiliza la propiedad de linealidad.
    $$\int \limits_a^x \alpha \ \left[ f(u) \ – \ g(u) + 1 \right] \cdot \beta \ h(u) \ du.$$
  2. Aplique las reglas correspondientes para expandir la forma de la integral, para los diferentes casos.
    $$f(x) = \left\lbrace\begin{array}{c} 3x^2 \ – \ x + 13 \ \ [0, 5] \\ \frac{7}{x} \ \ (5,10] \end{array}\right.$$
    i) Integral indefinida para cualquier $x$ entre 5 y 9.
    ii) Integral indefinida para cualquier $x$ entre 0 y 5.
    ii) Integral indefinida para cualquier $x$ entre 3 y 8, pasando por el 5.
  3. Aplique las reglas correspondientes para dejar en una sola integral la siguiente integral.
    $$1/7 \int \limits_a^x u^6 \ du \ – \ 7 \int \limits_a^x cos(u) \ du \ + \ 8 \int \limits_a^x \frac{1}{u+1} \ du.$$

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: La integral como función del límite superior – Integral Indefinida
  • Entrada siguiente: Recordatorio de derivadas

1.8. CONJUNTOS LINEALMENTE (IN)DEPENDIENTES Y CONJUNTOS GENERADORES: relación entre sí

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Nota: Dado $\{u_1,u_2,\dots ,u_t\}$ un conjunto finito de vectores denotaremos a $\langle\{u_1,u_2,\dots ,u_t\}\rangle$ por $\langle u_1,u_2,\dots ,u_t\rangle$.

Lema (Dependencia lineal): Sean $V$ un $K$ – espacio vectorial y $v_1,v_2,…,v_m$ una lista de vectores en $V$. Si $v_1,v_2,…,v_m$ es una lista l.d. y $v_1\not=\theta_V$, entonces existe $j\in\{2,3,…,m\}$ tal que
a) $v_j\in\langle v_1,v_2,…,v_{j-1}\rangle$ y
b) $\langle v_1,v_2,…,v_{j-1},v_{j+1},…,v_m\rangle=\langle v_1,v_2,…,v_m\rangle$

Nota: $\langle v_1,v_2,…,v_{j-1},v_{j+1},…,v_m\rangle$ lo denotamos por $\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle$

Demostración: Sean $V$ un $K$ – espacio vectorial y $v_1,v_2,…,v_m$ una lista l.d. con $v_1\not=\theta_V$.

Como la lista es l.d., entonces existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ no todos nulos tales que

$\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$. (*)

a) Dado que existe al menos un escalar no nulo en (*) tenemos dos casos:

Caso 1. Únicamente $\lambda_1\not=0_K$.
Así, \begin{align*}\theta_V&=\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m\\ &=\lambda_1v_1+0_Kv_2+…+0_Kv_m\\ &=\lambda_1v_1+\theta_V+…+\theta_V=\lambda_1v_1.\end{align*}
De donde, $\lambda_1v_1=\theta_V$ con $\lambda_1\not=0_K$, entonces $v_1=\lambda_1^{-1}\theta_V=\theta_V$ lo que contradice la hipótesis de que $v_1\not=\theta_V$.
Por lo tanto, este caso no es posible.

Caso 2. Existe al menos un $\lambda_i\not=0_K$ con $i\in\{2,3,…,m\}$.
Consideremos $j=\text{máx}\{i\in\{2,3,…,m\}|\lambda_i\not=0_K\}.$
Entonces $\lambda_{j+1}=\cdots =\lambda_m=0$ por lo cual \begin{align*}\theta_V&=\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m\\ &=\lambda_1v_1+\lambda_2v_2+\cdots+\lambda_jv_j+0_Kv_{j+1}+\cdots+0_Kv_m\\&=\lambda_1v_1+\lambda_2v_2+\cdots+\lambda_jv_j+\theta_V\\ &=\lambda_1v_1+\lambda_2v_2+\cdots+\lambda_jv_j.\end{align*}
Así, $\lambda_1v_1+\cdots+\lambda_jv_j=\theta_V$, en consecuencia $\lambda_jv_j=-\lambda_1v_1-\lambda_2v_2-\cdots -\lambda_{j-1}v_{j-1}.$

Además, dado que $\lambda_j\neq 0$ existe el inverso multiplicativo de $\lambda_j,$ entonces

$\begin{array}{ll}v_j&=\lambda_j^{-1}(-\lambda_1v_1-\lambda_2v_2-\cdots-\lambda_{j-1}v_{j-1})\\&=(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+\cdots+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}\in\langle v_1,v_2,\dots,v_{j-1}\rangle\end{array}.$

$\therefore v_j\in\langle v_1,v_2,\dots,v_{j-1}\rangle$.

b) Veamos que se cumplen las dos contenciones entre los subconjuntos deseados, contemplando que la $j$ para este inciso debe ser la misma que en el inciso anterior.

En primer lugar:
Tenemos que $\{v_1,v_2,\dots,\widehat{v_j},…,v_m\}\subseteq \{v_1,v_2,\dots,v_j,\dots,v_m\}\subseteq\langle v_1,v_2,\dots,v_j,\dots,v_m\rangle$ y este último subconjunto es un subespacio de $V$.
Además, sabemos que si $S\subseteq W\subseteq V$ con $W$ un subespacio vectorial, entonces $\langle S\rangle\subseteq W$.
$\therefore\langle v_1,v_2,\dots,\widehat{v_j},\dots,v_m\rangle\subseteq\langle v_1,v_2,\dots,v_j,\dots,v_m\rangle$.

En segundo lugar:
Si $w\in\langle v_1,v_2,\dots,v_j,\dots,v_m\rangle$, entonces existen $\mu_1,\mu_2,\dots,\mu_j,\dots,\mu_m\in K$ tales que $w=\mu_1v_1+\mu_2v_2+\cdots+\mu_jv_j+\cdots+\mu_mv_m$.
Sabemos que $v_j=(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+\cdots+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}$.
De donde,

\begin{array}{ll}w&=\mu_1v_1+\mu_2v_2+\cdots+\mu_{j-1}v_{j-1}+\\ &\phantom{=}\mu_j[(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}]+\\ &\phantom{=}\mu_{j+1}v_{j+1}…+\mu_mv_m\\ &=(\mu_1-\mu_j\lambda_j^{-1}\lambda_1)v_1+(\mu_2-\mu_j\lambda_j^{-1}\lambda_2)v_2+\cdots \\ &\phantom{=}+(\mu_{j-1}-\mu_j\lambda_j^{-1}\lambda_{j-1})v_{j-1}+\mu_{j+1}v_{j+1}+\cdots+\mu_mv_m\\ &\in\langle v_1,v_2,\dots,\widehat{v_j},…,v_m\rangle\end{array}
Así, $w\in\langle v_1,v_2,\dots,\widehat{v_j},\dots,v_m\rangle$.
$\therefore \langle v_1,v_2,\dots,v_j,\dots,v_m\rangle\subseteq\langle v_1,v_2,\dots,\widehat{v_j},\dots,v_m\rangle .$

Teorema: Sea $V$ un $K$ – espacio vectorial. Si $v_1,v_2,…,v_m$ es una lista l.i. de vectores en $V$ con $m\in\mathbb{N}^+$, entonces todo conjunto generador de $V$ tiene al menos $m$ elementos.

Demostración: Sea $V$ un $K$ – espacio vectorial.
Sea $v_1,v_2,…,v_m$ es una lista l.i. de vectores en $V$, llamémosle $L$ a esta lista.
Sea $S$ tal que $\langle S\rangle = V$.

Caso 1. $S$ es infinito.
Entonces $S$ tiene más de $m$ elementos.

Caso 2. $S$ es finito.
Digamos que $S=\{w_1,w_2,…,w_k\}$ con $w_1,w_2,…,w_k$ distintos. Probemos que $m\leq k$.

Observemos que como $L$ es una lista l.i. de vectores en $V$, entonces para cada $i\in\{1,2,…,m\}$ tenemos que $v_i\not=\theta_V$.

(1) Como $ v_1\in V=\langle S\rangle$, entonces $v_1,w_1,w_2,…,w_k$ es una lista l.d.
Dado que $v_1\not= \theta_V$, por el lema podemos concluir que existe $j_1\in\{1,2,…,k\}$ tal que $\langle \{v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle =\langle v_1,w_1,w_2,…,w_k\rangle =V.$

(2) Como $ v_2\in V=\langle \{v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle$, entonces $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$ es una lista l.d.
Dado que con $v_2\not= \theta_V$, por el lema podemos concluir que algún vector $v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$ es combinación lineal de los vectores que le anteceden en la lista $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$, pero dicho vector no puede ser $v_1$ pues sabemos que $L$ es l.i., por lo que $v_1$ no puede ser combinación lineal de $v_2$. Así, existe algún vector $w_1,w_2,…,\widehat{w_{j_1}},…,w_k$, digamos $w_{j_2}$ con $j_2\in\{1,2,…,k\}\setminus\{j_1\}$, que es combinación lineal de los vectores que le anteceden en la lista $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_{j_k}$ y tal que $\langle \{v_2,v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1},w_{j_2}\}\rangle$$=\langle \{v_2,v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle =V.$

Continuando de este modo, en cada paso quitamos un vector $w_{j_t}$ del conjunto generador, y lo sustituimos por $v_t$, obteniendo de esta manera un nuevo conjunto generador. Observemos entonces que después de $t$ pasos hemos quitado $t$ vectores de $S$, y los hemos sustituido por $v_t,\dots ,v_2,v_1$.

Veamos que $k\geq m$. Supongamos por reducción al absurdo que $k< m$.

Continuando con el proceso anterior, después de $k$ pasos hemos quitado $k$ vectores de $S$, $w_{j_1},w_{j_2},…,w_{j_k}$ (que son entonces los $k$ vectores de $S$, es decir son precisamente $w_1,w_2,…,w_k$ sólo que quizás en otro orden) y los hemos sustituido por $v_k,\dots ,v_2,v_1$. Tenemos además que:
\begin{align*}V&=\langle \{v_{k-1},v_{k-2},…,v_2,v_1,w_1,w_2,…,w_k\}-\{w_{j_1},w_{j_2},…,w_{j_k}\}\rangle\\&=\langle \{v_{k-1},v_{k-2},…,v_2,v_1\}\rangle .\end{align*}
Pero si $V=\langle \{v_{k-1},…,v_2,v_1\}\rangle$, entonces $v_k\in \langle \{v_{k-1},…,v_2,v_1\}\rangle$ y por lo tanto $v_1,v_2,…,v_k$ sería l.d. y en consecuencia también $v_1,v_2,…,v_m$ sería l.d., lo cual contradice nuestra hipótesis.

Por lo tanto, $m\leq k$.

Corolario: Sea $V$ un $K$-espacio vectorial. Si existe $S$ un subconjunto finito de $V$ generador con $k$ elementos, entonces todo conjunto linealmente independiente es finito y tiene a lo más $k$ elementos.
En consecuencia, no existen conjuntos infinitos l.i. en $V$.

Demostración: Sea $V$ un $K$ – espacio vectorial.
Sea $S\subseteq V$ finito con $k$ elementos tal que $\langle S\rangle =V$.
Sea $T\subseteq V$ un subconjunto l.i. Supongamos por reducción al absurdo que $T$ es infinito, consideremos entonces $\hat{T}$ un subconjunto de $T$ con $k+1$ elementos. Tenemos que $\hat{T}$ es un conjunto l.i. con $k+1$ elementos y $S$ es un conjunto generador con $k$ elementos, lo que contradice el teorema anterior. Concluimos entonces que $T$ debe ser finito.
Nuevamente por el teorema anterior se cumple que $|T|\leq |S|$, y como $|S|=k$ entonces $|T|\leq k$.

Tarea Moral

  1. Demuestra que, dado $V$ un $K$ – espacio vectorial con $K$ un campo, sólo existe un subconjunto $S$ unitario linealmente dependiente y exhíbelo.
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V.$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $v_j\in \langle S-{v_j}\rangle$.
  3. Recordando que $\{e_1,e_2,e_3\}$ es linealmente independiente $\mathbb{R}^3$ y el teorema de esta entrada sabemos que cualquier conjunto de solo $1$ o $2$ elementos, no podrá generar a $\mathbb{R}^3$.
    • Describe qué subespacio(s) de $\mathbb{R}^3$ se puede(n) generar con un $S\subseteq\mathbb{R}^3$ si $|S|=1$.
    • Describe qué subespacio(s) de $\mathbb{R}^3$ se puede(n) generar con un $S\subseteq\mathbb{R}^3$ si $|S|=2$.

Más adelante…

Ahora que sabemos la relación de cardinalidad que existe entre los conjuntos linealmente independientes y los conjuntos generadores, nos damos cuenta de que, dicho muy informalmente, los conjuntos generadores de un espacio vectorial $V$ tienen una cardinalidad mayor o igual a los l.i. en $V$.
Nos enfocaremos en aquellos conjuntos que son generadores del espacio vectorial $V$ al que pertenecen y linealmente independientes. Veremos algunas propiedades de sus cardinalidades.

Entradas relacionadas

1.7. (IN)DEPENDENCIA LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

En matemáticas es de mucho interés estudiar aquello que es único (por qué lo es, «quién» es y cómo encontrarlo). En este punto de la teoría, sabemos que el neutro aditivo de un campo $K$ cualquiera siempre existe y es único, al igual que el neutro de un $K$ – espacio vectorial $V$ cualquiera.

Sabemos que las combinaciones lineales son elementos del espacio vectorial donde estamos trabajando y ahora estudiaremos conjuntos de vectores y la(s) combinación(es) lineale(s) que podemos obtener igualadas al neutro de nuestro espacio vectorial. Este sutil detalle de que sea sólo una o resulten existir más combinaciones lineales que cumplan la igualdad será el centro del tema… al fin y al cabo, sí sabemos que al menos existe una: la trivial, obtenida si todos los escalares involucrados son el neutro aditivo del campo.

LISTA LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Una lista $v_1,v_2,…,v_m$$\in V$ en una lista linealmente dependiente si existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ NO TODOS NULOS tales que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$.
Decimos que es una lista linealmente independiente en caso contrario. Es decir, si el hecho de que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ con $\lambda_1,\lambda_2,…,\lambda_m\in K$, implica que $\lambda_1=\lambda_2=\cdots =\lambda_m=0_K$.

Nota: Es común abreviar «linealmente dependiente» con l.d. y «linealmente independiente» con l.i.

Ejemplos

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_3[\mathbb{R}]$
    Sean $v_1=1+x-x^2+2x^3$, $v_2=2-3x+x^3$, $v_3=4-x-2x^2+5x^3$
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Se cumple que $2v_1+1v_2-1v_3=0x^3+0x^2+0x+0=\theta_V$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^n$
    La lista $e_1,e_2,…,e_n$ es l.i.

Justificación. Tenemos que $e_i$ se define como el vector de $n$ entradas donde la $i$-ésima es $1$ y las demás son $0$. Así, $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(\lambda_1,\lambda_2,…,\lambda_n)$. Por lo que, si $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(0,0,…,0)=\theta_V$, entonces $(\lambda_1,\lambda_2,…,\lambda_n)=(0,0,…,0)$ y en consecuencia $\lambda_i=0$ para toda $i\in{1,2,…,n}.$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^2$
    Sean $v_1=(x_1,0)$, $v_2=(x_2,0)$, $v_3=(x_3,y_3)$ con $x_i\not= 0$ para toda $i\in\{1,2,3\}$.
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Consideremos $\lambda_1,\lambda_2,\lambda_3$ tales que
$\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0).$
Entonces $\lambda_1(x_1,0)+\lambda_2(x_2,0)+\lambda_3(x_3,y_3)=(0,0).$
Desarrollando el lado izquierdo de esta igualdad tenemos que $(\lambda_1x_1+\lambda_2x_2+\lambda_3x_3,y_3)=(0,0).$ Por lo tanto $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0)$ si y sólo si
a) $\lambda_1x_1+\lambda_2x_2+\lambda_3x_3=0$ y b) $\lambda_3y_3=0$.
Si $\lambda_3=0$, b) se cumple para cualesquiera $\lambda_1,\lambda_2\in\mathbb{R}$. Veamos si se le puede asignar un valor distinto de cero a $\lambda_1$ o a $\lambda_2$ y que se cumpla a).
Tenemos que a) se cumple si y sólo si $\lambda_1x_1=-(\lambda_2x_2+\lambda_3x_3)$. Por lo tanto, si $\lambda_3=0$, tenemos que $\lambda_1x_1=-\lambda_2x_2$, y dado que $x_1$ es no nulo esto implica que $\lambda_1=-\lambda_2\frac{x_2}{x_1}$. Así, eligiendo $\lambda_2=1$, $\lambda_1=-\frac{x_2}{x_1}$ y $\lambda_3=0$ se cumplen a) y b), existiendo así una combinación lineal no trivial de $v_1,v_2$ y $v_3$ igualada al vector cero.

CONJUNTO LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Un subconjunto $S$ de $V$ es un conjunto linealmente dependiente si existe $m\in\mathbb{N}^+$ tal que $S$ contiene $m$ elementos distintos que forman una lista dependiente.
Decimos que es un conjunto linealmente independiente en caso contrario. Es decir, si para cualquier $m\in\mathbb{N}^+$ todas las listas que se pueden formar con $m$ elementos distintos de $S$ son linealmente independientes.

Observación: Si $S$ es un conjunto finito con $m$ vectores distintos, digamos $\{v_1,v_2,…,v_m\}$, entonces:
i) Si se puede encontrar una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$ con al menos una $\lambda_j$ distinta de $0_K$ para alguna $j\in\{1,2,…,m\}$, entonces $S$ es l.d.
ii) Si el hecho de que se tenga una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$, implica que $\lambda_j$ debe ser $0_K$ para toda $j\in\{1,2,…,m\}$, entonces $S$ es l.i.

Ejemplos

  • Sean $K$ un campo y $V=\mathcal{P}_m(K)$
    $S=\{1,x,x^2,…,x^m\}$$\subseteq\mathcal{P}_m(K)$ es l.i.

Justificación. Sean $\lambda_0,\lambda_1,\lambda_2,…,\lambda_m\in\mathbb{R}$ tales que $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=\theta_V$, es decir $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=0+0x+0x^2+…+0x^m$.
Recordando que dos polinomios so iguales si y sólo si coinciden coeficiente a coeficiente concluimos que $\lambda_i=0$ para toda $i\in\{0,1,2,…,m\}.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(1,3,-7),(2,1,-2),(5,10,-23)\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1(1,3,-7)+\lambda_2(2,1,-2)+\lambda_3(5,10,-23)=(0,0,0)$.
Entonces $(\lambda_1+2\lambda_2+5\lambda_3,3\lambda_1+\lambda_2+10\lambda_3,-7\lambda_1-2\lambda_2-23\lambda_3)=(0,0,0)$. De donde:
\begin{align*}
\lambda_1+2\lambda_2+5\lambda_3&=0…(1)\\
3\lambda_1+\lambda_2+10\lambda_3&=0…(2)\\
-7\lambda_1-2\lambda_2-23\lambda_3&=0…(3)\\
\end{align*}
De $(1)$: $\lambda_1=-2\lambda_2-5\lambda_3…(4)$
Sustituyendo $(4)$ en $(2)$: $3(-2\lambda_2-5\lambda_3)+\lambda_2+10\lambda_3=0$
$\Longrightarrow-5\lambda_2-5\lambda_3…(5)\Longrightarrow\lambda_2=-\lambda_3…(5)$
Sustituyendo $(5)$ en $(4)$: $\lambda_1=-2(-\lambda_3)-5\lambda_3$
$\Longrightarrow\lambda_1=-3\lambda_3…(6)$
En particular, si $\lambda_3=1$ tenemos que $\lambda_2=-1$ y $\lambda_1=-3$, y encontramos así una solución no trivial del sistema dado por $(1)$, $(2)$ y $(3)$.

  • Sean $K=\mathbb{R}$ y $V=\mathcal{M}_{2\times 2}(\mathbb{R})$
    $S=\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$\subseteq\mathcal{M}_{2\times 2}(\mathbb{R})$ es l.i.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} +\lambda_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Entonces $\begin{pmatrix} \lambda_1 & \lambda_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \lambda_2 \\ 0 & \lambda_2 \end{pmatrix}+ \begin{pmatrix} 0 & 0 \\ \lambda_3 & \lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. De donde:
\begin{align*}
\lambda_1&=0…(1)\\
\lambda_1+\lambda_2&=0…(2)\\
\lambda_3&=0…(3)\\
\lambda_2+\lambda_3&=0…(4)\\
\end{align*}
Sustituyendo $(1)$ en $(2)$: $\lambda_2=0$
Por lo tanto, $\lambda_1=\lambda_2=\lambda_3=0.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(n,n,n)|n\in\mathbb{Z}\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. La lista en $S$ dada por $(1,1,1),(5,5,5)$ es l.d. porque $-5(1,1,1)+(5,5,5)=(0,0,0)$.

Tarea Moral

Sean $K$ un campo y $V$ un $K$ – espacio vectorial.

  1. Sean $S,\tilde{S}\subseteq V$ tales que $S\subseteq\tilde{S}$.
    Para cada inciso, responde y justifica tu respuesta demostrándolo o dando un contraejemplo.
    • Si $S$ es l.d., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $S$ es l.i., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.d., ¿es posible determinar si $S$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.i., ¿es posible determinar si $S$ es l.d. o l.i.?
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $\langle S\rangle=\langle S\setminus \{v_j\}\rangle$

Más adelante…

El segundo ejercicio de la tarea moral se refiere al subespacio generado por un conjunto linealmente dependiente.
Veamos ahora más relaciones que existen entre los conjuntos linealmente dependientes, los linealmente independientes y los espacios que estos conjuntos generan.

Entradas relacionadas

1.6. SUBESPACIO GENERADO POR UN CONJUNTO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. Diremos que el subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Si $W$ es un subespacio de $V$, se dice que $S$ genera a $W$, o que $S$ es un conjunto generador de $W$, si $\langle S\rangle =W$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas

1.5. COMBINACIÓN LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

Tenemos nuestros ingredientes: los vectores y los escalares.
Tenemos nuestras parejas: resultado del producto un vector por un escalar.
Tenemos nuestros equipos: resultado de la suma de parejas.

En el caso de $K=\mathbb{R}$ tenemos que las parejas nos dicen «cuánto» de cada «ingrediente».

La combinación lineal es el «equipo» que formamos por medio de nuestras «parejas» (puede ser una pareja solita). Por medio de este concepto, entrelazamos todo lo que hemos visto: campos y espacios vectoriales (con sus operaciones y propiedades).

COMBINACIÓN LINEAL

Definición: Sea $V$ un $K$ – espacio vectorial. Consideremos $m\in \mathbb{N}^{+}$ y $v_1,…,v_m\in V$. Una combinación lineal de $v_1,…,v_m$ es una expresión de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $\lambda_1,…,\lambda_m\in K$.

Nota: De modo más general, si $S$ es un subconjunto de $V$, entonces una combinación lineal de vectores de $S$ es un vector de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $v_1,…,v_m\in S$ y $\lambda_1,…,\lambda_m\in K$.

Ejemplos:

  • Sea $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $2(1,0,0)-(1,-1,0)+5(1,1,-1)=(6,6,-5)$;
    $-3(1,0,0)+0(1,-1,0)+(1,1,-1)=(-2,1,-1)$;
    $0(1,0,0)+(1,-1,0)+0(1,1,-1)=(1,-1,0)$
    son combinaciones lineales de vectores de $S$.
  • Sea $S=\{(\frac{1}{n},\frac{1}{n})|n\in\mathbb{N}^{+}\}$.
    $2(\frac{1}{2},\frac{1}{2})+3(\frac{1}{6},\frac{1}{6})-4(\frac{1}{12},\frac{1}{12})=(\frac{7}{6},\frac{7}{6})$
    es una combinación lineal de vectores de $S$.
  • Sea $S=\mathcal{P}_2(\mathbb{R})=\{a+bx+cx^2|a,b,c\in\mathbb{R}\}$.
    $\frac{1}{2}x+(1-2x+5x^2)-(8+3x)+3(4-2x+x^2)$$=5-\frac{21}{2}x+8x^2$
    es una combinación lineal de vectores de $S$.

Nota: Aun cuando el conjunto $S$ sea infinito, sólo consideraremos combinaciones lineales en las que se use una cantidad finita de vectores de $S$.

Observación: A menudo, uno o más vectores en un conjunto dado pueden expresarse como combinaciones lineales de otros vectores en el conjunto.

Proposición: Sean $V$ un $K$ – espacio vectorial, $S\not=\emptyset$ un subconjunto de $V$. El conjunto de todas las combinaciones lineales de vectores de $S$ cumple lo siguiente:

i) es un subespacio de $V$.

ii) contiene a $S.$

iii) está contenido en cualquier subespacio de $V$ que contenga a $S$.

Demostración: Sea $V$ un $K$ – espacio vectorial, $S\subseteq V$, $S\not=\emptyset$.
Denotemos por $\mathcal{C}(S)$ al conjunto de todas las combinaciones lineales de vectores de $S$.

i) P.D. $\mathcal{C}(S)\leqslant V$

  • Primero, como $S\not=\emptyset$, podemos tomar $v\in S$.
    $\therefore\theta_V=0v\in \mathcal{C}(S)$.
  • Luego, sean $v,w\in\mathcal{C}(S)$.
    Es decir, existen $n,m\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n, \mu_1,…,\mu_m\in K$, $v_1,…,v_n,\omega_1,…,\omega_m\in S$ tales que:
    $v=\lambda_1v_1+…+\lambda_nv_n$
    $w=\mu_1\omega_1+…+\mu_m\omega_m$
    Veamos que $v+w\in\mathcal{C}(S)$.
    $v+w=(\lambda_1v_1+…+\lambda_nv_n)+(\mu_1\omega_1+…+\mu_m\omega_m)\in \mathcal{C}(S).$.
  • Por último, sean $v\in\mathcal{C}(S)$, $\lambda\in K$.
    Es decir, existen $n\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n\in K$ tales que
    $v=\lambda_1v_1+…+\lambda_nv_n$
    Veamos que $\lambda v\in K$.
    $\begin{align*} \lambda v & =\lambda(\lambda_1v_1+…+\lambda_nv_n) \\ & =\lambda(\lambda_1v_1)+…+\lambda(\lambda_nv_n) \\ & =(\lambda\lambda_1)v_1+…+(\lambda\lambda_n)v_n\in\mathcal{C}(S) \end{align*}.$

ii) P.D. $S\subseteq\mathcal{C}(S)$

Sea $v\in S$.
Tenemos que $v=1v\in\mathcal{C}(S).$

iii) P.D. Si $W \leq V$ es tal que $S\subseteq W$, entonces $\mathcal{C}(S)\subseteq W$.

Sea $W \leq V$ tal que $S\subseteq W$.
Tomaremos $v$ un elemento arbitrario de $\mathcal{C}(S)$:
Sean $v_n \in\mathcal{C}(S)$, existen $n\in\mathbb{N}^{+}$ y $v_1,\dots, v_n \in\mathcal{C}(S)$ de manera que
$v=\lambda_1v_1+…+\lambda_nv_n$
donde $\lambda_1,…,\lambda_n\in K$ y $v_1,…,v_n\in S$.
Tenemos que $\forall i$ $(v_i\in S\subseteq W)$
$\therefore v_i\in W$ para toda $i.$
Gracias a que $W$ es un subespacio y a que el producto por escalar y la suma son cerrados en los subespacios, se cumple que $\lambda_iv_i\in W$ para toda $i$ y por ende, $v=\lambda_1v_1+…+\lambda_nv_n\in W.$

Tarea Moral

  1. Describe (en lenguaje natural o algebraico) los elementos que se pueden obtener mediante combinaciones lineales de $S=\{(1,-1,0),(2,-2,0),(3,-3,0),…\}$.
  2. Obtén $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ como combinación lineal de $\begin{pmatrix} 2i & 6i \\ 4 & 2-2i \end{pmatrix}$ y $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ de 5 maneras distintas.
  3. ¿Existe algún conjunto $S$ infinito donde al menos un elemento no se pueda escribir como combinación lineal de otros elementos del conjunto? Puedes construirlo pensando en el ejercicio 1 – agregando un elemento -.

Más adelante…

Ahora que podemos tomar un subconjunto finito de vectores y obtener, por medio de combinaciones lineales, tanto conjuntos finitos como infinitos, analizaremos una propiedad muy peculiar del conjunto que resulta a partir de ello y el nombre que recibe.

Entradas relacionadas