Archivo de la etiqueta: álgebra moderna

Álgebra Moderna I: Paridad de una permutación

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la entrada anterior descubrimos que toda permutación se puede factorizar en producto de transposiciones. Mas aún, el polinomio de Vandermonde nos permite saber que, aunque hayan varias factorizaciones, en realidad, todas siempre tienen una cantidad par (o un cantidad impar) de transposiciones. Con esto, podemos definir el signo de una permutación. La secuencia que se seguirá para abordar el signo de una permutación es la presentada en el libro de Avella, Mendoza, Sáenz y Souto, es decir se usarán los resultados de la entrada previa de acuerdo al enfoque de Herstein, para introducir la función signo y probar que es multiplicativa, y con ello obtener la fórmula del signo que aparece en el libro de Rotman (todos estos libros son los que se mencionan en la bibliografía).

Ya teniendo una noción de la paridad de una permutación podemos jugar con las consecuencias: podemos deducir qué pasa si multiplicamos dos permutación con la misma paridad, qué sucede cuando tienen distinta paridad y además, como es raro en los cursos de matemáticas… ¡podemos agrupar por paridad! En esta entrada, descubrimos que el conjunto de transposiciones con signo par, es en realidad un grupo con $\frac{n!}{2}$ elementos. Este conjunto es llamado el grupo alternante.

¿Pares o impares?

Definición. Sea $\alpha \in S_n$, $\alpha$ es par si $\alpha = \text{id}$ o si $\alpha$ es un producto de un número par de transposiciones. Por otro lado, $\alpha$ es impar si es un producto de un número impar de transposiciones.

La función signo es $sgn: S_n \to \{+1, -1\}$ definida como
\begin{align*}
sgn \; \alpha = \begin{cases} +1 & \text{si } \alpha \text{ es par} \\
-1 & \text{si } \alpha \text{ es impar}
\end{cases}
\end{align*}

Observación. Sean $\alpha = \tau_{1} \cdots \tau_r \in S_n$, con $\tau_{1}, \cdots, \tau_r$ transposiciones. Entonces $sgn\;\alpha = (-1)^r$.

Demostración.
La definición nos asegura que $sgn\;\alpha = +1$ si y sólo si $r$ es par.

$\blacksquare$

Proposición. Sean $\alpha, \beta \in S_n$. Entonces $$sgn \;(\alpha \, \beta) = sgn\, \alpha \; sgn \, \beta.$$

Esto nos dice que la función signo ($sgn$) es multiplicativa. Esto lo hace más sencilla de trabajar.

Demostración.

Esto es bastante fácil de demostrar, para usar lo que vimos tenemos que expresar a estas permutaciones como producto de transposiciones.

Sean $\alpha, \beta \in S_n$, con $\alpha = \tau_{1} \cdots \tau_r$, $\beta = \rho_1 \cdots \rho_t$. Donde, $\tau_1, \cdots, \tau_r, \rho_{1}, \cdots, \rho_t$ son transposiciones.

Si calculamos el signo del producto $\alpha\,\beta$ y usando la observación anterior, obtenemos lo siguiente:
\begin{align*}
sgn(\alpha \, \beta) &= sgn(\tau_1 \cdots \tau_r \, \rho_1 \cdots \rho_t) \\
& = (-1)^{r+t} & \text{Observación anterior}\\
& = (-1)^r \, (-1)^t & \text{Propiedades de las potencias}\\
& = sgn\, \alpha \; sgn\, \beta &\text{Observación anterior}
\end{align*}

Esto es precisamente lo que queríamos probar.

$\blacksquare$

Podemos concluir que para calcular el signo de un producto, basta entender el signo de cada uno de los factores.

Calculando el signo de una permutación

Seguiremos puliendo la idea que nos dio la proposición anterior hasta llegar a una fórmula para sacar el signo de una permutación. Pero por ahora, veamos qué sucede con los $r$-ciclos.

Lema. Sea $\sigma = (i_1 \cdots i_r) \in S_n$ un $r$-ciclo. Entonces $sgn\, \sigma = (-1)^{r-1}$.

Demostración.
Recordemos que en la entrada anterior vimos que podemos ver a $\sigma$ como producto de transposiciones:
\begin{align*}
\sigma &= (i_1 \cdots i_r) = (i_1\,i_r) \cdots (i_1 \, i_2).
\end{align*}
Intuitivamente, estamos intercambiando a $i_1$ con los elementos que le siguen, esto nos da $r-1$ transposiciones. Por lo tanto, $\sigma$ es un producto de $r-1$ transposiciones. De acuerdo con la observación, podemos concluir que $sgn \, \sigma = (-1)^{r-1}$.

$\blacksquare$

Estamos listos para enunciar y probar  la fórmula del signo que aparece en el libro de Rotman que se menciona en la bibliografía, y que resulta muy útil para calcular el signo de una permutación.

Teorema. Sea $\alpha \in S_n$, $\alpha = \beta_1 \cdots \beta_t$ una factorización completa de $\alpha$. Entonces $sgn\,\alpha = (-1)^{n-t}$, donde $t$ es la cantidad de factores que tiene la factorización completa de $\alpha$.

Demostración.
Como el signo es multiplicativo,
\begin{align*}
sgn\,\alpha = \prod_{i=1}^t sgn\,\beta_i.
\end{align*}
Estamos tomando una factorización completa de $\alpha$, entonces todos los $\beta_i$ son ciclos disjuntos. Así que su signo está dado por la longitud del ciclo (de acuerdo al lema dado):
\begin{align*}
sgn\,\beta_i = (-1)^{\text{long}\,\beta_i-1} \qquad \forall i\in\{1,\dots,t\}.
\end{align*}
Juntando ambas ecuaciones y sumando los $t$ exponentes obtenemos las siguientes igualdades
\begin{align*}
sgn\,\alpha &= \prod_{i = 1}^{t} sgn \,\beta_i & \text{Proposición}
\\&= \prod_{i = 1}^t (-1)^{\text{long}\,\beta_i – 1} &\text{Lema}\\
& = (-1)^{\left(\sum_{i = 1}^t \text{long}\,\beta_i \right) -\;\large{ t}} = (-1)^{n-t}. &\text{Leyes de exponentes}
\end{align*}

Como la factorización es completa, la siguiente igualdad se cumple: $$\sum_{i = 1}^t \text{long}\,\beta_i = n.$$

Por lo tanto $sgn\,\alpha = (-1)^{n-t}$.

$\blacksquare$

Esta forma resulta útil porque ya no necesito descomponer una permutación en producto de transposiciones, nos basta con encontrar una factorización completa. Veamos esto con un ejemplo.

Ejemplo.
Consideremos $\alpha \in S_{10}$ como
\begin{align*}
\alpha = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\\
2 & 4 & 7 & 5 & 1 & 8 & 3 & 9 & 6 & 10
\end{pmatrix}.
\end{align*}

También podemos escribirla como $\alpha = (1\;2\;4\;5)(3\;7)(6\;8\;9)(10)$. Esto nos muestra que $\alpha$ es una factorización completa con 4 factores.

Entonces, de acuerdo con el teorema que acabamos de probar, $$sgn\,\alpha = (-1)^{10-4} = (-1)^6 = +1.$$

Por otro lado podemos sacar una factorización de $\alpha$ en transposiciones: $\alpha = (1 \; 5)(1 \; 4)(1 \; 2)(3 \; 7)(6 \; 9)(6 \; 8)$ que tiene 6 transposiciones. Entonces, efectivamente $\alpha$ es un producto de un número par de transposiciones.

Hora de Agrupar

Hemos visto que la función $sgn$ es una función mutliplicativa. Esto nos da como consecuencia que al multiplicar dos permutaciones con la misma paridad, te da como resultado una permutación par. En caso contrario, el resultado es impar. Ahora nos fijaremos solamente en las permutaciones pares.

Definición. El grupo alternante para $n$ elementos está definido como

$$A_n = \{\alpha \in S_n | sgn \, \alpha = +1\}.$$

Observación. $A_n$ efectivamente es un subgrupo de $S_n$.

Demostración.
Si $\alpha = \text{id}$, por definición del signo, $sgn\,\text{id} = +1$. Así, $\text{id}\in A_n$.

Sean $\alpha, \beta \in A_n$.
Como la función signo es multiplicativa:
\begin{align*}
sgn\,\alpha\beta = sgn \, \alpha \; sgn \, \beta = (+1)(+1) = +1.
\end{align*}
Así, $\alpha\beta \in A_n$. Es decir, $A_n$ es cerrada bajo el producto.

Por último, sea $\alpha \in A_n$.

Por un lado, usando la propiedad multiplicativa del signo obtenemos:
\begin{align*}
sgn\,(\alpha\alpha^{-1}) = sgn \, \alpha \; sgn \, \alpha^{-1} = (+1)\, sgn\, \alpha^{-1}.
\end{align*}

Por otro lado, como $\alpha \,\alpha^{-1} = \text{id}$, tenemos:
\begin{align*}
sgn\,(\alpha\,\alpha^{-1}) = sgn\, \text{id} = +1.
\end{align*}

Por lo tanto $sgn\,(\alpha\, \alpha^{-1}) = +1$, así $\alpha^{-1} \in A_n$. Es decir, $A_n$ es cerrada bajo inversos.

Por lo tanto $A_n$ es un subgrupo de $S_n$.

$\blacksquare$

El siguiente resultado nos muestra que el grupo alternante $A_n$ «parte en dos» a las permutaciones, es decir, la mitad de permutaciones son pares.

Proposición. Sea $n>1$, entonces $|A_n| = \frac{n!}{2}$.

Demostración. Podemos ver a $S_n$ como la unión de las permutaciones pares e impares, esto se expresa así $$S_n = A_n \cup (S_n\setminus A_n).$$
Pero, podemos dar una biyección definida como $\phi: A_n \to S_n\setminus A_n$, definida como $\phi \, \alpha = (1\;2)\alpha$.

Entonces, $|A_n| = \# S_n \setminus A_n$.

Así, como dijimos que

$n! = |S_n| = |A_n| + \# S_n\setminus A_n = 2 |A_n|$.

Por lo tanto $|A_n| = \frac{n!}{2}$.

Notación. Para denotar la cardinalidad u orden de un conjunto $A$, usamos dos notaciones:
\begin{align*}
|A| \to & \;\text{Si $A$ es un grupo.}\\
\# A \to & \;\text{Si $A$ no es un grupo (o si no sabemos si $A$ es un grupo o no).}
\end{align*}

Tarea moral

  1. Considera el elemento $\alpha \in S_{12}$ como
    \begin{align*}
    \alpha = \begin{pmatrix}
    1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 &10&11&12\\
    2 & 11&4& 1 & 8 &12& 3 & 6 & 9 & 5 & 7 & 10
    \end{pmatrix}
    \end{align*}
    1. Encuentra $\alpha^{-1}$, el signo de $\alpha$ y el de $\alpha^{-1}$.
    2. En general, ¿qué pasará con el signo de una permutación y de su inversa?
  2. Sea $\alpha$ un $r$ ciclo en $S_n$. ¿Podemos determinar el signo de $\alpha$ a partir de la paridad de $r$?
  3. Dada $\alpha \in S_n$ decimos que los números $i,j \in \{1,2,\dots,n\}$ forman una inversión si $i<j$ pero $\alpha(i) > \alpha(j)$. ¿Qué relación existe entre la paridad y el número de inversiones de $\alpha$?
  4. Encuentra todos los elementos de $A_4$.

Más adelante…

Esta entrada nos sirvió para construir los cimientos, es importante que lo tengamos claro antes de avanzar. En la siguiente entrada definiremos el producto de $S$ con $T$, veremos en qué situaciones el producto de los subconjuntos conmuta, cuándo se cumple que $ST$ es un subgrupo de $G$. Esto nos ayudará para definir las clases laterales. Más adelante, estas clases nos ayudarán a definir una nueva relación de equivalencia.

Entradas relacionadas

Álgebra Moderna I: Palabras

Por Cecilia del Carmen Villatoro Ramos

Introducción

En la entrada anterior tomamos un grupo $G$ y un subconjunto $X \subseteq G$ y, logramos encontrar al menor subgrupo de $G$ que contiene a $X$. Este conjunto resultó ser la intersección de todos los subgrupos contenidos en $G$ que, a su vez, contienen a $X$. Recordemos que se llama el subgrupo de $G$ generado por $X$ y se denota

\begin{align*}
\left< X\right> = \bigcap_{\substack{H \leq G \\ X \subseteq H}} H.
\end{align*}

Sin embargo, esto no nos dice mucho sobre los elementos de $X$. Ilustremos un poco lo que tenemos. Tomemos un grupo $G$, un subconjunto $X \subseteq G$ y al generado $ \left<X\right> \subset G$. Entonces, si tomamos $x_1,x_2,x_3 \in X$, sabemos que todas las potencias de esos elementos están en el generado de $X$. Es decir, para todas $q,r,s \in \z$, $x_1^q, x_2^r, x_3^s \in \left<X\right>$. Más aún, las diferentes multiplicaciones de esos elementos también están en $\left<X\right>$, por ejemplo, si consideramos $x_1^1, x_3^{-2}, x_2^{3}$ y $x_1^{-4}$, el elemento

\begin{align}\label{palabra}
x_1^{-4} x_3^{-2} x_1^1 x_2^{3}
\end{align}

está en $\left<X\right>$, por ser una multiplicación de elementos del subgrupo. Entonces, en el generado de $X$ estarán todos los elementos de $X$, las potencias de esos elementos y todas las multiplicaciones entre dichas potencias.

Al elemento \eqref{palabra} la llamamos una palabra en $X$ y es lo que estudiaremos en esta entrada. Además, las palabras nos permiten dar descripción del subgrupo generado. Esta idea es análoga a la que se estudia en álgebra lineal cuando se describe al subespacio generado por un conjunto como una colección de combinaciones lineales de vectores. Sin embargo, en el caso de subgrupos, esta descripción no es igual a la de álgebra lineal porque hay que recordar que un grupo en general no es abeliano. Esto influye en qué tanto se pueda simplificar una palabra.

Nuestra primera aproximación a las palabras

Definición. Sea $G$ un grupo, $X$ un subconjunto de $G$. Una palabra en $X$ es, o bien el neutro $e$, o bien un elemento de la forma

$x_1^{\alpha_1}, \dots, x_n^{\alpha_n}$

con $n \in \n^+$, $x_1,\dots, x_n\in X, \alpha_1, \dots, \alpha_n \in \z$.

Notación. Denotamos por $W_X$ al conjunto de todas las palabras en $X$.

Ejemplos

Ejemplo 1. Sea $G = D_{2(4)}$ el grupo diédrico formado por las simetrías de un cuadrado centrado en el origen. Sea $a$ la rotación de $\pi/2$ y $b$ la reflexión con respecto al eje $x$.
$ba^3 b a^{-1} b^{-4} a$ es una palabra en $\{a, b\}$.

En este caso, la palabra sí se puede simplificar como:
\begin{align*}
b a^3 b a^{-1}b^{-4} a &= ba^3ba^{-1} e a \\
& = b a^3 b a^{-1} a \\
& = ba^3 b
\end{align*}

Para la primera igualdad, recordemos que $b$ es la rotación por $\pi/2$, entonces al aplicar esa rotación $4$ veces, el cuadrado recupera su estado inicial, así por eso $ b^{4} = e$ y de forma análoga como $b^{-1}$ es la rotación por $-\pi/2$ se tiene que $b^{4} = e$.

Notación. Usaremos la notación $D_{2(4)}$ para denotar las simetrías del cuadrado (que tiene 4 vértices), este grupo diédrico tiene 8 elementos. Otros autores pueden escribir simplemente $D_8$, pero esto se puede confundir con el grupo de las simetrías de un octágono. De forma más general el grupo diédrico de un polígono de $n$ lados es el grupo de simetrías de un polígono regular de $n$ lados centrado en el origen, con la operación de composición. Lo denotatemos por $D_{2n}$ y tendrá $2n$ elementos.

Ejemplo 2. Consideremos el conjunto $ \{\pm 1, \pm i, \pm j, \pm k\}$. Este conjunto es llamado el grupo de los cuaterniones o cuaternios y se suele denotar por $Q$ o $Q_8$ porque tiene 8 elementos.

Las operaciones en el conjunto se definen como:
\begin{align*}
1 a &= a 1 = a &\forall a \in Q \\
(-1) a &= a (-1) = -a & \forall a \in Q
\end{align*}

Además, las multiplicaciones no son conmutativas y están definidas así:
$\begin{align*}
ij &= k, \quad &jk = i, \quad &ki =j, \\
ji &= -k, \quad &kj = -i, \quad &ik=-j, \\
i^2 &= j^2 = k^2 = -1.
\end{align*}$

Una palabra en $\{j\}$ es $j^5j^{-2} j^{3} j^{-4}$, resolviendo las potencias podemos concluir que esta palabra es igual a $-1$ (verificarlo quedará como ejercicio). Podemos ahora considerar el conjunto de todas las palabras formadas con el elemento $j$, es decir el conjunto de palabras en $\{j\}$. Se puede ver que:
\begin{align*}
W_{\{j\}} = \{j,-1,-j, +1\}.
\end{align*}

También podemos considerar el conjunto de palabras formadas con los elementos $j$ y $k$, es decir el conjunto de palabras en $\{j,k\}$. En este caso se tiene que:
\begin{align*}
W_{\{j,k\}} = \{\pm 1, \pm i, \pm j, \pm k \}=Q.
\end{align*}

Palabras y el subgrupo generado por $X$

Lema. Sea $G$ un grupo y $X$ un subconjunto de $G$. $W_X$ es un subgrupo de $G$ que contiene a $X$.

Demostración.
Caso 1, cuando $X = \emptyset$.
En este caso, $W_X = \{e\} \leq G$ y $X = \emptyset \subset \{e\} = W_X$.

Caso 2, cuando $X \neq \emptyset$.
P.D. $W_X \leq G$.
Por definición $e \in W_X$.
Sean $a, b \in W_X$, entonces

\begin{align*}
a &= x_1^{\alpha_1} \dots x_n^{\alpha_n} & \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m \in \z \\
b &= y_1^{\beta_1} \dots y_m^{\beta_m} & x_1, \dots, x_n, y_1, \dots, y_m \in X\\
&& n,m \in \n^+
\end{align*}

Entonces, podemos tomar $ab^{-1}$ y verificar quién es

\begin{align*}
a b^{-1} &= (a_1^{\alpha_1} \dots x_n^{\alpha_n})(y_1 \dots y_m^{\beta_m})^{-1} \\
& = x_1^{\alpha_1} \dots x_n^{\alpha_n}y_m^{-\beta} \dots y_1^{-\beta_1} \in W_X.
\end{align*}

Por lo tanto $W_X \leq G$.

P.D. $X \subseteq W_X$.
Sea $x \in X$,
\begin{align*}
x = x^1 \in W_X.
\end{align*}

Por lo tanto $X \subseteq W_X$.

En ambos casos $W_X$ es un subgrupo de $G$ que contiene a $X$.

$\blacksquare$

Teorema. Sea $G$ un grupo, $X$ un subconjunto de $G$. Entonces

$\left< X \right> = W_X$.

Demostración.
$\subseteq)$ Por el lema anterior, $W_X \in \{H \leq G : X \subseteq H\}$. Entonces, por nuestra definición del subgrupo generado,
\begin{align*}
\left< X \right> = \bigcap_{\substack{H \leq G \\ X \subseteq H}} H \subseteq W_X.
\end{align*}

$\supseteq)$ Sea $a \in W_X$, entonces $a = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ con, $n \in \n^+$, $\alpha_1, \dots, \alpha_n \in \z$ y $x_1, \dots, x_n \in X$.

Como cada $x_i \in X$, con $i \in \{1,..,n\}$, y $X \subseteq \left< X \right>$, entonces $x_i\in\left< X \right>$ para toda $i \in \{1, \dots ,n\}$.
Como el generado es un subgrupo de $G$, obtenemos que $x_i^{\alpha_i} \in \left< X \right>$ para toda $i \in \{1,\dots,n\}$. Usando nuevamente que el generado es un subgrupo de $G$ tenemos que $a = x_1^{\alpha_1} \dots x_n^{\alpha_n} \in \left<X\right>$.

Por lo tanto, $\left< X \right> = W_X$.

$\blacksquare$

¿Quién es el orden de un producto?

Ya hemos hablado del orden de un elemento. Si tenemos un grupo $G$ y $a, b \in G$ y sabemos quién es $o(a)$ y $o(b)$, ¿podemos saber cómo es $o(ab)$? En algunos casos podemos respuesta a esta pregunta dando una explicación más precisa de cómo es el orden de un producto en términos del orden de sus factores. El siguiente resultado aparece en el libro de Avella, Mendoza, Sáenz y Souto mencionado en la bibliografía, Teorema 3.3.12:

Teorema. Sea $G$ un grupo y $a, b \in G$.
Si $a$ y $b$ son de orden finito, sus ordenes son primos relativos y $ab = ba$, entonces

\begin{align*}
o(ab) &= o(a) o(b) \\
\text{y } \left< a,b \right> &= \left<ab\right>.
\end{align*}

Demostración.
Sea $G$ un grupo, $a,b \in G$ de orden finito con $n = o(a)$, $m = o(b)$. Supongamos que $(n;m) = 1$ y $ab = ba$.

P.D. $o(ab) = nm$.
Entonces

\begin{align*}
(ab)^{nm} & = a^{nm} b^{nm} & \text{ porque } ab = ba \\
& = (a^n)^m(b^m)^n & \text{ propiedades de los exponentes}\\
& = e^m e^n \\
& = e
\end{align*}

Ya teniendo que $(ab)^{nm} = e$, tenemos que ver que $nm$ es el menor exponente positivo tal que al elevar $ab$ a ese exponente nos da el neutro, o bien ver que divide a cualquier otro $k$ tal que $(ab)^k = e$. Procedamos de acuerdo a la segunda opción.

Sea $k\in\z$ tal que $(ab)^k = e$, y como $ab=ba$ esto implica que $a^k b^k = e$. Despejando, obtenemos $a^k = b^{-k}$.

Así $(a^k)^m = (b^{-k})^m = (b^m)^{-k} = e^{-k} = e$ (porque $o(b) = m$), es decir $a^{km} = e$. Dado que $o(a) = n$, entonces $n|km$ y como $(n;m) = 1$ entonces $n|k$.

Si consideramos ahora $(a^k)^n = (b^{-k})^n$ y seguimos un argumento análogo obtenemos que $m|k$.

Como $n|k$ y $m|k$ y $(n;m) = 1$, entonces $nm|k$.
Por lo tanto $o(ab) = nm$.

P.D. $\left< a,b \right> = \left< ab \right>$.
Como toda palabra en $\{ab\}$ es una palabra en $\{a, b\}$ entonces
\begin{align*}
\left< ab \right> \subseteq \left< a, b \right>.
\end{align*}

Por otro lado, como $ab = ba$, toda palabra en $\{a,b\}$ se reduce a una de la forma $a^{i}b^{j}$ con $i, j \in \z$, y como $o(a) = n$, $o(b) = m$, la expresión $a^{i}b^{j}$ se puede reducir aún más a una expresión de la forma $a^{i}b^{i}$ con $0 \leq i < n$ y $0 \leq j < m$.

Entonces $\left< a, b \right> = \{a^{i}b^{j}: 0 \leq i < n, 0 \leq j < m\}$. Luego, $|\left<a, b\right>| \leq nm$.
Pero $\left< ab \right> \subseteq \left<a,b\right>$, entonces $|\left< ab \right>| \leq |\left< a,b \right>|$.
Así,

\begin{align*}
nm = o(ab) = |\left< ab \right>| &\leq |\left< a,b \right>| \leq nm. \\
\end{align*}

Por lo tanto $\left<ab\right> = \left< a, b \right>$.

$\blacksquare$

Tarea moral

  1. En el grupo de los cuaternios definido anteriormente, verifica que $j^5j^{-2}j^3j^{-4} = -1$.
  2. Considera $Q$, el grupo de cuaternios. Reduce la siguiente palabra a uno de los elementos $\pm 1, \pm i, \pm j, \pm k$,
    $$\begin{align*}
    j^7k(-i)jki^2jk^{-6}
    \end{align*}$$
  3. Sea $D_{2n} = \{\text{ id }, a, \dots, a^{n-1}, ab, \dots, a^{n-1}b\}$ el grupo diédrico formado por las simetrías de un polígono regular de $n$ lados, con $a$ la rotación de $\displaystyle \frac{2\pi}{n}$ y $b$ la reflexión con respecto al eje $x$.
    1. Identifica geométricamente quiénes son $\text{ id }, a, \dots, a^{n-1}, ab, \dots, a^{n-1}b$.
    2. Determina quién es el elemento $bab$ y, de modo más general, quién es el elemento $ba^{i}b$ para toda $i\in\z$.
    3. Determina quién es el elemento $ba^i$ para toda $i\in\z$.
  4. Considera el grupo simétrico $S_5$, $\alpha$ la permutación que manda $1$ en $2$, $2$ en $3$ y $3$ en $1$, fija a $4$ y a $5$, y $\beta$ la permutación que intercambia $4$ y $5$.
    1. Encuentra $\beta \alpha$ y $\alpha \beta$.
    2. Encuentra el orden de $\alpha$, $\beta$, $\alpha\beta$ y $\beta\alpha$.
  5. Por último, te invitamos a que veas este video que habla sobre las aplicaciones tecnológicas del grupo de los cuaternios. El video está en inglés, pero tiene subtítulos en español.

Más adelante…

¡Felicidades por acabar la Unidad 1! Ya entiendes las bases de este curso, trata de recordarlas porque las estaremos usando implícitamente.
En la siguiente unidad estaremos viendo Permutaciones y Grupo Cociente, para no adelantar mucho, sólo diremos que ambas estructuras son grupos muy importantes en el álgebra y nuestros objetos de estudio en la siguiente unidad.

Entradas relacionadas

Álgebra Moderna I: Teoremas sobre subgrupos y Subgrupo generado por $ X $

Por Cecilia del Carmen Villatoro Ramos

Introducción

Ya vimos qué es un grupo cíclico. Ahora nos preguntamos si, teniendo $G$ un grupo cíclico y tomando cualquier subgrupo $H \subseteq G$ ¿será cierto que $H$ también es cíclico?

Ilustremos esto con un ejemplo. Consideremos $\z$ con la suma, en este caso $\z = \left<1\right>$,

$\dots, -3, -2, -1, 0, 1, 2, 3, \dots$.

Entre posibles subgrupos podemos encontrar:

$\dots, -6, -4, -2, 0, 2, 4, 6, \dots$
$\dots, -9, -6, -3, 0, 3, 6, 9, \dots$

es decir $\left<2\right>$ y $\left<3\right>$ respectivamente. Pero también podemos observar que tanto $2$ como $3$ son la mínima potencia de $1$ que aparece en sus respectivos generados. Es decir, aunque el $1$ no esté en un subgrupo cíclico de $\z$, el subgrupo será generado por la mínima potencia de $1$ que sí sea elemento del subgrupo. En esta entrada, comenzaremos probando este resultado.

En la segunda parte de esta entrada regresaremos a la problemática inicial planteada en la entrada Orden de un elemento y grupo cíclico. Si tenemos un subconjunto $X \subseteq G$, con $G$ un grupo, ¿cuál es el mínimo subgrupo $H$ de $G$ tal que $H$ contenga a $X$?

Podemos estar de acuerdo en que es posible que $X$ esté contenido en más de un subgrupo, podemos considerar la familia de subgrupos de $G$ que contienen a $X$. A estos subgrupos los denotaremos como $H_i$ con $i \in I$. Como $X\subseteq H_i$ para toda $i$, sabemos que $\displaystyle X \subseteq \bigcap_{i \in I}H_i$ y éste resultará ser el menor subgrupo de $G$ que contiene a $X$. Esto será lo que desarrollaremos en la segunda parte de la entrada.

Los subgrupos de un grupo cíclico, son cíclicos.

Teorema. Todo subgrupo de un grupo cíclico, es cíclico.

Demostración.
Sea $G$ un grupo cíclico, $H \leq G$.
Como $G$ es cíclico, entonces $G = \left< a \right>$ para algún $a \in G$.

Para ver que $H$ es cíclico tenemos que proponer un generador de $H$, este generador tiene que ser una potencia de $a$, porque $H \subseteq G$ y $G$ es cíclico. Por lo que dijimos en la introducción, elegiremos la potencia de $a$ con el menor exponente positivo, que esté en $H$. Pero, para ello, tenemos que asegurarnos primero que en $H$ existen potencias de $a$ con exponentes positivos. Así, consideraremos dos casos.

Si $H = \{e\} = \left< e \right>$ que es cíclico.

Si $H \neq \{e\}$, sea $h \in H\setminus\{e\}$. Entonces como $H \leq G$, $h \in G = \left<a\right>$. Así $h = a^k$ para algún $k \in \z$ y como $h \neq e$ entonces $k \neq 0$.

Tenemos que $h^{-1} = a^{-k} \in H$ pues $H$ es subgrupo.

Así $a^k$, $a^{-k} \in H$ (con $k \in \z \setminus\{0\}$), entonces no importa si $k$ es positivo o negativo, siempre habrá un elemento en $H$ que se obtiene elevando $a$ a un entero positivo, es decir,

$\{n \in \z^+ | a^n \in H\} \neq \emptyset$.

Sea $m = \text{mín } \{n \in \z^+|a^n\in H\}$.
P.D. $H = \left< a^m \right>$

$\supseteq]$
Por la elección de $m$, $a^m \in H$ y como $H$ es un subgrupo entonces $\left< a^m \right> \subseteq H$.

$\subseteq]$
Sea $h \in H$. Como $H \leq G = \left<a\right>$, entonces $h = a^k$ para algún $k \in \z$.

Por el algoritmo de la división existen $q,r \in \z$ tales que $k = mq+r$ con $0 \leq r < m$.
Entonces $h = a^k = a^{mq+r} = (a^m)^q a^r$. Esto implica que

$(a^m)^{-q}h = a^r.$

Pero $a^m \in H$, $h \in H$ y $H$ es subgrupo, entonces $a^r = (a^m)^{-q}h \in H$ con $0 \leq r < m$. Para no contradecir la elección de $m$ concluimos que $r=0$.

Así $h = a^{mq} = (a^m)^q \in \left< a^m \right>$.
Por lo tanto $H = \left< a^m \right>$ y $H$ es cíclico.

$\blacksquare$

El menor subgrupo que contiene a cualquier subconjunto $X$

Teorema. La intersección de una familia no vacía de subgrupos de un grupo $G$ es un subgrupo de $G$.

Cuando decimos familia no vacía nos referimos a que haya al menos un grupo en la familia, con el fin de que haya al menos un grupo a intersecar. Ésta es una condición que se pide para que a nivel conjuntista no haya problemas con la intersección.

Demostración.
Sea $G$ un grupo y $\{H_i | i \in I\}$ una familia de subgrupos de $G$.
P.D. $\displaystyle \bigcap_{i \in I} H_i \leq G$.

Como $H_i \leq G$ para toda $i \in I$, entonces $e \in H_i$ para toda $i \in I$ y así $\displaystyle e \in \bigcap_{i \in I} H_i$.

Sea $\displaystyle a, b \in \bigcap_{i \in I}$. Tenemos que $a,b \in H_i$ para toda $i \in I$.
Como $H_i \leq G$ para toda $i \in I$, entonces $ab^{-1} \in H_i$ para toda $i \in I$ y así $a b^{-1} \in \displaystyle \bigcap_{i \in I}H_i$.

Por lo tanto $\displaystyle \bigcap_{i \in I} H_i \leq G$.

$\blacksquare$

Corolario. Sea $G$ un grupo y $X$ un subconjunto de $G$. Existe un subgrupo de $G$ que contiene a $X$ y que estará contenido en cualquier subgrupo de $G$ que contenga a $X$.

Demostración.
Sea $G$ un grupo y $X$ subconjunto de $G$.
$G$ es un subgrupo de $G$ que contiene a $X$ y entonces la familia $\{H \leq G | X \subseteq H\}$ es no vacía. Entonces sí existen subgrupos de $G$ que contienen a $X$.

Consideremos $\displaystyle \bigcap_{\substack{H \leq G \\ X \subseteq H}} H$. Por el teorema anterior esta intersección es un subgrupo de $G$ y por construcción $X \subseteq \displaystyle \bigcap_{\substack{H \leq G \\ X \subseteq H}} H$.

Ahora, si $\hat{H}$ es un subgrupo de $G$ que contiene a $X$, entonces $\hat{H} \in \{H \leq G | X \subseteq H \}$, y al ser uno de los intersecandos, obtenemos

$\displaystyle \bigcap_{\substack{H \leq G \\ X \subseteq H}} H \subseteq \hat{H}$.

Así, $\displaystyle \bigcap_{\substack{H \leq G \\ X \subseteq H}} H$ es un subgrupo de $G$ que contiene a $X$ y que está contenido en cualquier subgrupo de $G$ que contenga a $X$

$\blacksquare$

El subgrupo de $G$ generado por $X$

Para concluir esta entrada, daremos una definición que resume lo visto.

Definición. Sea $G$ un grupo y $X$ un subgrupo de $G$. El conjunto

\begin{align*}
\bigcap_{\substack{H \leq G \\ X \subseteq H}} H
\end{align*}

es el subgrupo de $G$ generado por $X$ y se denota por $\left< X \right>$.

Decimos que $X$ genera a $G$ si $\left< X \right> = G$.

Observación. Sea $G$ un grupo y sea $a \in G$. Entonces

\begin{align*} \left< \{a\} \right> = \left< a \right>. \end{align*}

Demostración. Se quedará como tarea moral.

Notación. Para $a_1,\dots, a_n \in G$, el subgrupo $\left< \{a_1,\dots, a_n\}\right>$ se denota por $\left< a_1, \dots, a_n \right>$.

Tarea moral

  1. Sea $G$ un grupo tal que todos sus subgrupos propios son cíclicos, entonces $G$ es cíclico. Demuestra este enunciado o encuentra un contraejemplo.
  2. Considera a los enteros con la suma. Describe a los subgrupos:
    1. $\left<\{10, 15\}\right>$ (se denota por $\left<10,15\right>$).
    2. $\left<\{9, 20\}\right>$ (se denota por $\left<9,20\right>$).
  3. Demuestra la última observación: Sea $G$ un grupo y sea $a \in G$. Entonces $\left< \{a\} \right> = \left< a \right>$. Sugerencia: Usa la doble contención y el teorema anterior.

Más adelante…

Ya estudiamos a los elementos de la forma $a^k$ con $a \in G$, $k \in \z$ y $G$ un grupo. En la siguiente entrada combinaremos varios elementos de esa forma. Estudiaremos qué son y algunas propiedades de las llamadas palabras. Además, la siguiente entrada es la última de esta unidad, ¡sigue avanzando! ya casi acabas.

Entradas relacionadas

Álgebra Moderna I: Orden de un grupo

Por Cecilia del Carmen Villatoro Ramos

Introducción

Ya vimos qué es el orden de un elemento y el grupo cíclico generado por ese elemento. En esta entrada veremos a qué se le denomina el orden de un grupo, que en realidad es un concepto que ya conoces.

Primero repasemos cómo es el conjunto generado por $a$, éste se puede describir así:

$\{\dots, a^{-2}, a^{-1}, e, a^{1}, a^2, \dots\}$.

En esa sucesión de potencias de $a$, si el elemento $a$ tiene orden finito, eventualmente encontraremos $a^{o(a)}$. Por la entrada anterior sabemos que $o(a)$ es el mínimo entero positivo tal que $a^{o(a)} = e$. Entonces, $a^{o(a) + 1} = e a = a$. Esto nos puede indicar que en algún momento la sucesión se volverá a repetir. Entonces el rango que no tiene repeticiones sería el siguiente:

$e, a, a^2, \dots, a^{o(a) -1}$.

A continuación formalizaremos esta idea, definiremos el orden de un grupo y relacionaremos el orden de un elemento con el orden del grupo generado por éste.

Definición de orden de un grupo

Definición: Sea $G$ un grupo. El orden de $G$ es la cardinalidad del conjunto $G$ y se denota por $|G|$.

Teorema: Sean $G$ un grupo y $a\in G$ un elemento de orden finito. Entonces

$|\left< a\right>| = o(a)$.

Demostración.
Sea $G$ un grupo y $a \in G$ de orden finito.

Considera que $e$ es el neutro en $G$. Primero veamos que

$\begin{align*} \left< a\right> = \{e, a, a^2, \dots, a^{o(a)-1}\} \end{align*}$.

$\subseteq]$
Sea $x \in \left< a\right>$, entonces existe algún $k \in \z $ tal que $x =a^k$.
Por el algoritmo de la división existen $q, r \in \z$ tales que

$k = o(a)q + r\;$ con $\;0 \leq r < o(a)$.

Entonces, sustituyendo el valor de $k$,

$x = a^k = a^{o(a)q + r}$.

Si seguimos realizando operaciones con los exponentes, obtenemos:

$\begin{align*}
a^{o(a)q + r} &= (a^{o(a)})^q a^r \\
&= e^q a^r &\text{ por la definición de orden}\\
&= e a^r &\text{ya que $e$ es el neutro}\\
&= a^r &\text{ya que $e$ es el neutro}
\end{align*}$

es decir, $x = a^r$ para algún $ r \in \z$, con $0\leq r < o(a)$. Entonces

$x \in \{e, a, a^2, \dots, a^{o(a)-1}\}$.

Hemos demostrado así la primera contención.

$\supseteq]$

Esta contención es más sencilla porque claramente

$\{e, a, a^2, \dots, a^{o(a)-1}\} \subseteq \{\dots, a^{-2}, a^{-1}, e, a, a^2, \dots\}$.

Y como $\left< a\right> = \{ a^{k}\mid k\in\mathbb{Z}\}=\{\dots, a^{-2}, a^{-1}, e, a, a^2, \dots\}$, se cumple la segunda contención y con ella la igualdad de conjuntos.

Todavía nos falta un detalle. Hasta ahora sabemos que

$\begin{align*} \left< a\right> = \{e, a, a^2, \dots, a^{o(a)-1}\} \end{align*}$

pero nada nos asegura que $|\{e, a, a^2, \dots, a^{o(a)-1}\}| = o(a)$, es decir que tenga tantos elementos como el orden de $a$. Esto lo probaremos viendo que no existen elementos repetidos.

Supongamos que $a^{i} = a^j$ para $i, j \in \{0,1,\dots, o(a)-1\}$, supongamos sin pérdida de generalidad que $i \leq j$.

Multiplicando ambos lados por $(a^i)^{-1}$ obtenemos,

$\begin{align*} a^{i}(a^{i})^{-1} &= a^j(a^{i})^{-1}\\
e &= a^{j-i}.\end{align*}$

Entonces, $e = a^{j-i}$, pero, por la elección de $i$ y de $j$ sabemos que $0 \leq j – i < o(a)$. Entonces, debido a la definición de $o(a)$ esto sólo es posible si $j-i=0$, es decir $j = i$.

Así $\left< a\right> = \{e, a, a^2, \dots, a^{o(a)-1}\}$ tiene $o(a)$ elementos. Por lo tanto

$|\left< a\right>| = o(a)$.

$\blacksquare$

Un pequeño ejemplo

Ejemplo.
Recordemos que de acuerdo a lo que se definió en un ejemplo de la entrada anterior tenemos que $U(\z_{7})$ consiste de todas las clases módulo 7 que tienen inverso multiplicativo, es decir $U(\z_{7}) = \{ \bar{n}\in\z_7\mid (n,7)=1\}$. Tenemos que $U(\z_{7}) = \{\bar{1}, \bar{2}, \bar{3}, \bar{4}, \bar{5}, \bar{6}\}$. Sabemos que este conjunto es un grupo con la multiplicación. Observemos que en los enteros módulo 7 no todas las clases tienen inverso multiplicativo, sólo aquellas representadas por primos relativos con 7, por eso $\bar{0}$ no está en nuestro conjunto $U(\z_{7})$.

Podemos hacer algunas operaciones:

  • $(\bar{4})^2 = \overline{4^2} = \overline{16} = \bar{2}$, en este caso $(\bar{4})^2$ no es el neutro, entonces intentemos lo siguiente:
  • $(\bar{4})^3 = (\bar{4})^2\,\bar{4} = \bar{2}\, \bar{4} = \bar{8} = \bar{1}$, así $o(\bar{4}) = 3$.

Por lo tanto, $\left< \bar{4} \right> = \{\bar{1}, \bar{4}, (\bar{4})^2\} = \{\bar{1}, \bar{4}, \bar{2}\}$ , así $\left|\left< \bar{4}\right>\right| = 3$.

Consecuencias

Hasta ahora hemos visto que la cantidad de elementos que hay en el generado por $a$, es decir $\left< a\right>$, está definido por el orden de $a$, denotado por $(o(a))$. En consecuencia tenemos el siguiente corolario.

Corolario. Sea $G$ un grupo y $a\in G$. Tenemos que $a$ es de orden finito si y sólo si $\left< a\right>$ es un conjunto finito.

Demostración.
Sea $G$ un grupo y $a\in G$.

$|\Rightarrow)$ Si $a$ es de orden finito, por el primer teorema que probamos en esta entrada,

$|\left< a \right>| = o(a) \in \z^+$

$\therefore$ $|\left< a \right>|$ es finito.

$|\Leftarrow)$ Si $\left< a \right>$ es un conjunto finito, entonces
$\{\dots, a^{-1}, e, a^1, a^2, \dots\}$ tiene repeticiones.

Sean $i,j \in \z$ con $i \neq j$ tales que $a^{i} = a^j$.
Sin pérdida de generalidad supongamos que $i < j$. Multiplicando por $(a^{i})^{-1}$ en ambos lados,

$\begin{align*}a^{i} (a^{i})^{-1} &= a^{j} (a^{i})^{-1}\\
e &= a^{j-i}\end{align*}$

con $j-i \in \z^+$. Por lo tanto $a$ es de orden finito.

$\blacksquare$

Corolario. Todo elemento de un grupo finito es de orden finito.

Demostración.
Sea $G$ un grupo finito y $a\in G$.

Como $\left< a \right> \subseteq G$ y $G$ es finito, entonces $\left< a \right>$ también es finito por el corolario anterior $a$ es de orden finito.

$\blacksquare$

Tarea moral

  1. Considera $G = \left< a \right>$ un grupo cíclico infinito:
    1. Encuentra el subgrupo de $G$ con la menor cantidad de elementos posible, que tenga como elemento a $a^4$.
    2. Encuentra el subgrupo de $G$ con la menor cantidad de elementos posible, que tenga como elementos a $a^4$ y a $a^6$.
    3. Encuentra el subgrupo de $G$ con la menor cantidad de elementos posible, que tenga como elementos a $a^4$ y a $a^9$.
    4. ¿Son cíclicos? Si lo son, encuentra un generador.
  2. Sea $G$ un grupo finito. Sea $S$ el subgrupo de elementos $g$ tales que $g^5 = e$, donde $e$ es el elemento neutro de $G$. Prueba que el orden de $S$ es impar.
    Hint: si $G$ es un grupo, $a \in G$ y existe $p \in \z$ primo tal que $a^p = e$, entonces $o(a) = p$.
  3. ¿Es posible que exista un grupo infinito tal que cada elemento sea de orden finito? De ser cierto, da un ejemplo. En caso contrario prueba que. no existe tal grupo.

Más adelante…

En las siguientes entradas estudiaremos más resultados y consecuencias que se derivan de todas las definiciones que hemos dado.

Entradas relacionadas

Álgebra Moderna I: Propiedades de grupos y Definición débil de grupo

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Cuando se estudian campos vectoriales u otras estructuras algebraicas primero se definen ciertas propiedades básicas y después, otras propiedades importantes que se desprenden de las primeras. Ahora, vamos a ver propiedades de los grupos. Dentro de los grupos mencionamos la existencia de un neutro, asociatividad e inverso. Pero de ahí se desprenden otras propiedades que vamos a usar como la cancelación, la unicidad de los neutros, etc.

Propiedades de grupos

Propiedades. Sea $(G,*)$ un grupo, entonces

  1. Para cualesquiera $x, a, b \in G$, se tiene que $$x*a = x*b \Rightarrow a = b,$$ también se vale cancelar por la derecha, $$a*x = b*x \Rightarrow a = b.$$ Estas propiedades son conocidas como las leyes de cancelación.
  2. El neutro en $(G,*)$ es único.
  3. Cada $a \in G$ tiene un único inverso y se denota por $a^{-1}$.
  4. Para toda $a \in G$, $(a^{-1})^{-1} = a$.

Demostración. 1. Sean $x,a,b \in G$.
Supongamos que $x*b = x*b$. Sea $\tilde{x} \in G$ inverso de $x$. Tenemos que

$\begin{align*}
\text{ }\\
\Rightarrow \\
\Rightarrow\\
\Rightarrow
\end{align*}$

$\begin{align*}
\tilde{x} * (x * a) = \; & \tilde{x} * (x * b) & \text{ }\\
(\tilde{x} * x) * a = \; & (\tilde{x} * x) * b & \text{por la asociatividad}\\
e* a = \; & e * b & \text{por ser $\tilde{x}$ el inverso de $x$}\\
a = \;& b & \text{por ser $e$ el neutro}
\end{align*}$

La cancelación por la derecha es análoga y se deja como ejercicio.

2. Sean $e, e’ \in G$ neutros

$\begin{align*}
e \;{=}\; & e * e’ & \text{ por ser $e’$ un neutro}\\
{=}\; & e’ & \text{ por ser $e$ un neutro}\\
\end{align*}$

$\therefore \; e= \; e’$

3. Sea $a\in G$. Supongamos que $\hat{a}, \tilde{a} \in G$ son inversos de a, entonces:

$\begin{align*}
\hat{a} \;{=}\; & e * \hat{a} & \text{ por ser $e$ el neutro}\\
= \; &(\tilde{a} * a)* \hat{a} & \text{ por ser $\tilde{a}$ un inverso de $a$}\\
=\; & \tilde{a} * (a * \hat{a}) & \text{ por la asociatividad}\\
=\; & \tilde{a} * e & \text{por ser $\hat{a}$ un inverso de $a$}\\
=\; &\tilde{a} & \text{ por ser $e$ el neutro}
\end{align*}$

$\therefore \hat{a} = \tilde{a}$

4. Sea $a \in G$.
Como $(a^{-1})^{-1}$ es el inverso de $a^{-1}$ tenemos que

$a^{-1} * (a^{-1})^{-1} = e$

Como $a^{-1}$ es el inverso de $a$ tenemos que

$a^{-1} * a = e$

Así $a^{-1}*(a^{-1})^{-1} = a^{-1} *a$, entonces por la propiedad 1 podemos cancelar el elemento $a^{-1}$ por la izquierda y concluir que $(a^{-1})^{-1} = a$.

$\blacksquare$

Definición débil de grupo

Teorema. Sea $G$ un conjunto, $*$ una operación binaria en $G$. Supongamos que

  1. $*$ es asociativa,
  2. existe $e \in G$ tal que $e*a = a $ para toda $a \in G$ y
  3. $\forall a \in G$ existe $ \tilde{a} \in G$ tal que $\tilde{a}*a=e$,

entonces $(G,*)$ es un grupo. A partir de ahora, a las propiedades $2$ y $3$ de la definición débil de grupo las denotaremos como $2’$ y $3’$ respectivamente para dejar que los números $2$ y $3$ denoten las propiedades de la definición de grupo.

Demostración. Supongamos que $(G,*)$ cumple $1, 2’$ y $3’$.
Sea $a \in G$, por $3’$, existe $\tilde{a} \in G$ tal que $\tilde{a} * a = e$.
Tenemos que $\tilde{a}$ es un inverso izquierdo de $a$. Veamos primero que $\tilde{a}$ es también un inverso derecho de $a$, es decir que $a * \tilde{a} = e$.

$\begin{align*}
\tilde{a} * (a * \tilde{a}) \;=\;& (\tilde{a} * a) * \tilde{a} & \text{por la asociatividad}\\
= \; & e * \tilde{a} & \text{por la propiedad }3’\\
= \;& \tilde{a} & \text{ por la propiedad } 2’\\
\end{align*}$

$\Rightarrow \tilde{a} * (a * \tilde{a}) = \tilde{a}$.

Por $3’$ existe $b \in G$ tal que $b*\tilde{a}=e$. Multiplicando $ \tilde{a} * (a * \tilde{a}) = \tilde{a}$ a la izquierda por $b$ tenemos que

$\begin{align*}
\text{ }\\
\Rightarrow \\
\Rightarrow\\
\Rightarrow
\end{align*}$

$\begin{align*}
b * (\tilde{a} * (a * \tilde{a})) =\;& b * \tilde{a} & \text{ }\\
(b * \tilde{a}) * (a * \tilde{a}) = \;& b * \tilde{a} & \text{por la asociatividad}\\
e * (a * \tilde{a}) =\;& e & \text{ya que $b$ es un inverso izquierdo de $\tilde{a}$}\\
a * \tilde{a}=\;& e &\text{ya que $e$ es un neutro izquierdo.}
\end{align*}$

Así, $\tilde{a}$ es también un inverso derecho de $a$.

Por $2’$, $e*a=a$ para toda $a\in G$, es decir $e$ es un neutro izquierdo. Veamos ahora que $e$ también es un neutro derecho probando que $a * e = a$ para toda $a \in G$.

Sea $a \in G$, por $3’$ existe $\tilde{a} \in G$ tal que $\tilde{a} * a=e$, y por lo que acabamos de probar $a * \tilde{a} = e$. Usando estas igualdades y la propiedad asociativa tenemos que

$a * e = a * (\tilde{a} * a) = (a * \tilde{a}) * a = e * a$

y como $e$ es un neutro por la izquierda, $e * a = a$. Así $a * e = a$.

Por lo tanto $(G, *)$ es un grupo.

$\blacksquare$

Tarea moral

  1. Usando la Definición débil de grupo, determina cuáles de estos conjuntos son un grupo.
    • $G = \r \setminus \{-1\}$, $a*b := a+b+ab$.
    • $G = \r^*$, $a*b = |a|b$.
    • $G = \{r \in \mathbb{Q} \;|\; r = \frac{p}{q} \text{ con } (p,q)= 1 \text{ y } q \text{ impar}\}$, $a*b = a+b$ (la adición usual).
    • Sea $X$ un conjunto. Considera $G = \mathcal{P}(X)$ el conjunto potencia de $X$ con la operación binaria $A \triangle B = (A \cup B)\setminus (A \cap B)$ para todo $A,B \in \mathcal{P}(X)$.
  2. Muestra que $G = \r^*$ con la operación $a * b = |a| b$, tiene un neutro izquierdo $e$ y para cada elemento $a$ existe $\tilde{a}$ tal que $a * \tilde{a} = e$ ¿qué puedes concluir con respecto a la definición débil de un grupo?
  3. Para el conjunto $\mathcal{S}:= \{\bigstar, \blacktriangledown, \blacklozenge, \clubsuit \}$, considera las operaciones que creaste en la tarea moral de una entrada anterior.
    • Si definiste una operación tal que $(\cS, *)$ es un grupo, comprueba las propiedades vistas en esta entrada y verifica la definición débil.
    • Si no, observa si alguna de las propiedades analizadas se cumplen con tu operación.
  4. Si quieres conocer el grupo de transformaciones lee la sección 3.1.1 del libro Introducción analítica a la geometría de Javier Bracho (página 112 a la 115).
  5. Si quieres conocer el grupo diédrico puedes ver el video Dihedral Group de Socratica. El video está en inglés. De todas maneras, después usaremos el grupo diédrico, así que lo definiremos más adelante.

Más adelante…

En la siguiente entrada generalizaremos la propiedad de la asociatividad porque hasta ahora sólo la manejamos con tres elementos. Además, seguiremos formalizando conceptos que ya conocemos intuitivamente: definiremos qué es una potencia, escribiremos las leyes de los exponentes y las demostraremos.

Entradas relacionadas