Archivo de la etiqueta: Algebra moderna

Álgebra Moderna I: Teoremas y Proposiciones relacionadas con subgrupos normales y grupo Alternante.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En entradas anteriores definimos el índice de $H$ en $G$ con $H$ un subgrupo del grupo $G$. Además, dimos la definición de subgrupo normal, y demostramos equivalencias usando clases laterales izquierdas y derechas.

Cuando sólo hay dos clases laterales en $G$, es muy fácil concluir esa equivalencia, es decir, es fácil verificar que toda clase lateral derecha es una clase lateral izquierda y viceversa. Digamos, si $[G:H] = 2$ y tomamos $a,b\in G$. Por un lado tenemos que se crea una partición $\mathcal{P}_1 = \{H, aH\}$ de $G$ y por otro lado tenemos $\mathcal{P}_2 = \{H, Hb\}$. Como ambas particiones tienen $H$, entonces necesariamente $aH = Hb$. Así, concluimos que $H \unlhd G$.

Lo anterior lo demostraremos de manera formal en esta entrada.

Representación gráfica de qué sucede cuando $[G:H]=2$.

Proposición sobre subgrupos

Proposición. Sean $G$ un grupo y $H$ un subgrupo de $G$.

  1. Si $[G : H ] = 2$, entonces $g^2\in H$ para toda $g\in G$.
  2. Si $[G : H ]= 2$, entonces $H$ es normal en $G$.

Demostración.
Sea $G$ un grupo, $H\leq G$ con $[G : H ]= 2$.

$1.$ P.D. $g^2 \in H$ para toda $g \in G$.

Sea $g\in G$. Como $[G : H ]= 2$ hay dos clases laterales izquierdas, $H$ y $aH$ para alguna $a \in G\setminus H$, y $G = H\dot\cup aH$, donde $\dot\cup$ en este caso es una unión disjunta.

Como $g\in G$, entonces $g\in H$ ó $g \in aH$.

Si $g\in H$, al ser $H$ un subgrupo, $g^2\in H$.
Si $g\in aH$, $g = ah$ para alguna $h\in H$.
Por lo tanto $g^2 = ahah$.

Pero también, $g^2 \in G = H\dot\cup aH$. Por un lado, si $g^2\in aH$, $g^2 = a \tilde{h}$ con $\tilde{h} \in H$.
\begin{align*}
&\Rightarrow a \tilde{h} = g^2 = ah a h \\
&\Rightarrow \;\tilde{h} = hah & \text{Cancelamos la } a \text{ que se repite}\\
&\Rightarrow a = h^{-1}\tilde{h}h^{-1}  &\text{Despejando }{a}.
\end{align*}

Pero cada uno de $h,\tilde{h}, h^{-1}  \in H$. Por lo que $a \in H$ y esto sería una contradicción.
Por lo tanto $g^2 \in H$.

$2. $ Como $[G : H ]= 2$ hay dos clases laterales izquierdas $H$ y $aH$ con $a \in G\setminus H$. Hay también dos clases laterales derechas $H$ y $Hb$ con $b \in G\setminus H$ y además
$$H\dot\cup aH = G = H\dot\cup Hb.$$

Si $g\in aH$, entonces $g \not\in H$, así $g\in G = H\dot\cup Hb$ pero $g\not\in H$, y entonces $g\in Hb$. Por lo que $aH \subseteq Hb$.

Si $g\in Hb$, entonces $g\not\in H$, así $g\in G = H\dot\cup aH$ pero $g\not\in H$, y entonces $g\in aH$. Por lo que $Hb\subseteq aH$.

Así, $aH=Hb$ y toda clase lateral izquierda es una clase lateral derecha.
Por lo tanto, podemos concluir que $H \unlhd G$.

$\blacksquare$

Ejemplos.

Enunciamos dos ejemplos sencillos:

  1. Como $[S_n: A_n ]= 2$, entonces $A_n\unlhd S_n$.
  2. En $D_{2n} = \left<a,b\right>$ con $a$ la rotación $2\pi/n$ y $b$ la reflexión con respecto al eje $x$.
    Sea $H =\left< a \right>$.
    \begin{align*}
    [D_{2n} : H ]= \frac{|D_{2n}|}{|H|} = \frac{2n}{n} = 2.
    \end{align*}
    Por lo tanto $H \unlhd D_{2n}$.

Más teoremas de subgrupos

Veamos que el hecho de que un número divida al orden de un grupo, no implica que haya un subgrupo de ese tamaño. Esto se puede ilustrar con un ejemplo.

Teorema. Sea $A_4$ el subgrupo alternante de $S_4$.
$A_4$ no tiene subgrupos de orden $6$.

Demostración.
Consideremos el subgrupo $A_4$ de $S_4$.

Sabemos que
$$|A_4| = \frac{|S_4|}{2} = \frac{4!}{2}= \frac{24}{2} = 12.$$

Así, $6\Big| |A_4|$.

P.D. $A_4$ no tiene subgrupos de orden $6$.

Supongamos que existe $H\leq A_4$ con $|H| = 6$.

\begin{align*}
\Rightarrow& [A_4 : H ]= \frac{A_4}{H} = \frac{12}{6} = 2 \\
\Rightarrow& H \unlhd A_4 &\text{Prop. anterior inciso 2.}
\end{align*}

Sea $\beta = (a \; b \; c) \in A_4$ un $3-$ciclo.
Por el inciso 1 de la proposición anterior $(\beta^2)^2\in H$. Luego, $\beta = \beta^4 = (\beta^2)^2 \in H$. Así, todo $3-ciclo$ está en $H$.

Pero en $S_4$ hay exactamente ocho $3-$ciclos. Entonces $|H| \geq 8$ y esto es una contradicción pues supusimos que $|H| = 6$.

Por lo tanto $A_4$ no tiene subgrupos de orden 6.

$\blacksquare$

Ahora veamos qué sucede si multiplicamos dos subgrupos. Esta multiplicación es posible y tiene sentido, pero esto no siempre nos da un subgrupo, aquí damos algunos casos en donde esto sí pasa.

Teorema. Sea $G$ un grupo, $H,K$ subgrupos de $G$.

  1. Si $H \unlhd G$ o $K \unlhd G$, entonces $HK \leq G$.
  2. Si $H \unlhd G$ y $K \unlhd G$, entonces $HK \unlhd G$.

Demostración.

Sea $G$ un grupo, $H$ y $K$ subgrupos de $G$.

$1.$ Supongamos que $H \unlhd G$.

P.D. $HK \leq G$.
Por un resultado de una entrada previa, basta ver que $HK = KH$.

Si $h\in H$, $k\in K$, como $H \unlhd G$, entonces $hk = k\tilde{h}$ con $\tilde{h}\in H$ por la conmutatividad parcial. Por lo tanto $HK \subseteq KH$.

Además $kh = \bar{h}k$ con $\bar{h} \in H$, de nuevo, por la conmutatividad parcial ya que $H\unlhd G$. Por lo tanto $KH \subseteq HK$.

Así, $HK = KH$ y $HK \leq G$.

Para $K\unlhd G$ se demuestra que $HK = KH$ de forma análoga.

$2.$ Supongamos que $H \unlhd G$, $K\unlhd G$.
Sean $h\in H, k \in K$ y $a\in G$. Veamos que $a(hk)a^{-1} \in HK.$

Agregando un neutro,
$$a(hk)a^{-1} = ah(a^{-1} a) ka^{-1} = (aha^{-1}) (aka^{-1}).$$

Pero como $H \unlhd G$ sabemos que $aha^{-1} \in H$, y como $K \unlhd G$ sabemos que $aka^{-1} \in K$, entonces $a(hk)a^{-1} = (aha^{-1}) (aka^{-1}) \in HK.$

Por lo tanto $HK \unlhd G$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $G$ un grupo, $H$ un subgrupo de $G$ con $3 = [G:H]$. ¿Es $H$ normal en $G$?
  2. Prueba que en $S_4$ hay exactamente ocho $3$-ciclos.
  3. Demuestra que $A_5$ no tiene subgrupos de orden 20: Supón por contradicción que $H$ es un subgrupo de de orden 20.
    1. Sea $\alpha \in A_5$ un $5$-ciclo. Prueba que si $\alpha\not\in H$ entonces $H, \alpha H$ y $\alpha^2 H$ son las 3 clases laterales izquierdas de $H$ en $A_5$.
    2. Prueba que $\alpha^3$ no está en ninguna de esas tres clases laterales.
    3. Concluye que $\alpha \in H$ para todo $\alpha$ 5-ciclo, y así $H$ tendría más de 20 elementos.
  4. Sea $G$ un grupo, $H$ y $K$ subgrupos de $G$. Prueba o da un contraejemplo:
    1. Si $HK$ es un subgrupo de $G$, entonces $H$ es normal en $G$ o $K$ es normal en $G$.
    2. Si $HK$ es un subgrupo normal de $G$, entonces $H$ es normal en $G$ y $K$ es normal en $G$.

Más adelante…

Esta entrada es la última antes de comenzar un pequeño tema nuevo: el grupo cociente. Seguiremos viendo cómo se pueden generar particiones de los grupos y definiremos una operación entre los elementos de esta partición.

Entradas relacionadas

Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Hace algunas entradas, comenzamos dando una motivación usando a los enteros. En ésta, nos encontramos de nuevo con la necesidad de retomarlos para darle introducción al tema principal de la entrada. Sabemos que $(\z, +)$ es un grupo, de ahí podemos considerar el subgrupo $n\z$ formado por los múltiplos de $n$, y trabajar con las clases módulo $n$. Supongamos que tenemos $a,b\in \z$ y las clases de equivalencia de $a$ y $b$ módulo $n$ . Éstas se definen de la siguiente manera:
\begin{align*}
\bar{a} = a + n\z, \quad \bar{b} = b + n\z.
\end{align*}

Si queremos sumar dos clases de equivalencia, usamos la suma usual en $\z$. Digamos
\begin{align*}
\bar{a} + \bar{b} = \overline{a+b}.
\end{align*}

Aunque lo escribamos así, en realidad lo que estamos haciendo, es definir la suma $+_n$ en $\z_n$ usando $+_\z$ que es la suma del grupo $(\z,+)$. Entonces lo anterior quedaría:
\begin{align*}
\bar{a} +_n \bar{b} = \overline{a+_\z b}.
\end{align*}

Resulta que $+_n$ es una operación bien definida y $(\z_n,+_n)$ es un grupo.

Otra manera de escribirlo sería:
\begin{align*}
(a+\z) +_n (b+\z) = (a+_\z b) + \z.
\end{align*}
Donde, en este caso estamos usando la notación aditiva.

Entonces, ahora nos preguntamos, ¿cómo podemos generalizar esta propiedad?

Tomemos $G$ un grupo y $H$ un subgrupo y consideremos dos clases laterales izquierdas de $H$, digamos $aH$ y $bH$, lo que queremos es definir, en caso de ser posible, un producto entre clases del siguiente modo:
\begin{align*}
aH \cdot_H bH = ab H.
\end{align*}

donde $\cdot_H$ es el nuevo producto entre clases y $ab$ se hace con el producto en $G$.

Sin embargo, debemos verificar que este producto $\cdot_H$ esté bien definido. Para ello tenemos que ver que no depende de los representantes elegidos. Tomemos entonces otros representantes de las clases, para simplificarlo, cambiemos sólo el representante de una de las dos clases, digamos $\tilde{a}\in G$ tal que $\tilde{a}H = aH$.

Entonces, quisiéramos que $abH = \tilde{a}bH$, pero esto sucedería sólo de la siguiente manera,
\begin{align*}
abH = \tilde{a}b H \Leftrightarrow\;& (ab)^{-1} \tilde{a}b\in H\\
\Leftrightarrow\;& b^{-1}a^{-1}\tilde{a}b\in H.
\end{align*}

Entonces, ¿cómo sabemos que $b^{-1}a^{-1}\tilde{a}b\in H$? Lo que sí sabemos es que $a^{-1}\tilde{a} \in H$, pues $\tilde{a}H= aH$. Entonces, bastaría pedir que si $h\in H$, al multiplicar a $h$ a un lado por un elemento de $G$, y al otro por su inverso, sigamos obteniendo elementos en $H$.

En esta entrada usaremos la idea anterior para definir un producto entre dos clases izquierdas usando el producto en $G$.

Subgrupos normales

Primero necesitamos definir formalmente qué es un conjugado.

Definición. Sea $G$ un grupo, $b,c \in G$. Decimos que $b$ es conjugado de $c$ si $b = aca^{-1}$ para alguna $a\in G$.

Dado $a\in G$ y $H$ un subgrupo de $G$,el conjugado de $H$ por el elemento $a$ es
$$aHa^{-1} = \{aha^{-1}|h\in H\}.$$

Observación. $aHa^{-1}$ es un subgrupo de $G$, para toda $a \in G$.

La demostración de esta observación queda de tarea moral.

Definición. Sea $G$ un grupo, $N$ subgrupo de $G$. Decimos que $N$ es normal en $G$ si $ana^{-1} \in N$ para todas $a\in G$, $n\in N$.

Notación. $N\unlhd G$.

Ahora, veamos una proposición. Recordemos que en una entrada pasada vimos que las clases laterales izquierdas no siempre coinciden con las clases laterales derechas y dimos algunos ejemplos. La siguiente proposición nos dirá que con subgrupos normales, la igualdad de clases derechas e izquierdas siempre se da.

Proposición. Sea $G$ un grupo, $N$ subgrupo de $G$. Las siguientes condiciones son equivalentes:

  1. $N\unlhd G$.
  2. $a N a^{-1} = N$ para todo $a\in G$.
  3. Toda clase laterial izquierda de $N$ en $G$ es una clase lateral derecha de $N$ en G.

Demostración. Sea $G$ un grupo, $N \leq G$.

$|1) \Rightarrow 2)]$ Supongamos que $N \unlhd G$. Sea $a\in G$.

P.D. $aNa^{-1} = N$.
Probaremos esto por doble contención.

$\subseteq]$ Como $N\unlhd G$, $ana^{-1} \in N$ para toda $n\in N$. Entonces el conjunto $aNa^{-1} = \{ana^{-1}|n\in N\}$ está contenido en $N$.

$\supseteq]$ Sea $n\in N$, como $N\unlhd G$, $a^{-1}na = a^{-1}n(a^{-1})^{-1} \in N$. Entonces $n = a(a^{-1}n a)a^{-1} \in a N a^{-1}$.

Por lo tanto $aNa^{-1} = N$.

$|2) \Rightarrow 3)]$ Supongamos que para todo $a \in G$, entonces $aNa^{-1} = N$. Sea $a\in G$.

P.D. $aN = Na$.
De nuevo, probaremos esto por doble contención.

$\subseteq]$ Tomemos $an \in aN$ con $n\in N$, como $ana^{-1} \in aNa^{-1}$, y $ aNa^{-1}= N$ por hipótesis, entonces $an = (ana^{-1}) a \in Na$.

$\supseteq]$ Tomemos $na \in Na$ con $n\in N$, como $a^{-1}na \in a^{-1}Na$, y $a^{-1}Na = N$ por hipótesis, entonces $na = a(a^{-1}na) \in aN$.

Por lo tanto $aN = Na$.

$|3)\Rightarrow 1)]$ Supongamos que para todo $a\in G$, existe $b\in G$ tal que $aN = Nb$. Sean $a \in G$ y $n \in N$.

P.D. $ana^{-1} \in N$.

Por hipótesis $aN = Nb$ para alguna $b\in G$. Pero $a \in aN = Nb$, entonces $a\in Nb$, por lo que $a$ es otro representante de la clase lateral $Nb$, y en consecuencia $Na = Nb$. Tenemos entonces que $aN = Nb=Na$

Así, $an\in aN = Na$ y entonces $an = \tilde{n}a$ para alguna $\tilde{n}\in N$. Entonces

\begin{align*}
ana^{-1} = (an)a^{-1} = (\tilde{n}a)a^{-1} = \tilde{n} \in N.
\end{align*}
Por lo tanto $N \unlhd G$.

Así 1), 2) y 3) son equivalentes.

$\blacksquare$

Observación. (Conmutatividad parcial)
Si $N\unlhd G$, dados $n\in N$ y $a\in G$, tenemos que $an = \tilde{n}a$ para alguna $\tilde{n}\in N$, también $na = a \hat{n}$ para alguna $\hat{n} \in N$.

Ejemplos

  1. $A_n \unlhd S_n$ ya que si $\beta \in A_n$ y $\alpha\in S_n$.
    \begin{align*}
    sgn \,(\alpha\beta\alpha^{-1}) &= sgn \,\alpha \; sgn \,\beta \:sgn \,\alpha^{-1}\\
    & = sgn \,\alpha \;(+1) \;sgn \, \alpha \\
    & = +1
    \end{align*}
    Por lo tanto $\alpha\beta\alpha^{-1}\in A_n$.
  2. Consideremos
    \begin{align*}
    Q &= \{\pm 1, \pm i, \pm j, \pm k\}\\
    H &= \{\pm 1, \pm i\}
    \end{align*}
    Las clases laterales izquierdas de $H$ en $Q$ son: $H$ y $jH$.
    Las clases laterales derechas de $H$ en $Q$ son: $H$ y $Hj$.
    Además $jH = \{\pm j, \pm k\} = Hj$. Por lo tanto $H \unlhd Q$.
  3. Consideremos $D_{2(4)}$ las simetrías del cuadrado. Sea $a$ la rotación $\frac{\pi}{2}$, $b$ la reflexión con respecto al eje $x$.
    Sea $H = \{e, b\}$.
    Si tomamos la transformación $aba^{-1}$ podemos desarrollarla algebraicamente y geométricamente. Primero lo haremos de manera algebraica y interpretación geométrica la podrás encontrar en una imagen más abajo.
    Así, como vimos cuando trabajamos con el grupo diédrico:
    $aba^{-1} = aab = a^2b \not\in H$
    con $a^2b$ la reflexión con respecto al eje $y$.
    Por lo tanto $H \not\unlhd D_{2(4)}$.
Representación gráfica de la transformación $aba^{-1}$.

Tarea moral

  1. Sean $W = \left< (1\;2)(3\;4)\right>$, $V = \{(1), (1\;2)(3\;4),(1\;3)(2\;4),(1\;4)(2\;3)\}\leq S_4$. Verifica si $W$ es normal en $V$, si $V$ es normal en $S_4$ y si $W$ es normal en $S_4$ ¿qué puedes concluir con ello?
  2. Sea $G$ un grupo, $H$ y $N$ subgrupos de $G$ con $N$ normal en $G$, prueba o da un contraejemplo:
    1. $N\cap H$ es normal en $H$.
    2. $N\cap H$ es normal en $G$.
  3. Demuestra o da un contraejemplo: Si $G$ es un grupo tal que cada subgrupo de él es normal, entonces $G$ es abeliano.
  4. Sea $G$ un grupo finito con un único subgrupo $H$ de orden $|H|$. ¿Podemos concluir que $H$ es normal en $G$?

Más adelante…

Como ya es costumbre, después de dar las definiciones y de practicarlas un poco con ejemplos, toca profundizar y hablar más sobre las proposiciones y teoremas que involucran a los subgrupos normales. En la siguiente entrada veremos esto.

Entradas relacionadas

Álgebra Moderna I: Caracterización de grupos cíclicos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Gracias al teorema de Lagrange sabemos que el orden de todo subgrupo divide al del grupo que lo contiene, pero no sabemos si para cada divisor del orden del grupo, existe un subgrupo de ese tamaño. El siguiente teorema nos da una respuesta positiva en el caso de los grupos cíclicos finitos.

En los grupos cíclicos, para cada divisor del orden del grupo existe un único subgrupo que tiene por orden dicho divisor. Eso es lo primero que veremos en esta entrada. Después, demostraremos un resultado de la teoría de los números, usando la teoría de los grupos para llegar a una caracterización de los grupos cíclicos. Esta caracterización y sus consecuencias en los campos finitos se basan en el material de los textos de Rotman y aparecen también en el libro de Avella, Mendoza, Sáenz y Souto, mencionados en la bibliografía.

Todo divisor tiene un subgrupo de ese orden

Teorema. Sea $G$ un grupo finito cíclico de orden $n$. Para cada $d \in \z^+$ divisor de $n$ existe un único subgrupo de $G$ de orden $d$.

Demostración.
Sea $G$ un grupo finito cíclico de orden $n$ y sea $a \in G$ tal que $G = \left< a \right>$.

Sea $d\in \z^+$ con $d|n$.

Veamos que existe un subgrupo de $G$ de orden $d$.

P.D. Existe un subgrupo de $G$ de orden $d$.
Como $d|n$, entonces $n = dk$ con $k \in \z$.

Queda como ejercicio para la tarea moral verificar que
\begin{align*}
o(a^k) = \frac{n}{(n,k)} = \frac{n}{k} = d.
\end{align*}

Así, $|\left< a^k \right>| = o(a^k) = d$.

Veamos ahora que este subgrupo es único.

P.D. Que no hay otro subgrupo de orden $d$.
Sea $H\leq G$ con $|H|=d$. Como $G$ es cíclico, $H$ también es cíclico y, por ende, $H = \left< a^m \right>$ para alguna $m \in \z$, entonces

\begin{align*}
&e = (a^m)^{|H|} = (a^m)^d = a^{md}.
\end{align*}
Como $ a^{md} = e$, podríamos pensar que $o(a) = md$, sin embargo eso no es siempre cierto, lo que sí es cierto es que $n|md$. Entonces, existe $q\in\z$ tal que
\begin{align*}
&md = nq\\
\Rightarrow \;& md = dkq &\text{Sustituyendo } n = dk\\
\Rightarrow \; &m=kq.
\end{align*}

Así $a^m = a^{kq} = (a^k)^q \in \left< a^k \right>$, entonces $H = \left< a^m\right> \leq \left< a^k\right> $. Pero $| \left< a^m\right>| = |\left< a^k\right>| = d$, por lo tanto $ \left< a^m\right> = \left< a^k\right>$.

$\blacksquare$

Demostrando resultados de teoría de números usando teoría de grupos

Para llegar a una caracterización de los grupos cíclicos, primero vamos a introducir alguna notación.

Notación. Sea $C$ grupo cíclico, al conjunto de generadores del grupo cíclico $C$ lo denotaremos por
$$\text{gen } C =\{a\in C | \left< a\right> = C\}.$$

Recordatorio. Dado $d \in \z^+$

$$\varphi(d) = \#\{m \in \{1,2,\dots,d\} | (m,d) = 1\}.$$
Es decir, $\varphi(d)$ es la cantidad de primos relativos con $d$. A la función $\varphi$ se le conoce como la función phi de Euler.

Ahora, veamos un resultado que se refiere más a asuntos de la teoría de los números, y se puede encontrar en el libro de Rotman An introduction to the theory of groups, Teorema 2.16, mencionado en la bibliografía:

Teorema. Sea $n\in \z^+$. Entonces $n = \displaystyle \sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d)$.

Demostración.
Sea $G$ un grupo cíclico de orden $n$.

Por el teorema anterior, para cada $d|n$ con $1\leq d\leq n$ existe un único subgrupo de $G$ de orden $d$, digamos $C_d$.

P.D. $\displaystyle G = \bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d$.

Lo probaremos por doble contención.

$\subseteq]$ Sea $a\in G$.

Sabemos que $\left< a \right>$ es un subgrupo de $G$ de orden $o(a)$, con $o(a)\mid n$. Entonces $\left< a \right> = C_{o(a)}$ y además $a \in \text{gen }C_{o(a)}$ por construcción. Así, $\displaystyle a \in \bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d.$

$\supseteq]$ Por construcción, se da que $\text{gen } C_d \subseteq G$ para cada $d|n$, $1 \leq d \leq n$.

Por lo tanto, $\displaystyle G = \bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d$.

Ahora veamos que la unión es disjunta.

Sean $d, d’ \in \{1,\dots, n\}$ divisores de $n$.

P.D. Si $\text{gen } C_d \cap \text{gen } C_{d’}\neq \emptyset,$ entonces $d=d’.$

Sea $a \in \text{gen } C_d \cap \text{gen } C_{d’}$.

Entonces
\begin{align*}
C_d &= \left< a \right> = C_{d’}\\
\Rightarrow \;d &= |C_d| = |C_{d’}| = d’\\
&\therefore d = d’.
\end{align*}

Así, tenemos una unión disjunta, y en consecuencia

\begin{align*}
|G| &= \left|\bigcup_{\substack{d|n \\ 1\leq d \leq n}} \text{gen } C_d \right| \\
& = \sum_{\substack{d|n \\ 1\leq d \leq n}} \#\text{gen } C_d. &
\end{align*}

Luego, si $C_d = \left<a\right>$, queda como ejercicio para la tarea moral ver que $C_d = \left<a^k\right>$ si y sólo si $(k,d) = 1$. Por lo que tenemos tantos generadores como primos relativos haya con $d$. Así,
\begin{align*}
|G| =\sum_{\substack{d|n \\ 1\leq d \leq n}} \#\text{gen } C_d = \sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d).
\end{align*}

Por último, como $|G| = n$, se sigue que
\begin{align*}
\sum_{\substack{d|n \\ 1\leq d \leq n}} \varphi(d) = n.
\end{align*}

$\blacksquare$

Ahora sí, la caracterización que todos esperábamos

Después de los resultados anteriores ya estamos listos para dar el siguiente teorema, (que aparece en el libro de Rotman An introduction to the theory of groups, Proposición 2.17, mencionado en la bibliografía) pero esta vez lo demostraremos usando la teoría de los grupos.

Teorema. Sea $G$ un grupo finito de orden $n$. $G$ es cíclico si y sólo si para cada $d \in \z^+$ divisor de $n$, $G$ tiene a lo más un subgrupo cíclico de orden $d$.

A pesar de que el enunciado dice que $G$ tiene a lo más un subgrupo cíclico, al final resulta que existe un único. La redacción es adrede para que la demostración del regreso no sea trivial.

Demostración.
Sea $G$ un grupo finito de orden $n$.

$|\Rightarrow]$ Supongamos que $G$ es cíclico, entonces, por un resultado previo, para cada $d \in \z^+$ divisor de $n$, $G$ tiene exactamente un subgrupo cíclico de orden $d$.

$[\Leftarrow|$ Supongamos que para toda $d \in \z^+$ divisor de $n$, $G$ tiene a lo más un subgrupo cíclico de orden $d$; si éste existe lo denotaremos por $C_d$, si no existe definimos $C_d = \emptyset$ y definimos también $\text{gen } C_d = \emptyset$ en ese caso.

Por un argumento análogo al de la demostración del teorema anterior, se tiene que $G$ es la siguiente unión disjunta:
\begin{align*}
G = \bigcup_{\substack{d|n\\1\leq d\leq n}} \text{gen }C_d.
\end{align*}

Entonces, usando el teorema anterior,

\begin{align*}
n = |G| = \sum_{\substack{d|n\\1\leq d \leq n}} \#\text{gen } C_d \leq \sum_{\substack{d|n\\1\leq d \leq n}} \varphi(d) = n
\end{align*}

(donde el teorema anterior se usa en la última igualdad.)

Entonces,

\begin{align*}
\sum_{\substack{d|n\\1\leq d \leq n}} \#\text{gen } C_d =\sum_{\substack{d|n\\1\leq d \leq n}} \varphi(d).
\end{align*}

Así, para toda $d|n$, con $1\leq d\leq n$ se tienen que $\#\text{gen } C_d = \varphi(d)$ de donde $\text{gen } C_d \neq \emptyset$.

Por lo tanto, para toda $d|n$ con $1\leq d \leq n$, $G$ tiene exactamente un subgrupo cíclico de orden $d$. En particular $G$ tiene exactamente un subgrupo cíclico de orden $n$ que debe ser $G$ mismo.

$\therefore G$ es cíclico. $\blacksquare$

Consecuencias

Veamos las siguientes consecuencias del resultado anterior (aparecen en el libro de Rotman A first course in abstract algebra mencionado en la bibliografía en el Teorema 2.18 y la observación previa):

Corolario 1. Sea $G$ un grupo finito de orden $n$. Si para toda $d\in \z^+$ divisor de $n$ hay a lo más $d$ soluciones de $x^d = e$ en $G$, entonces $G$ es cíclico.

Demostración.
Sea $G$ un grupo finito, $|G| = n$, tal que $\forall d \in \z^+$ que $d|n$, existen a lo más $d$ soluciones de $x^d = e$ en $G$.

P.D. $G$ es cíclico.

Supongamos por contradicción que $G$ no es cíclico, entonces, por el teorema anterior tenemos que para alguna $d\in\z^+$ divisor de $n$ existe más de un subgrupo cíclico de orden $d$, es decir, existen $C,C’$ con $C\neq C’$ subgrupos cíclicos de $G$ de orden $d$.

Por un lado, si $a\in C$, $e = a^{|C|} = a^d$. Por otro lado, si $a\in C’$, $e = a^{|C’|} = a^d$. Entonces para toda $a\in C\cup C’$, $a$ es solución de $x^d = e$.

Pero como $C \neq C’$, entonces $\#C\cup C’ > |C| = d$, entonces habría más de $d$ soluciones de $x^d=e$ en $G$. Esto es una contradicción.

Así, para toda $d\in\z^+$ tal que $d\in\n$ existe a lo más un subgrupo cíclico de orden $d$.

Por el teorema anterior, $G$ es cíclico.

$\blacksquare$

En realidad, nos interesa el corolario 1, para probar el corolario 2.

Corolario 2. Para todo campo finito $K$, el grupo $K^* = K\setminus\{0\}$ con la multiplicación del campo, es cíclico.

Demostración.
Sea $d\in \z^+$ tal que $d\big||K^*|$.

Ahora, nos fijamos en el polinomio $f(x) = x^d -1$ que tiene a lo más $d$ raíces en $K^*$. Pero las raíces de $f(x)$ son precisamente las soluciones de la ecuación $x^d = 1$, con $1$ es el neutro multiplicativo de $K$.
Por lo tanto, por el corolario 1, $K^*$ es cíclico.

$\blacksquare$

Tarea moral

1. Sea $G$ un grupo finito cíclico de orden $n$ y sea $a \in G$. Sea $k\in \z^+$.

  • Demuestra que $o(a^k) = \frac{n}{(n,k)} = \frac{n}{k}.$
  • Demuestra que $G = \left< a^k \right>$ si y sólo si $(n,k) = 1.$

2. Dada $d\in \z^+$ definimos

\begin{align*}\phi(d) = \#\{m\in \{1,2,\dots,d\}\, | \, (m,d) = 1\}.\end{align*}

Donde $(m,d)$ es máximo común divisor de $m$ y $d$.

Encuentra $\displaystyle \sum_{\substack{ d|n \\ 1\leq d \leq n}} \phi(d) $ para $n \in \{5,8,9,12\}$.

3. Considera el conjunto
\begin{align*}
K = \left\{ \begin{pmatrix}
a & b \\ b & a+b
\end{pmatrix} \, \Big| a,b\in\z_2
\right\}
\end{align*}
con las operaciones usuales. Prueba que $K$ es un campo con cuatro elementos y verifica que $K^*$ es cíclico.

Más adelante…

Con esta entrada concluimos por el momento los temas relacionados al orden de un grupo y de un subgrupo. En la próxima entrada comenzaremos una nueva tarea: encontrar una multiplicación apropiada entre dos clases laterales, para ello, regresaremos a estudiar un poco a los enteros.

Entradas relacionadas

Álgebra Moderna I: Teorema de Lagrange

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la entrada anterior vimos que si tenemos un grupo $G$ y nos agarramos un subgrupo $H$, obtenemos una partición $H, a_1H, a_2H, a_3H, \dots, a_tH$ donde
\begin{align*}
|H| = \#a_2 H = \#a_3 H = \cdots = a_t H.
\end{align*}

Recuerda que $|G|$ se refiere al orden de un grupo y $\#a_iH$ es el orden de un conjunto que no es necesariamente un grupo. Esto quiere decir que el orden de $G$ es un $t$ veces del orden de $H$, en decir $|G| = t|H|.$ Este resultado sencillo pero importante es conocido como el Teorema de Lagrange, aunque en esta entrada, lo definimos en términos del índice de $H$ en $G$, $[G:H]$.

Joseph-Louis Lagrange, conocido simplemente como Lagrange, nació en 1739 y falleció en 1813.

Ejemplo de la partición $\{H, a_1H,\dots, a_tH\}$.

A pesar de que vivió antes de que la teoría de conjuntos se desarrollara en el siglo XIX, su trabajo fue muy importante para ella. Por eso este teorema tiene su nombre.

Ingredientes para la demostración

Lema. Sea $G$ un grupo, $H$ un subgrupo de $G$, $a\in G$. Entonces $$\# aH = |H|.$$

Demostración. Sean $G$ un grupo, $H\leq G$ y $a \in G$.

Consideremos $\varphi : H \to a \, H$, tal que $h \mapsto ah$.

Veamos que $\varphi$ es inyectiva ya que si tomamos $h, \bar{h} \in H$ son tales que $\varphi(h) = \varphi(\bar{h})$ entonces $ah = a \varphi$ y por cancelación, $h = (\bar h)$.

Además, $\varphi$ es suprayectiva ya que dado $ah \in aH$ con $h\in H$ tenemos
$$ ah = \varphi(h) \in \text{Im}\varphi. $$

Donde $\text{Im}\varphi$ es la imagen de $\varphi$.

Por lo tanto $|H| = \# a H$.

$\blacksquare$

Señoras y señores, les presento a Lagrange

Ahora ya tenemos todos los ingredientes para demostrar el teorema de Lagrange.

Teorema. (Teorema de Lagrange) Sea $G$ un grupo finito, $H$ subgrupo de $G$. Entonces $|H|$ divide al orden de $G$ y
$$[ G:H ] = \frac{|G|}{|H|}.$$

Demostración. Sea $G$ un grupo finito, $H\leq G$. Como $G$ es finito debe haber una cantidad finita de clases laterales izquierdas de $G$ en $G$, notemos que cada una es no vacía con al menos un elemento.

Sean $a_1, \dots , a_t \in G$ representantes de las distintas clases laterales izquierdas de $H$ en $G$, con $t = [ G : H ]$. Sabemos que $\displaystyle G = \bigcup^{t}_{i=1} a_i H$. Como $a_iH \cap a_jH = \emptyset$ para $i\neq j$, con $i,j\in\{1,\dots, t\}$, entonces la unión, es una unión disjunta. Así podemos hacer,

\begin{align*}
|G| = \left| \bigcup^{t}_{i=1} a_i H\right| &= \sum^{t}_{i=1} \#a_iH \\
&= \sum^{t}_{i = 1} |H| &\text{Lema anterior} \\
&= t|H| = [ G:H ] |H|
\end{align*}

Así $|G| = [ G : H ] |H|$, enconces $|H|\Big| |G|$ y $\displaystyle [ G : H ] = \frac{|G|}{|H|}$.

$\blacksquare$

Consecuencias del teorema

Corolario 1. Sea $G$ un grupo finito, $a\in G$. Entonces $o(a) \Big| |G|$. Así $a^{|G|} = e$.

Demostración. Sea $G$ un grupo finito, $a\in G$. Consideremos $\left< a \right> \leq G$. Por el teorema de Lagrange:

$$ o(a) = |\left< a \right>|\Big| |G| \Rightarrow o(a)\Big| |G|.$$

Así $|G| = o(a)q$, para algún $q \in \z$,
$$a^{|G|} = a^{o(a)q} = \left( a^{o(a)}\right)^q = e^q = e.$$

$\blacksquare$

Corolario 2. Todo grupo finito de orden primo es cíclico.

Demostración. Sea $G$ un grupo finito, $|G| = p$ con $p$ primo.

Como $|G| > 1$ sea $a \in G \setminus \{e\}$. Por el corolario 1,
$$1 < o(a) \Big| |G| = p.$$

Entonces $o(a) = p$. Así $\left< a \right> = G$ y $G$ es cíclico.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $G$ un grupo finito, $H$ y $K$ subgrupos de $G$ con $K\subseteq H$. En cada inciso (son los ejercicios 2 y 3 de la entrada anterior) justifica usando el teorema de Lagrange ¿cómo es $[G:K]$ en términos de $[G:H]$ y $[H_K]$?
    1. $G = Q$ los cuaternios, $H = \left<i\right>$ y $K = \{\pm 1\}$.
    2. $G = S_4$, $H = A_4$ y $K = \left<(1\;2\;3)\right>$.
  2. Encuentra todos los subgrupos del grupo de los cuaternios y de $\z_8$ ¿de qué orden son? ¿cuántos hay del mismo orden?

Opcional

Revisa el video de la Sorbona: Lagrange-Universidad de la Sorbona. Se puede poner poner subtítulos en español.

Más adelante…

El teorema de Lagrange es uno de los resultados más importantes del curso. Se usará multiples veces. Por lo pronto, en la siguiente entrada, revisitaremos los grupos cíclicos y usaremos el teorema de Lagrange para probar una caracterización de esos grupos.

Entradas relacionadas

Álgebra Moderna I: Relación de equivalencia dada por un subgrupo e índice de $H$ en $G$

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como pudiste darte cuenta por el título, en esta entrada definiremos una relación de equivalencia en un grupo. Permítenos dar una motivación usando un grupo que tal vez ya hayas estudiado en cursos anteriores como el de Álgebra Superior II.

Dicho grupo tan importante, es el de los enteros con la suma $(\z, +)$. Para $a,b\in \z$ es posible establecer una relación $\thicksim$ dentro de los enteros como sigue
\begin{align*}
a \thicksim b \Leftrightarrow b-a \text{ es múltiplo de } n.
\end{align*}
Esta relación de equivalencia induce una partición de $\z$, con exáctamente $n$ conjuntos. Donde cada conjunto es una de las clases módulo $n$. En esta entrada queremos introducir una relación parecida, pero generalizada a cualquier grupo.

Comencemos modificando este ejemplo un poco. Primero, llamemos $H$ al conjunto de todos los enteros múltiplos de $n$. Así nuestra relación quedaría, para $a,b\in \z$,
\begin{align*}
a \thicksim b \Leftrightarrow b-a \in H.
\end{align*}

Luego, notemos que a pesar de que la operación que usamos para definir el grupo es la suma usual, nuestra relación está definida usando la resta. En realidad, lo que está pasando es que estamos sumando $b$ con el inverso aditivo de $a$, es decir $-a$. Entonces $b -a = b + (-a)$. Además, $(\z,+)$ es un grupo abeliano, por lo que $b + (-a) \in H \Leftrightarrow (-a) + b \in H$. Para nuestra generalización usaremos el segundo caso.

Así, tenemos que comenzar agarrando un subgrupo cualquiera de $G$, es decir, nos tomamos $H\leq G.$ Entonces nuestra relación debe quedar, dados $a,b\in G$,
\begin{align*}
a \thicksim b \Leftrightarrow a^{-1}b\in H.
\end{align*}

Ya al tener esa relación y demostrar que es una relación de equivalencia, usaremos las propiedades de grupo para descubrir que las clases de equivalencia son las clases laterales vistas en la entrada anterior.

Relación Generalizada

Lo anterior queda formalizado en la siguiente definición.

Definición. Sea $G$ un grupo y $H$ un subgrupo de $G$. Definimos una relación en $G$ del siguiente modo: dados $a,b \in G$,

\begin{align*}
a \thicksim b \Leftrightarrow a^{-1}b \in H.
\end{align*}

Ahora, demostraremos que esa relación, así como la de la introducción, es una relación de equivalencia.

Observación. La definición anterior es una relación de equivalencia.

Demostración.
Sean $G$ un grupo y $H\leq G$.

Primero, tomamos $a \in G$.
También podemos tomar $a^{-1}$ . Así $a^{-1}a = e \in H$. Por lo tanto $a \thicksim a$ y nuestra relación es reflexiva.

Ahora tomamos $a,b \in G$. Si $a \thicksim b$, entonces $a^{-1} b\in H$.

\begin{align*}
\Rightarrow b^{-1}a = (a^{-1}b)^{-1} \in H \Rightarrow b \thicksim a
\end{align*}

Por lo que nuestra relación es simétrica.

Sean $a,b,c \in G$. Si $a \thicksim b$ y $b \thicksim c$, entonces $a^{-1}b \in H$ y $b^{-1}c \in H$, entonces usando la cerradura de $H$ y asociando de otra manera, obtenemos

\begin{align*}
a^{-1}c = (a^{-1}b)(b^{-1}c) \in H \Rightarrow a \thicksim c.
\end{align*}

Así, nuestra relación es transitiva.

Por lo tanto, nuestra relación es una relación de equivalencia.

$\square$

Nótese que para probar las tres propiedades de una relación de equivalencia (reflexividad, simetría y transitividad) usamos las tres condiciones de un subgrupo (la existencia del neutro, la cerradura de los inversos y la cerradura del producto).

A continuación, veamos cómo son las clases de equivalencia:
Sea $a \in H$.

\begin{align*}
\bar{a} &= \{b \in G | a \thicksim b\} = \{b \in G | a^{-1}b \in H\} \\
&= \{b \in G | a^{-1}b = h, h \in H\} = \{b \in G | b = ah, h \in H\} \\
&= \{ah | h \in H\} = a H.
\end{align*}

Ahora veremos algunas observaciones de lo anterior.

Observación. Sean $G$ un grupo, $H\leq G$ y $a,b\in G$, entonces
\begin{align*}
a H = bH & \Leftrightarrow a^{-1}b \in H.
\end{align*}

En particular,
\begin{align*}
H = bH & \Leftrightarrow b \in H
\end{align*}

Nota. Análogamente se puede trabajar con clases laterales derechas, i.e. ($Ha = Hb \Leftrightarrow ba^{-1}\in H$).

Como $\thicksim$ es una relación de equivalencia, esta induce una partición y, como sus clases de equivalencia son las clases laterales, tenemos el siguiente teorema.

Teorema. Sea $G$ un grupo, $H$ subgrupo de $G$.

  1. $aH \neq \emptyset \quad \forall a \in G$ .
  2. Si $a,b \in G$ son tales que $aH \cap bH \neq \emptyset$, entonces $aH = bH$.
  3. $\displaystyle \bigcup_{a\in G} aH = G$

Claramente el teorema anterior enuncia las características de una partición, por lo que no hay nada que probar.

Ejemplos

  1. Consideremos al grupo de los cuaternios $Q$ , tomemos el subgrupo $H = \left< i \right> = \{\pm 1 , \pm i\}$. Veamos qué sucede con sus clases laterales.
    \begin{align*}
    jH &= \{j(+1), j(-1), j(+i), j(-i)\}\\
    &= \{j, -j, -k k\} \\
    &= Hj.
    \end{align*}
    La última igualdad la puedes comprobar tú, multiplicando los mismos elementos por $j$, pero ahora del lado izquierdo.
    Así, las clases laterales son:
    • Clases laterales izquierdas: $H, jH$.
    • Clases laterales derechas: $H, Hj$.
  2. Tomemos $S_3$ y $H = \{(1), (32)\}$.
    Primero, veamos cómo se ven las clases laterales izquierdas.
    Primero, tenemos la clase del neutro, es decir $(1) H = H$. Luego, tenemos que tomarnos un elemento de $S_3$ que no esté en $H$, digamos $(1\;2\;3)$, entonces,
    \begin{align*}
    (1\;2\;3)H &= \{(1\;2\;3)(1), (1\;2\;3)(3\;2)\}\\
    &= \{(1\;2\;3), (1\;2)\}.
    \end{align*}
    Repetimos lo anterior, tomamos un elemento de $S_3$ que no esté $H$ y sea distinto al que ya nos tomamos para obtener una clase distinta. Esto nos da
    \begin{align*}
    (1\;3\;2)H &= \{(1\;3\;2)(1), (1\;3\;2)(3\;2)\} \\
    & = \{(1\;3\;2)(1\;3)\}.\\
    \end{align*}
    Por lo que las clases laterales izquierdas son:
    \begin{align*}
    &(1)H = H\\
    &(1\;2\;3)H = \{(1\;2\;3), (1\;2)\}\\
    &(1\;3\;2)H = \{(1\;3\;2)(1\;3)\}.\\
    \end{align*}
    De la misma manera obtenemos las clases laterales derechas:
    \begin{align*}
    &H(1) = H \\
    &H(1\;2\;3) = \{(1)(1\;2\;3), (3\;2)(1\;2\;3)\} = \{(1\;2\;3), (1\;3)\} \\
    &H(1\;3\;2) = \{(1)(1\;3\;2), (3\;2)(1\;3\;2)\} = \{(1\;3\;2), (1\;2)\}.\\
    \end{align*}
    Este ejemplo nos permite ver que las clases laterales izquierdas y las clases laterales derechas no siempre coinciden.
Partición del ejemplo 1.
Partición de las clases laterales izquierdas del ejemplo 2.
Partición de las clases laterales derechas del ejemplo 2.

Número de elementos en las clases laterales

El último ejemplo nos dice que las clases laterales derechas e izquierdas no siempre coinciden, sin embargo probaremos que siempre hay la misma cantidad de ambas.

Teorema. Sea $G$ un grupo, $H$ un subgrupo de $G$. Entonces

\begin{align*}
\#\{a H | a \in G\} = \#\{Ha | a \in G\}.
\end{align*}

Demostración.

Sea $\psi: \{a H | a \in G\} \to \{Ha | a \in G\}$, definida como $\psi(aH) = Ha^{-1} \quad \forall a \in G$. Probaremos que esta función es biyectiva.

Pequeño paréntensis:

Antes de comenzar con la demostración, pongamos atención a la definición de $\psi$. En un inicio podríamos pensar ¿por qué no hacemos $\psi(aH) = Ha$? La respuesta es simple, porque esto no funcionaría. Definamos una nueva función para ejemplificar, sea $\phi: \{a H | a \in G\} \to \{Ha | a \in G\} $ tal que $\phi(aH ) = Ha$.

Tomemos $b\in G$ tal que $aH = bH$, para que $\phi$ esté bien definida, necesitaríamos que $\phi(aH) = \phi(bH)$, es decir $Ha = Hb$. Por la relación que definimos, esto implica que si $a^{-1}b \in H$, entonces $ba^{-1} \in H$, pero esto no necesariamente es cierto porque el grupo puede no ser abeliano. Lo que sí sabemos es que si $a^{-1}b\in H$, entonces $Ha^{-1}b = H$, y así $Ha^{-1} = Hb^{-1}$.

Por esto es que escogimos a $\psi$ de esa manera.

Termina paréntesis. Ahora sí comencemos con la demostración.

Sean $a,b \in G$,

\begin{align*}
aH = bH & \Leftrightarrow a^{-1}b \in H \\
&\Leftrightarrow Ha^{-1}b = H \\
& \Leftrightarrow Ha^{-1} = Hb ^{-1} \\
& \Leftrightarrow \psi (aH) = \psi (bH).
\end{align*}
Por tanto, $\psi$ está bien definida y es inyectiva.

Además, dada $Ha, a \in G$.

\begin{align*}
Ha = H(a^{–1})^{-1} = \psi(a^{-1} H)
\end{align*}

así $\psi$ es suprayectiva.

Por lo tanto $\# \{aH | a \in G\} = \# \{Ha|a\in G\}.$

$\square$

Ahora, ya sabemos que la cantidad de clases laterales izquierdas es la misma que la de clases laterales derechas. Entonces podemos nombrar esto como el índice.

Definición. Sea $G$ un grupo, $H$ un subgrupo de $G$. El índice de $H$ en $G$ es

\begin{align*}
[G:H ] = \# \{aH | a\in G\}.
\end{align*}

Ejemplos

Retomemos los ejemplos que ya hemos visto.

  1. Tomemos a $Q$ como los cuaternios, $H= \left< i \right> = \{\pm 1, \pm i\}$
    $[Q:H]= 2$.
  2. Ahora, tomemos $S_3$, $H = \{(1), (3 2)\}$. Como ya vimos,
    $[S_3:H]= 3$.
  3. Consideremos el grupo $(\z, +)$ y $H = \{6m | m \in \z\}$.
    Hay 6 clases laterales: $H, 1+H, 2+H, 3+H, 4+H, 5+H$. Que serían los múltiplos de $6$, $6+1$, $6+2$, $\dots$ respectivamente.
    Así, $[\z, H ]= 6$.

Tarea moral

  1. Analizando los ejemplos que tienes hasta ahora observa si existe alguna relación entre el orden de un grupo $G$, el orden del subgrupo $H$ y la cantidad de clases laterales de $H$ en $G$.
  2. Considera $\{\pm 1\} \leq \left< i \right> \leq Q$. Describe las clases laterales izquierdas de $\{\pm 1\}$ en $\left< i \right>$, las clases laterales izquierdas de $\left< i \right>$ en $Q$, y las clases laterales izquierdas de $\{\pm 1\}$ en $Q$. Encuentra $[Q: \{\pm 1\}]$, $[Q:\left< i \right>]$ y $[\left< i \right>: \{\pm 1\}]$.
  3. Considera $\left< (1\;2\;3) \right> \leq A_4 \leq S_4$. Describe las clases laterales izquierdas de $\left< (1\;2\;3) \right>$ en $A_4$, las clases laterales izquierdas de $A_4$ en $S_4$, y las clases laterales izquierdas de $\left< (1\;2\;3) \right>$ en $S_4$. Encuentra $[S_4:\left< (1\;2\;3) \right>]$, $[S_4: A_4]$ y $[A_4: \left< (1\;2\;3) \right>]$.

Opcional

Puedes checar el video de Mathologer.

Más adelante…

Ahora conoces el índice de $H$ en $G$. Recúerdalo para la siguiente entrada, porque intentaremos describir el orden de $G$ en términos del orden de $H$ y del índice. Sin hacer trampa, ¿cómo crees que se puede relacionar el orden de $G$ y el índice?

Entradas relacionadas