Archivo de la etiqueta: Algebra moderna

Álgebra Moderna I: Núcleo e Imagen de un Homomorfismo

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Estamos trabajando con homomorfismos, que son funciones entre dos grupos que respetan sus operaciones. Entre las propiedades que vimos, está que el neutro del dominio siempre va al neutro del codominio. Es decir, al menos hay un elemento que, bajo el homomorfismo, cae en el neutro del codominio.

Para esta entrada consideraremos a la colección de todos los elementos del dominio que van al neutro del codominio. A este subconjunto, lo llamamos el núcleo de φ. Por otro lado, podemos tomar todos los elementos del dominio, aplicarles φ y tomar el subconjunto que resulta en el codominio, a esto le llamamos la imagen de φ. Estos dos subconjuntos van a ser importantes en el estudio de los homomorfismos.

La imagen muestra que para φ:GG¯ un homomorfismo, el núcleo Núc φG y la imagen Im φG¯.

El núcleo y la imagen de un homomorfismo

Comencemos definiendo formalmente los subconjuntos.

Definición. Sean G,G¯ grupos, φ:GG¯ un homomorfismo. Definimos al núcleo de φ como
Núc φ={gG|φ(g)=eG¯}.

Es decir, es el conjunto de todos los elementos de G que, bajo φ van a dar al neutro de G¯.

Notación. Es común, por el nombre en alemán, denotar al Núc φ como Ker φ, es llamado el Kernel de φ.

Definición. La imagen de φ es
Im φ={φ(g)|gG}.

Notemos que Núc φG y Im φG¯.

Ejemplos.

Ejemplo 1. Tomemos el homomorfismo φ:Sn{+1,1} con φ(α)=sgnα para toda αSn. Veamos quién es el núcleo de φ:
Núc φ={αSn|φ(α)=+1}={αSn|sgnα=+1}=An.
Si tomamos el caso no trivial, con n>1,
Im φ={+1,1}.
Ya que φ((1))=1 y φ((12))=1.

Ejemplo 2. Sea nZ+. Consideremos el homomorfismo φ:ZC con
φ(m)=(e2πin)mmZ.
Buscamos describir su núcleo y su imagen.
Núc φ={mZ|φ(m)=1}={mZ|(e2πin)m=1}=nZ.
La última igualdad se da porque ya sabemos que e2πi=1, más aún eθi=1 si y sólo si θ es un múltiplo de 2π, entonces (e2πin)m=1 si y sólo si m es un múltiplo de n.

Ahora la imagen:
Im φ={φ(m)|mZ}={(e2πin)m|mZ}=e2πin.

El núcleo y la imagen son subgrupos

Ahora, probaremos que el núcleo y la imagen de un homomorfismo no son sólo subconjuntos del dominio y codominio respectivamente, si no que son subgrupos.

Teorema. Sean G,G¯ grupos, φ:GG¯ un homomorfismo.

  1. Núc φG.
  2. Im φG¯.
  3. φ es un monomorfismo si y sólo si Núc φ={eG}.

Demostración.
Sean G,G¯ grupos, φ:GG¯ un homomorfismo.

  1. P.D. Núc φG.
    Primero probaremos que Núc φG.

    Como φ es un homomorfismo, φ(eG)=eG¯. Entonces eGNúc φ.

    Si a,bNúc φ.
    φ(ab1)=φ(a)φ(b1)φ es un homomorfismo=φ(a)(φ(b))1Proposición de homomorfismo=eG¯eG¯1=eG¯a,bNúc φ
    Entonces ab1Núc φ. Por lo tanto Núc φG.

    Además, si aG y nNúc φ:
    φ(ana1)=φ(a)φ(n)φ(a1)φ es un homomorfismo=φ(a)φ(n)(φ(a))1Proposición=φ(a)eG¯(φ(a))1nNúc φ=φ(a)(φ(a))1=eG¯
    Así, ana1Núc φ. Esto nos dice que el núcleo de φ es cerrado bajo conjugación. Por lo tanto Núc φG.
  2. P.D. Im φG¯.
    Primero veamos que el neutro de G¯ está en Im φ. Esto pasa porque
    eG¯=φ(eG)Im φ.

    Ahora, si c,dIm φ, entonces c=φ(a),d=φ(b) para algunos a,bG.
    ad1=φ(a)(φ(b))1=φ(a)φ(b1)Proposición=φ(ab1)Im φφ es un homomorfismo
    Por lo tanto Im φG¯.
  3. P.D. φ es un monomorfismo si y sólo si Núc φ={eG}.

    |] Supongamos que φ es un monomorfismo (un homomorfismo inyectivo).
    Como Núc φG, entonces {eG}Núc φ.
    Ahora, si gNúc φ, por la proposición anterior,
    φ(g)=eG¯=φ(eG).
    Y como φ es inyectiva, g=eG. Por lo tanto, Núc φ={eG}.

    [| Supongamos que Núc φ={eG}.
    Sean a,bG tales que φ(a)=φ(b). Entonces
    eG¯=φ(b)(φ(a))1=φ(b)φ(a1)Proposición=φ(ba1)φ es un homomorfismo
    Entonces ba1Núc φ={eG}, así ba1=eG, esto implica que b=a.
    Por lo tanto φ es un monomorfismo.

◼

Observemos que el inciso 3 del teorema nos da una herramienta para determinar si un homomorfismo es inyectivo o no usando el núcleo.

Proyección Canónica

Ahora, tomando un grupo y un subgrupo normal, definiremos un epimorfismo de un grupo al grupo cociente.

Proposición. Sea G un grupo, N un subgrupo normal de G. La función π:GG/N con π(a)=aN para toda aG, es un epimorfismo tal que Núc π=N.

Esta función se conoce como la proyección canónica.

Demostración.
Sea G un grupo, NG, π:GG/N con π(a)=aN para cualquier aG.

Veamos que π es un homomorfismo
Sean a,bG, entonces
π(ab)=abN=(aN)(bN)=π(a)π(b).

Ahora veamos que es suprayectivo. Esto es debido a que dado aNG/N, aN=π(a).

Por lo tanto π es un epimorfismo.

Finalmente,
Núc π={aG|π(a)=eG/N}={aG|aN=N}=N.

◼

Ahora veamos un corolario que se desprende directamente de lo que acabamos de ver.

Corolario. Todo subgrupo normal es el núcleo de un homomorfismo. De hecho, es el núcleo de un epimorfismo.

Ejemplos

Para terminar veamos unos ejemplos

Ejemplo 1. Tomemos φ:(R,+)(C,) con φ(x)=exi para toda xR. Toma 2 min para pensar porqué es un homomorfismo.

Veamos el núcleo y la imágen de φ:
Núc φ={xR|φ(x)=1}={xR|exi=1}={2πn|nZ}=2π.Im φ={φ(x)|xR}={exi|xR}={zC||z|=1}=S1.
¿Cómo es R/2π?
Tomemos a,bR.
a+2π=b+2πab2πab=2πn,nZ.
Si lo anterior nos dice que dos números a,b están en la misma clase si y sólo si difieren por un múltiplo de 2π. Si lo pensamos en la recta numérica, nos dice que el 0 y 2π quedan indentificados en la misma clase. Intuitivamente podríamos pensar que estamos doblando la recta numérica para obtener una circunferencia donde 0 y 2π están en el mismo punto.

Así, R/2π={a+2π|a[0,2π)}.

Representación gráfica del ejemplo 1.

Ejemplo 2. Consideremos φ:(R,)(R,) con φ(x)=|x| para toda xR (recuerda que R=R{0}).
Núc φ={xR|φ(x)=1}={xR||x|=1}={+1,1}.Im φ={φ(x)|xR}={|x||xR}=R+.
¿Cómo es R/{+1,1}?
Tomemos a,bR.
a{+1,1}=b{+1,1}a1b{+1,1}a1b=±1b=±a.
Entonces, dos clases laterales van a ser iguales si y sólo si sus representantes difieren a lo más sólo por el signo.

Lo que hicimos fue tomar a los reales sin el cero y estamos identificando a cada número real a con su inverso aditivo. Entonces la imagen de φ en realidad es como si dobláramos la recta por el 0 e identificamos a los reales negativos con su correspondiente positivo.

Así, R/{+1,1}={a{+1,1}|aR+}.

Representación gráfica del ejemplo 2.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea φ:GL(2,R)R el homomorfismo tal que φ(A)=det A. Encuentra el núcleo y la imagen de φ.
  2. Sean G,G¯ grupos y φ:GG¯ un homomorfismo. ¿Es Im φ normal en G¯? Prueba o da un contraejemplo.
  3. Sean G,G¯ grupos y φ:GG¯ un homomorfismo. Sean también, HG,H¯G¯.
    • ¿Qué puedes decir de φ[H]={φ(h)|hH}?¿Y si HG?
    • ¿Qué puedes decir de φ1[H¯]={gG|φ(g)H¯}? ¿Y si H¯G¯?
  4. En cada inciso calcula Núc φ,Im φ,G/Núc y analiza cómo se relacionan:
    • G grupo, φ:GG, con φ=idG.
    • G grupo, φ:GG, con φ(g)=eG para toda gG.
    • φ:(C,)(R,), con φ(z)=|z| para toda zC.
    • φ:Z×ZZ×Z, con φ(x,y)=(x,0) para toda (x,y)Z×Z.

Más adelante…

Ahora que ya tenemos muy claras las definiciones de núcleo e imagen de un homomorfismo, comenzaremos a ver teoremas que relacionan lo que vimos aquí con isomorfismos y grupo cociente.

Entradas relacionadas

Álgebra Moderna I: Propiedades de los Homomorfismos

Por Cecilia del Carmen Villatoro Ramos

Introducción

En la entrada anterior vimos una introducción a los homomorfismos y algunas propiedades. Ahora sabemos que un homomorfismo es una función φ:GG¯ entre dos grupos (G,) y (G¯,¯), que respeta las operaciones, es decir, que para todas a,bG, φ(ab)=φ(a)¯φ(b). A partir de ahora simplificaremos la notación y escribiremos simplemente la condición anterior como: para todas a,bG, φ(ab)=φ(a)φ(b) (a menos que haya ambigüedad respecto a qué operación se está usando en cada caso).

En esta entrada, continuaremos dando algunas propiedades de los homomorfismos, en particular veremos cómo se comportan con las potencias de elementos del grupo y, en seguida, cómo se comparan el orden de un elemento y el orden de su imagen bajo un homomorfismo.

Homomorfismos y la potencia

Dado que el homomorfismo respeta el producto, se va a comportar bien con las potencias.

Proposición. Sean G,G¯ grupos, φ:GG¯ un homomorfismo. Entonces,

  1. φ(eG)=eG¯.
  2. φ(a1)=(φ(a))1 para toda aG.
  3. φ(an)=(φ(a))n para toda aG y para toda nZ.

Demostración.

Sean G,G¯ grupos y φ:GG¯ un homomorfismo.

P.D. φ(eG)=φeG¯.

Por un lado tenemos que φ(eg)eG¯=φ(eG) porque eG¯ es el neutro de G¯. Por otro lado tenemos que φ(eG)=φ(eGeG) porque eG es el neutro de G, y φ(eGeG)=φ(eG)φ(eG) porque φ es un homomorfismo.

Entonces tenemos

φ(eg)eG¯=φ(eG)=φ(eG)φ(eG).

Cancelamos φ(eG), y obtenemos
eG¯=φ(eG).

Sea aG.
P.D. φ(a1)=(φ(a))1.

Por un lado tenemos que φ(a)(φ(a))1=eG¯.

Por el inciso anterior, tenemos que eG¯=φ(eG)=φ(aa1) y como φ es un homomorfismo, tenemos que φ(aa1)=φ(a)φ(a1).

Entonces tenemos que φ(a)(φ(a))1=φ(a)φ(a1), donde podemos cancelar φ(a):

φ(a)(φ(a))1=φ(a)φ(a1)(φ(a))1=φ(a1).

Sea aG.
P.D. φ(an)=(φ(a))n para toda aG y nZ.
Demostraremos primero el resultado para nN por inducción sobre n.

Sea n=0.

Entonces, por el inciso 1,
φ(a0)=φ(eG)=eG¯=(φ(a))0.

Sea n0.
Para nuestra hipótesis de inducción, supongamos que φ(an)=(φ(a))n.

Por la definición de potencia,
φ(an+1)=φ(ana).

Luego, como φ es un homomorfismo,
φ(ana)=φ(an)φ(a)=(φ(a))nφ(a)Por H.I.=(φ(a))n+1Por la definición de potencia

Por lo tanto φ(an)=(φ(a))n para toda nN.

Finalmente, si nZ+.
φ(an)=φ((an)1)=φ((an))1Por el inciso 2=((φ(a))n)1Por lo probado anteriormente=(φ(a))n

Por lo tanto φ(am)=(φ(a))m, para toda mZ.

◼

Homomorfismos y el orden

Corolario. Sean G,G¯ grupos, sea φ:GG¯ un homomorfismo.
Si aG es de orden finito, φ(a) también lo es y o(φ(a))|o(a). Es decir, el orden de φ(a) divide al orden de a.
Más aún, si φ es un isomorfismo, entonces o(φ(a))=o(a).

Demostración.
Sean G,G¯ grupos, φ:GG¯ un homomorfismo y sea aG de orden finito.

Ahora, usamos las propiedades de φ para obtener las siguientes igualdades.

φ(a)o(a)=φ(ao(a))=φ(eG)=eG¯.

Esto nos dice que φ(a) es de orden finito. Esto no significa que o(a) es el orden de φ(a), pero sí se sigue, por las propiedades del orden de un elemento, que o(φ(a))|o(a).

Ahora, si φ es un isomorfismo, φ1 también, así que por lo antes probado o(φ1(b))|o(b) para todo bG¯; en particular, para b=φ(a) se tiene que o(φ1(φ(a)))|o(φ(a)). Entonces,
o(a)=o(φ1(φ(a)))|o(φ(a))

Por lo tanto o(φ(a))=o(a).

◼

Ejemplo.

Por último, veamos un ejemplo para ilustrar las propiedades que acabamos de ver.

Sea G un grupo, aG de orden finito.

Dado gG sabemos que
γg:GGconγg(x)=gxg1xG

es un isomorfismo.

Así, γg(a) es de orden finito y o(γg(a))=o(a). Entonces, gag1 es de orden finito y o(gag1)=o(a).

Así, elementos conjugados tienen el mismo orden.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean G y G¯ grupos y XG tal que G=X. Sea φ:XG¯ una función. ¿Qué se requiere para poder extender φ a un homomorfismo ψ:GG¯? En ese caso ¿de cuántas formas se pueden extender?
  2. Describe, si es que existen, todos los homomorfismos:
    • de Z en Z
    • de Z12 en Z5
    • de Z en Z8
    • de Z12 en Z14
  3. Determina si los siguientes grupos son isomorfos
    • Q y D2(4)
    • (SO(2,R),) y (S1,)
    • (Z[x],+) y (Q+,)

Más adelante…

Los resutados mostrados en esta entrada no son más que consecuencias lógicas a lo que establecimos en la entrada anterior. Es importante recalcarlos, pero es claro que si un homomorfismo se comporta bien con el producto, se va a comportar bien con la potencia y por ende, con el orden de un elemento.

En la siguiente entrada, definiremos nuevos conceptos relacionados con los homomorfismos, como el núcleo de un homomorfismo y la proyección canónica.

Entradas relacionadas

Álgebra Moderna I: Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Lo sé, el título parece un trabalenguas. Pero ten paciencia, en realidad no es tan complicado.

A lo largo de este curso hemos estado trabajando con grupos, ahora vamos a pensar en funciones que respetan de alguna manera la estructura de los grupos.

Tomemos por ejemplo el grupo de Klein, V={(0,0),(1,0),(0,1),(1,1)}, es un grupo que tiene un neutro (0,0) y los otros tres elementos comparten que: tienen orden 2, si se suman consigo mismos obtenemos el neutro y si sumamos dos, obtenemos el tercero:

(1,0)+(1,0)=(0,0)(0,1)+(0,1)=(0,0)(1,1)+(1,1)=(0,0).

(1,0)+(0,1)=(1,1)(0,1)+(1,1)=(1,0)(1,1)+(1,0)=(0,1).

Por otro lado, podemos tomar el conjunto P={(1),(12)(34),(13)(24),(14)(23)}. P es un grupo que tiene un neutro (1) y los otros tres elementos comparten que: tienen orden 2, si se componen consigo mismos obtenemos el neutro y si componemos dos, obtenemos el tercero:

(12)(34)(12)(34)=(1)(13)(24)(13)(24)=(1)(14)(23)(14)(23)=(1).

(12)(34)(13)(24)=(14)(23)(13)(24)(14)(23)=(12)(34)(14)(23)(12)(34)=(13)(24).

¿Suena familiar? Bueno, esto es porque a pesar de que son grupos distintos, con elementos y operaciones muy diferentes, estructuralmente son iguales.

Para formalizar esta idea, nos gustaría observar que existe una correspondencia entre los dos grupos. Esta correspondencia es biyectiva y además tiene que respetar la estructura de las operaciones. Entonces sería algo así:

(0,0)(1)(1,0)(12)(34)(0,1)(13)(24)(1,1)(14)(23).

En este caso decimos que V y P son isomorfos. Lo definiremos formalmente más adelante, por ahora es importante que observes que esta correspondencia mantiene la estructura de las operaciones de los grupos. Así, este es el objetivo de la entrada, definir y trabajar con funciones (no necesariamente biyectivas) que mantengan las operaciones de dos grupos. Estas funciones son llamadas homomorfismos.

¿Qué son todos estos homomorfismos?

Primero, comencemos definiendo lo más general. Una función que mantenga las operaciones entre grupos.

Definición. Sean (G,),(G¯,¯) grupos. Decimos que la función φ:GG¯φ:(G,)(G¯,¯)) es un homomorfismo de grupos si
φ(ab)=φ(a)¯φ(b)a,bG.

Se puede decir que φ «abre» a la operación.

Definiciones varias.

Ahora, le agregaremos condiciones a φ. Dependiendo de qué condición extra cumpla, el homorfismo tomará otro nombre.

  • Si el homomorfismo φ es inyectivo se llama monomorfismo.
  • Si el homomorfismo φ es suprayectivo se llama epimorfismo.
  • Si el homomorfismo φ es biyectivo se llama isomorfismo.
  • Un isomorfismo de un grupo en sí mismo se llama automorfismo.

Notación. Si φ es un isomorfismo decimos que G es isomorfo a G¯ y lo denotamos como GG¯.

Puede parecer mucho vocabulario nuevo, así que guarda esta entrada para recordar qué es cada uno.

Ejemplos.

Ejemplo 1.Tomemos φ:(Z,+)(Zn,+) con φ(a)=a¯ para toda aZ. Es decir, φ manda a cada entero a su clase módulo n.

Veamos qué sucede con la suma :
φ(a+b)=a+b=a¯+b¯=φ(a)+φ(b) para toda a,bZ.

Además, dado a¯Zn,a¯=φ(a). Entonces φ es suprayectiva.
Por lo tanto φ es un epimorfismo.

Ejemplo 2. Sea nN+.
Tomamos φ:(Sn,)(Sn+1,) donde para cada αSn se define φ(α)Sn+1 tal que
φ(α)(i)={α(i)si i{1,,n}n+1si i=n+1

Es decir, se mantienen las permutaciones de Sn pero se consideran como elementos de Sn+1 pensando que dejan fijo a n+1.

Ahora veamos qué sucede con el producto, sean α,βSn:
φ(α)φ(β)(i)=φ(α)(φ(β)(i))={α(β(i))si i{1,,n}n+1si i=n+1=φ(αβ)(i)

Además, si φ(α)=(1) entonces α(i)=i para todo i{1,,n}. Así α=(1). Por lo que φ es inyectiva.
En conclusión, φ es un monomorfismo.

Ejemplo 3. Sea φ:(R,+)(R+,) con φ(x)=ex para todo xR.
Entonces, para la suma de dos elementos en el dominio x,yR tendríamos,
φ(x+y)=ex+y=exey=φ(x)φ(y).
Sabemos que ψ:R+R con ψ(y)=ln(y) para toda yR+ es la inversa de φ, así φ es biyectiva.
Por lo tanto φ es un isomorfismo.

Ejemplo 4. Veamos un ejemplo más abstracto. Sea G un grupo y gG. Y, dadas x,yG, definimos
γg(xy)=g(xy)g1=(gxg1)(gyg1)=γg(x)γg(y).
Además, para toda xG,
γgγg1(x)=γg(g1xg)=g(g1xg)g1=xγg1γg(x)=γg1(gxg1)=g1(gxg1)g=x.
Donde, g1 existe porque G es un grupo. Así, lo anterior nos indica que γg es un homomorfismo invertible, que además tiene como dominio y codominio a G.

Por lo tanto γg es un automorfismo.

Propiedades de los homomorfismos

Proposición. El inverso de un isomorfismo es un isomorfismo.

Demostración.

Sean (G,),(G¯,¯) grupos, φ:GG¯ es un isomorfismo.
Tomemos c,dG¯.

Como φ es suprayectiva, existen a,bG tales que φ(a)=c y φ(b)=d.

φ1(c¯d)=φ1(φ(a)¯φ(b))=φ1(φ(ab))φ es un homomorfismo=φ1φ(ab)=abComposición de inversas=φ1(c)φ1(d)Pues φ(a)=c,φ(b)=d

Así, φ1 es un homomorfismo y como es biyectivo por ser invertible, entonces φ1 es un isomorfismo.

◼

Proposición. La composición de homomorfismos es un homomorfismo.

Demostración.

Sean (G,),(G¯,¯),(G~,~) grupos. También, sean φ:GG¯ y ψ:G¯G~ homomorfismos.

Dados a,bG,

ψφ(ab)=ψ(φ(ab))=ψ(φ(a)¯φ(b))φ es homomorfismo=ψ(φ(a))~ψ(φ(b))ψ es homomorfismo=ψφ(a)~ψφ(b)

Por lo tanto ψφ es un homomorfismo.

◼

Observaciones.

  • Para todo G grupo, GG. (Es decir, G es isomorfo a sí mismo).
  • Si G,G¯ son grupos y GG¯, entonces G¯G.
  • Si G,G¯,G~ son grupos, GG¯ y G¯G~, entonces GG~.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea D2n=a,b el grupo diédrico formado por las simetrías de un n-ágono, con a la rotación de 2πn y b la reflexión con respecto al eje x. Sea φ:D2nD2n tal que φ(aibj)=bj. ¿Es φ un homomorfismo?
  2. Sean X y Y dos conjuntos con la misma cardinalidad. ¿Qué relación hay entre SX y SY?
  3. Sea V={e,(12)(34),(13)(24),(14)(13)}S4. Encuentra HS4, HV pero isomorfo a V. ¿Es H normal en S4?

Más adelante…

Los homomorfismos son una parte importante de las matemáticas, porque respetar las operaciones es una característica sencilla a simple vista, pero lo suficientemente compleja para que las funciones que la cumplan sean muy interesantes. Los homomorfismos nos permiten cambiar de espacios de trabajo sin mucho problema.

Por otro lado, tal vez ya sabes que las matemáticas de este curso (y de la mayoría de los cursos en este blog) están fundamentadas en la Teoría de Conjuntos. Esta teoría nos permite construir a los objetos matemáticos a partir de conjuntos. Como curiosidad, tal vez te interese saber que existe otra teoría llamada Teoría de Categorías, que generaliza lo anterior, y en la que la generalización de un homomorfismo es llamado morfismo.

Aunque estén definidos de manera diferente, los homomorfismos de esta entrada y los morfismos de la Teoría de Categorías son, en intuición, lo mismo. Esto refuerza la idea de que los homomorfismos son en realidad más importantes de lo que parecen.

Pero bueno, regresemos a nuestro curso: en la siguiente entrada continuaremos viendo el comportamiento de los homomorfismos.

Entradas relacionadas

Álgebra Moderna I: Subgrupo Conmutador

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Vamos a ver una aplicación importante del grupo cociente. Sabemos que podemos dividir a los enteros en impares e impares. Esto se representa con Z2={0¯,1¯}, donde todos los pares quedan identificados por 0¯ y los impares por 1¯. Esto es el objetivo del grupo cociente que definimos en la entrada anterior, identificar elementos en una misma clase lateral.

Ahora, si queremos traducir esto a un grupo general G, necesitamos sacar el cociente módulo un subgrupo H, entonces cada hH es un representante de esta clase de equivalencia, de modo que todos los elementos de H se identificarán entre sí, en particular, todos los elementos de H quedarán identificados con el neutro e de H ya que hH=eH.

Por otro lado, recordemos que en general el grupo no es abeliano, es decir no sucede que ab=ba para a,bG. Pero si tomamos HG de modo que abH y baH, entonces abH=baH y las clases representadas por ab y ba serán la misma, por lo que aH y bH conmutarán en el cociente. Si recordamos la relación de equivalencia definida en entradas anteriores podemos obtener las siguientes equivalencias,
abH=baH(ab)1ba=b1a1baH.

Como nos interesa que G/H sea abeliano, necesitamos que la palabra b1a1baH para toda a,bG. Esto nos obliga a que el conjunto {b1a1ba|a,bG} esté contenido en H. En general, este conjunto no es necesariamente un grupo, pero podemos considerar el generado y así, nos interesaría que el generado esté contenido en H:
b1a1ba|a,bGH.

El objetivo de esta entrada es definir primero al conmutador de a y b. Luego, definir al generado por la colección de todos los conmutadores en el grupo. Todo esto con el objetivo de construir un grupo cociente abeliano, aunque G no lo sea.

Subgrupo conmutador de G

Definción. Sea G un grupo, a,bG. El conmutador de a y b es [a,b]=aba1b1.

El subgrupo conmutador de G es G=[a,b]|a,bG.

Observación 1. G={e} si y sólo si G es abeliano.

Demostración.

G={e}[a,b]=ea,bGaba1b1=ea,bGab=baa,bGG es abeliano.

◼

Esa observación nos dice intuitivamente que entre más grande sea el conmutador, G está más alejado de ser abeliano.

Observación 2. El inverso de un conmutador es un conmutador.

La demostración queda como tarea moral.

Observación 3. El conmutador es un subgrupo normal de G, es decir, GG.

Demostración.
Para probar que el conmutador es un subgrupo normal, necesitamos ver que G es cerrado bajo conjugación. Pero como los elementos de G son palabras donde las letras son conmutadores o sus inversos, y por la observación anterior son palabras donde las letras son conmutadores, entonces basta ver que al conjugar un conmutador obtenemos un elemento en G, es decir que g[a,b]g1G para todos g,a,bG.

Sean a,b,gG.

g[a,b]g1=gaba1b1g1.
Para ver que este elemento está en G debemos ver a gaba1b1g1 como un producto de conmutadores, para eso agregaremos al neutro antes de b1g1, con el neutro expresado como g1b1bg. Luego, nos fijamos qué términos dan lugar a conmutadores y obtenemos lo siguiente:
g[a,b]g1=gaba1b1g1=gaba1(g1b1bg)b1g1=(ga)b(ga)1b1bgb1g1=[ga,b]|[b,g]G

Por lo tanto GG.

◼

Condiciones sobre un subgrupo para que el cociente sea abeliano

Teorema. Sea G un grupo, H un subgrupo de G. Tenemos que

GH si y sólo si, HG y G/H es abeliano.

Demostración.
Sea G un grupo HG.

|] Supongamos que GH.

P.D. HG.
Sean hH, gG.
P.D. ghg1H

Sabemos que ghg1h1=[g,h]G por definición de conmutador, y por hipótesis GH. Así, ghg1h1H.

Luego, nombremos ghg1h1=h~ con h~H. Despejando lo que nos interesa, obtenemos ghg1=h~hH. Con esto probamos que todo conjugado de H sigue viviendo en H.

Por lo tanto HG.


P.D. G/H es abeliano.

Sean a,bG.

a1b1ab=a1b1(a1)1(b1)1=a1,b1GHa1b1abH(ba)1abHbaH=abHbHaH=aHbH.

Como aH y bH son clases arbitrarias en G/H, concluimos que G/H es abeliano.

[| Supongamos que HG y G/H es abeliano.

Tomemos a,bG arbritrarios.

Como G/H es abeliano, entonces a1Hb1H=b1Ha1H, es decir a1b1H=b1a1H. Entonces (b1a1)1a1b1H, pero (b1a1)1a1b1=aba1b1=[a,b], entonces [a,b]H para todos a,bG.

Así GH.

◼

Ejemplo

Para terminar, veamos un ejemplo sencillo pero importante.

Tomemos S3 y A3.

Sabemos que A3S3 y S3/A3={A3,(12)A3} que es abeliano. De hecho, en la entrada anterior analizamos el caso general, puedes verificar cómo es la operación del grupo cociente con la tabla que dimos y verificar que S3/A3 que es abeliano.

Entonces S3A3={(1),(123),(132)}.

Como S3 no es abeliano, por la observación que dimos S3{(1)}. Concluimos que S3=A3.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba que el inverso de un conmutador también es un conmutador.
  2. Sea D2(4)={id,a,a2,a3,b,ab,a2b,a3b} el grupo diédrico formado por las simetrías de un cuadrado, con a la rotación de π2 y b la reflexión con respecto al eje x.
    1. Calcula el cociente de D2(4) módulo a2.
    2. Encuentra D2(4).
  3. Sea G un grupo, H y K subgrupos normales de G tales que G/H y G/K son abelianos, ¿es entonces G/HK abeliano?

Más adelante…

¡Felicidades! Esta es la última entrada de la unidad 2. Esta unidad se trató de definir nuevas estructuras que nos ayudan para describir mejor a los grupos y subgrupos. Hablamos sobre el orden del grupo y extendimos propiedades de los enteros hacia la generalidad de los grupos, como separar un grupo en clases de equivalencia. La siguiente entrada introduce la tercera unidad de este curso y presenta un tema nuevo: unas funciones que «respetan» o «abren» operaciones.

Entradas relacionadas

Álgebra Moderna I: Grupo Cociente

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

La definición de subgrupos normales fue motivada porque queremos extraer las propiedades de los enteros a grupos más generales. Recordemos que en los enteros se define una relación de equivalencia (módulo n) de donde obtenemos clases de equivalencia. Estas clases no sólo inducen una partición, si no que conforman un subgrupo de Z. En esta entrada queremos generalizar esta idea y buscamos dar una operación en ciertas clases de equivalencia de modo que éstas formen también un grupo.

Grupo cociente G módulo N

Teorema. Sea G un grupo, N un subgrupo normal de G.

El conjunto
G/N={aN|aG}.
con la operación (aN)(bN)=abNa,bG
es un grupo de orden [G:N].

Definición. Al conjunto G/N de arriba se le conoce como el grupo cociente G módulo N.

Demostración del teorema.

Sea G un grupo, N un subgrupo normal de G.

En {aN|aG} consideremos la operación (aN)(bN)=abNa,bG.

Primero veamos que está bien definida.
Sean a,a,b,bG con aN=aN, bN=bN.
P.D. abN=abN.

Como aN=aN, aaN entonces a=an con nN.

Como bN=bN, bbN entonces b=bn~ con n~N.

Sustituyendo a y b en ab tenemos que ab=(an)(bn~)=a(nb)n~.

Como NG, por la conmutatividad parcial, nb=bn^ con n^N.
Entonces ab=a(bn^)n~=ab(n^n~)abN.

Por lo tanto abN=abN.

Veamos ahora que con esta operación, G/N es un grupo.

P.D. La operación es asociativa.
Sean aN,bN,cNG/N con a,b,cG.

aN(bNcN)=aN(bcN)=a(bc)NDefinición del producto de clases=(ab)cNAsociatividad en G=(abN)cN=(aNbN)cN.

Por lo tanto la operación en G/N es asociativa.

P.D. El neutro de la operación existe y está en G/N.
Sea aNG/N,
N(aN)=(eN)(aN)=eaN=aNNeutro en G(aN)N=(aN)(eN)=aeN=aNNeutro en G

Por lo tanto N es neutro en G/N.

P.D. Para cada elemento en G/N existe un inverso bajo la operación y este inverso está en G/N.
Dado aNG/N, como aG consideremos a1G su inverso en G.

(aN)(a1N)=aa1N=eN=N(a1N)(aN)=a1aN=eN=N.

Así a1N es inverso de aN. Por lo tanto G/N es un grupo.

Finalmente,
|G/N|=#{aN|aG}=[G:N].

◼

Notemos que en la demostración de que G/N con el producto es un grupo, usamos solamente las propiedades de que G es grupo.

Primer y segundo ejemplo

Ahora veremos algunos ejemplos de grupo cociente.

El primer ejemplo es justo el que motivó la idea de grupo cociente.
Tomemos (Z,+) y H={m|4 divide a m}=4ZZ. 4Z es normal porque Z es abeliano.
Entonces, vamos describiendo el grupo cociente paso por paso:
Z/4Z=Z/H={H,1+H,2+H,3+H}={{4k|kZ},{4k+1|kZ},{4k+2|kZ},{4k+3|kZ}}={0¯,1¯,2¯,3¯}=Z4. La suma se realiza a partir de la suma de los representantes del siguiente modo: (a+H)+(b+H)=(a+b)+H, es decir a¯+b¯=a+b, para cualesquiera a,bZ.

Ahora, para el segundo ejemplo, consideremos n2 y tomamos AnSn. En la entrada anterior vimos por qué An es un subgrupo normal de Sn.
De nuevo, vamos describiendo el grupo cociente.
Sn/An={An,(12)An}={{α|α es par},{(12)α|α es par}}={{α|α es par},{β|β es impar}}.

En la tabla se muestra el resultado del producto de los elementos de Sn/An. Podemos observar que An funge como neutro.

Representación gráfica de la partición de Sn en permutaciones pares e impares.
Tabla que muestra el producto de los conjuntos de Sn/An.

Así, estamos partiendo a Sn en permutaciones pares (representadas por (1)) e impares (representadas por (12)). De esta manera, podemos decir que multiplicar dos permutaciones pares o dos impares resulta en una permutación par, pero multiplicar una par con una impar resulta en una permutación impar.

Tercer y cuarto ejemplo

A continuación, para nuestro tercer ejemplo, tomamos N={±1}Q.
Para obtener una nueva clase lateral, escogemos un elemento de los cuaternios que no esté en N. El cociente se vería de la siguiente manera:
Q/N={N,iN,jN,kN}={{±1},{±i},{±j},{±k}}.
De nuevo, en las imágenes podemos ver una tabla que expresa el resultado de multiplicar distintas clases y una representación gráfica de las clases que obtenemos en el cociente.
Podemos verificar algunas de las operaciones de la tabla, hacemos el producto de Q/N usando el producto en Q. Recordemos que kN=kN y iN=iN, pues k y k viven en una misma clase, y i e i también son parte de una misma clase.

jNiN=jiN=kN=kNjNkN=kjN=iN=iN.

Partición de Q inducida por N.
Tabla que muestra los resultados de las operaciones de los elementos de Q/N.

Si ahora consideramos kQ, k={±1,±k}.
Entonces [Q:k]=|Q||k|=84=2, y así, kQ.
Así Q/k={k,ik}.

Tabla de las operaciones de los elementos de Q/k.
Partición de Q inducida por k.

Para nuestro último ejemplo, consideremos Z×Z={(a,b)|a,bZ}, con la operación (a,b)+(c,d)=(a+c,b+d).
Sea H={(a,a)|aZ}.
(a,b)+H=(c,d)+H(a,b)+(c,d)H(ca,db)Hca=dbc=d+(ab).
Recordemos que (a,b) es el inverso de (a,b).
Así,
(a,b)+H={(d+(ab),d)|dZ}={(ab,0)+(d,d)|dZ}.
En particular (a,b)+H=(ab,0)+H. Las clases laterales se muestran mejor gráficamente en la imagen.
Tomemos los puntos enteros del eje x como representantes de las clases laterales:
Z×Z/H={(a,0)+H|aZ}.((a,0)+H)+((c,0)+H)=(a+c,0)+H.

En esta imagen representamos a cada clase lateral (a,b)+H de un color distinto. Claramente son las diagonales discretas en el plano. También se muestra que los representantes de la clase son puntos en la misma diagonal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea G un grupo, H un subgrupo de G tal que el producto de dos clases laterales izquierdas de H en G es de nuevo una clase lateral izquierda de H en G ¿es entonces H normal en G?
  2. Sea G un grupo, H un subgrupo normal de G de índice finito con m=[G:H]. Dada aG ¿qué podemos decir del elemento am? ¿Y si H no es normal en G?
  3. Sea G un grupo finito, N un subgrupo normal de G. Dada aG. Analiza cómo es el orden de a en relación al orden de aN.
  4. Considera el grupo aditivo R2 y el subgrupo N={(x,0)|xR}.
    1. Determina qué deben cumplir (a,b),(c,d)R2 para que (a,b)N=(c,d)N.
    2. Describe al grupo R2/N.
  5. Sea G un grupo, N un subgrupo normal de G de índice finito con p=[G:N] primo. Dada aG ¿qué podemos decir de aN y de G/N?
  6. Si quieres profundizar un poco más sobre Grupos cocientes, puedes revisar el video de Mathemaniac sobre el tema. El video está en inglés.

Más adelante…

En pocas palabras, un subgrupo normal induce una partición del grupo y ésta es el grupo cociente. Esta idea surge de lo que ocurre en los enteros. En la siguiente entrada usaremos el grupo cociente para crear, a partir de un grupo no abeliano, otro que sea abeliano.

Entradas relacionadas