Nota 42. Fórmula para obtener el determinante.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El cálculo del determinante de una matriz es una operación fundamental en la teoría de matrices y álgebra lineal. En esta entrada estudiaremos el método de los menores o cofactores que es una técnica utilizada para calcular el determinante de una matriz cuadrada de cualquier tamaño.

El método se basa en la expansión del determinante a lo largo de una fila o columna de la matriz, calculando el determinante de una matriz a partir de determinantes de ciertas matrices que resultan de eliminar una fila y una columna de la matriz original, acompañados de algunas entradas de la matriz y signos positivos o negativos que se alternan en función de la posición del elemento en la matriz.

El método de los menores o cofactores puede ser un poco tedioso para matrices grandes, pero es una herramienta poderosa para calcular determinantes de matrices cuadradas de cualquier tamaño y puede usarse junto con las propiedades que hemos estudiado de los determinantes para facilitar el cálculo de los mismos.

Ve el siguiente video con las demostraciones de los dos lemas que estudiaremos en esta entrada.

Definición

Sean $n$ un natural positivo, $A\in \mathscr M_{n\times n}(\mathbb R)$ e $i,j\in\set{1,\dotsc,n}.$ Denotamos por $A(i\mid j)$ a la matriz $(n-1)\times (n-1)$ que se obtiene de $A$ quitando el renglón $i$ y la columna $j$ de $A$. El menor $i,j$ de $A$ es el determinante de $A(i\mid j).$

Ejemplo

Considera las siguientes matrices:

$A=\begin{equation*} \left(\begin{array}{rrr} 1 & -2 & 3 \\ 5 & 7 & 0 \\ 2 & 4 & -1 \end{array}\right) \end{equation*}$ y $A(1\mid 2)=\begin{equation*} \left(\begin{array}{rr} 5 & 0 \\ 2 & -1 \end{array}\right) \end{equation*}.$

El menor $1,2$ de $A$ es $det\,\begin{equation*} \left(\begin{array}{rr} 5 & 0 \\ 2 & -1 \end{array}\right) \end{equation*}=-5.$

$A(2\mid 3)=\begin{equation*} \left(\begin{array}{rr} 1 & -2 \\ 2 & 4 \end{array}\right) \end{equation*}$, el menor $2,3$ de $A$ es $det\,\begin{equation*} \left(\begin{array}{rr} 1 & -2 \\ 2 & 4 \end{array}\right) \end{equation*}=8.$

Lema 1

Sean $n$ un natural positivo y $A\in \mathscr M_{n\times n}(\mathbb R)$ tal que $a_{n1}=\cdots=a_{n(n-1)}=0$, entonces $det\,A=a_{nn}det\,A(n\mid n).$

Demostración

Sean $n$ un natural positivo y $A\in \mathscr M_{n\times n}(\mathbb R)$ tal que $a_{n1}=\cdots=a_{n(n-1)}=0$.

Por definición de determinante tenemos que:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{n\sigma(n)}.$

Como todos los elementos de la fila $n$ son cero salvo en $n$-ésimo entonces los únicos sumandos que pueden contribuir con algún valor no nulo son aquellos tales que $\sigma(n)=n$, así:

$\det\,A=\displaystyle\sum_{\sigma\in S_n, \sigma(n)=n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{n-1\sigma(n-1)} a_{nn}.$

Factorizando $a_{nn}$ tenemos que:

$\det\,A=a_{nn}\displaystyle\sum_{\sigma\in S_n, \sigma(n)=n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{n-1\sigma(n-1)}.$

Pero cada $\sigma\in S_n$ tal que $\sigma(n)=n$ da lugar a una $\gamma\in S_{n-1}$, a saber $\gamma:\{1,2,\dots ,n-1\}\rightarrow\{1,2,\dots ,n-1\}$ tal que $\gamma(i)=\sigma(i)$ para toda $i\in\{1,2,\dots ,n-1\}$, y recíprocamente, cada $\gamma\in S_{n-1}$ da lugar a una $\sigma\in S_{n}$ tal que $\sigma(n)=n$, a saber $\sigma:\{1,2,\dots ,n\}\rightarrow\{1,2,\dots ,n\}$ tal que $\sigma(i)=\gamma(i)$ para toda $i\in\{1,2,\dots ,n-1\}$ y $\sigma(n)=n$. Podemos reescribir lo anterior entonces como:

$\det\,A= a_{nn} \displaystyle\sum_{\gamma\in S_{n-1}}sgn\,\gamma\,a_{1\gamma(1)}\cdots a_{n-1\gamma(n-1)}$

y por definición de determinante tenemos que:

$det\,A=a_{nn}det\,A(n\mid n).$

$\square$

Lema 2

Sean $n$ un natural positivo, $A\in \mathscr M_{n\times n}(\mathbb R)$ e $i,j\in\set{1,\dotsc,n}.$ Si todos los elementos del renglón $i$ de $A$ salvo quizás $a_{ij}$ son cero, entonces $det\,A=(-1)^{i+j}a_{ij}det\,A(i\mid j).$

Al número $(-1)^{i+j}det\,A(i\mid j)$ se le conoce como el cofactor $i,j$ de $A$.

Demostración

Sean $n$ un natural positivo, $A\in \mathscr M_{n\times n}(\mathbb R)$, $i,j\in\set{1,\dotsc,n}$ con $a_{il}=0\,\,\forall l\neq j.$

Entonces la matriz $A$ se ve de la siguiente forma (el renglón $i$ está marcador en rojo):

$A=\begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$a_{ij}$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}.$

Vamos a intercambiar renglones y columnas para llevar esta matriz a una del tipo de las requeridas en la hipótesis del lema 1.

Nuestro objetivo es transformar la matriz $A$ en una equivalente $A’$, que tenga en el último renglón ceros en todas sus entradas salvo quizás en la última, y cuyo menor $n,n$ que es $det\,A'(n\mid n)$, sea igual al menor $i,j$ de $A$, es decir el determinante de la matriz que se obtiene de quitar el $i-$ésimo renglón y la $j-$ésima columna de $A$. Consideremos $A’$ la matriz que se obtiene de $A$ después de intercambiar el renglón $i$ de $A$ con cada uno de los $n-i$ renglones subsecuentes, y después intercambiando la columna $j$ de la matriz obtenida con las $n-j$ columnas subsecuentes.

La matriz $A’$ es de la forma:

$A’=\begin{equation*} \left(\begin{array}{ccccccc} a_{11} & \cdots& a_{1j-1} & a_{1j+1} & \cdots & a_{1n} & a_{ij}\\ \vdots & \cdots & \vdots & \vdots & \cdots &\vdots &\vdots \\ a_{i-11} & \cdots & a_{i-1j-1} & a_{i-1j+1} &\cdots & a_{i-1n} & a_{i-1j} \\ a_{i+11} & \cdots & a_{i+1j-1} & a_{i+1j+1} &\cdots & a_{i+1n} & a_{i+1j} \\ \vdots & \cdots & \vdots & \vdots & \cdots &\vdots &\vdots\\ a_{n1} & \cdots& a_{nj-1} & a_{nj+1} & \cdots & a_{nn} & a_{nj} \\ \colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$}&\colorbox{Red}{$0$} & \colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$} & \colorbox{Red}{$a_{ij}$} \end{array}\right) \end{equation*}.$

Dado Que $A’$ se obtuvo de $A$ realizando $n-i$ intercambios de renglones y $n-j$ intercambios de columnas, por la propiedad $3$ de la nota anterior tenemos que:

$det\,A=(-1)^{(n-i)+(n-j)}det\,A’.$

Desarrollando tenemos que:

$det\,A=(-1)^{2n-(i+j)}det\,A’=(-1)^{2n}(-1)^{-(i+j)}det\,A’$

y dado que $(-1)^{2n}=1$ y que $(-1)^{-(i+j)}=\frac{1}{(-1)^{i+j}}=(-1)^{i+j}.$

Obtenemos por el lema 1 que:

$det\,A=(-1)^{i+j}a_{ij}det\,A(i\mid j).$

$\square$

Teorema

Sean $n$ un natural positivo, $A\in \mathscr M_{n\times n}(\mathbb R)$ e $i,j\in\set{1,\dotsc,n}.$ Se tiene que:

$det\,A=(-1)^{i+1}a_{i1}det\,A(i\mid 1)+(-1)^{i+2}a_{i2}det\,A(i\mid 2)+\cdots+(-1)^{i+n}a_{in}det\,A(i\mid n),$

que se conoce como el desarrollo del determinante por el renglón $i$ de $A$, o bien

$det\,A=(-1)^{1+j}a_{1j}det\,A(1\mid j)+(-1)^{2+j}a_{2j}det\,A(2\mid j)+\cdots+(-1)^{n+j}a_{nj}det\,A(n\mid j),$

que se conoce como el desarrollo del determinante por la columna $j$ de $A$.

Ve el siguiente video de la demostración del teorema:

Demostración

Sean $n$ un natural positivo, $A\in \mathscr M_{n\times n}(\mathbb R)$ e $i,j\in\set{1,\dotsc,n}.$

Vamos a considerar el renglón $i$ y pensaremos que en cada término $a_{ij}$ aparece una suma de $n$ términos, $n-1$ son ceros y el otro $a_{ij}$ en el sumando $j$-ésimo. Así, vamos a escribir a la matriz $A$ como:

$A=\begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$a_{i1}+0+\cdots+0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0+\cdots+a_{ij}+\cdots+0$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0+\cdots+0+a_{in}$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}.$

Desde esta perspectiva podemos visualizar al renglón $i$ como la suma de los siguientes $n$ vectores:

$(a_{i1},0,\dotsc,0),(0,a_{i2},0,\dotsc,0),\dotsc, (0,\dotsc,0,a_{in}).$

Consideraremos ahora para cada $j\in\{1,\dots ,n\}$, una matriz que tiene los mismos renglones que $A$, excepto en el $i$-ésimo renglón, en el que tendremos precisamente al vector $j$-ésimo de la lista anterior.

Recordemos la propiedad uno de determinantes vista en la nota 41 que nos dice que: Si $R_k^{\prime}$ y $R_k^{\prime\prime}$ son los renglones $k$ de $A’$ y $A^{\prime\prime}$ respectivamente, el renglón $k$ de $A$ es $R_k^{\prime}+R_k^{\prime\prime}$, y el resto de los renglones de $A, A’$ y $ A^{\prime\prime}$ coinciden, entonces $det\,A=det\,A’+det\,A^{\prime\prime}.$ Gracias a dicha propiedad obtenemos que:

$detA=det\,\begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$a_{i1}$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}$ $+\cdots+$ $det\,\begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$a_{ij}$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}$ $+\dotsc+$ $\, \begin{equation*} \left(\begin{array}{ccccc} a_{11} & \cdots& a_{1j} & \cdots & a_{1n}\\ \vdots & \cdots & \vdots & \cdots & \vdots \\\colorbox{Red}{$0$}& \colorbox{Red}{$\cdots$} & \colorbox{Red}{$0$} & \colorbox{Red}{$\cdots$} & \colorbox{Red}{$a_{in}$}\\ \vdots & \cdots & \vdots & \cdots & \vdots\\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{array}\right) \end{equation*}.$

Finalmente, por el lema 2 obtenemos que:

$det\,A=(-1)^{i+1}a_{i1}det\,A(i\mid 1)+\cdots+(-1)^{i+j}a_{ij}det\,A(i\mid j)+\cdots+(-1)^{i+n}a_{in}det\,A(i\mid n).$

La prueba es análoga para las columnas.

$\square$

Ejemplos

$1.$ Considera la matriz $A=\begin{equation*} \left(\begin{array}{rrrrr} 1 & -2 & 8 & 0 & 4 \\ 5 & 0 & 13 & 0 & 2 \\ 3 & 8 & 9 & 5 & 7 \\ 0 & 0 & -2 & 0 & 0\\ 9 & 0 & 11 & 0 & 1 \end{array}\right) \end{equation*}$

Vamos a desarrollar su determinante. Conviene hacerlo por los renglones o columnas que tengan muchos ceros, en este caso vamos a desarrollar por la cuarta columna.

$det\,A=det\,\begin{equation*} \left(\begin{array}{rrrrr} 1 & -2 & 8 & \colorbox{Red}{$0$} & 4 \\ 5 & 0 & 13 & \colorbox{Red}{$0$} & 2 \\ 3 & 8 & 9 & \colorbox{Red}{$5$} & 7 \\ 0 & 0 & -2 & \colorbox{Red}{$0$} & 0\\ 9 & 0 & 11 & \colorbox{Red}{$0$} & 1 \end{array}\right) \end{equation*}$

Según el teorema tenemos que:

$\begin{array}{ll}det\,A=&(-1)^{1+4}\,(\colorbox{Red}{$0$})\,det\,A(1\mid 4)+(-1)^{2+4}\,(\colorbox{Red}{$0$})\,det\,A(2\mid 4)\\&+(-1)^{3+4}\,(\colorbox{Red}{$5$})\,det\,A(3\mid 4)+(-1)^{4+4}\,(\colorbox{Red}{$0$})\,det\,A(4\mid 4)+(-1)^{1+5}\,(\colorbox{Red}{$0$})\,det\,A(5\mid 4).\end{array}$

Eliminando los términos con cero obtenemos que:

$det\,A=(-1)^{3+4}\,5\,det\,A(3\mid 4)=-5\,det\,\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 8 & 4 \\ 5 & 0 & 13 & 2 \\ 0 & 0 & -2 & 0\\ 9 & 0 & 11 & 1 \end{array}\right) \end{equation*}$

Consideremos ahora la matriz:

$A’=\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 8 & 4 \\ 5 & 0 & 13 & 2 \\ \colorbox{Red}{$0$} & \colorbox{Red}{$0$} & \colorbox{Red}{$-2$} & \colorbox{Red}{$0$} \\ 9 & 0 & 11 & 1 \end{array}\right) \end{equation*}$.

Vamos a calcular su determinante desarrollándolo a través de su tercer renglón:

$det\,A’=det\,\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 8 & 4 \\ 5 & 0 & 13 & 2 \\ (\colorbox{Red}{$0$}) & (\colorbox{Red}{$0$}) & (\colorbox{Red}{$-2$}) & (\colorbox{Red}{$0$}) \\ 9 & 0 & 11 & 1 \end{array}\right) \end{equation*}$,

al desarrollar obtenemos que:

$det\,A’=(-1)^{3+1}\,\colorbox{Red}{$0$}\,det\,A'(3\mid 1)+(-1)^{3+2}\,(\colorbox{Red}{$0$})\,det\,A'(3\mid 2) +(-1)^{3+3}\,(\colorbox{Red}{$-2$})\,det\,A'(3\mid 3)+(-1)^{3+4}\,(\colorbox{Red}{$0$})\,det\,A'(3\mid 4)$

Eliminando los términos con ceros tenemos que:

$det\,A’=(-1)^{3+3}\,(\colorbox{Red}{$-2$})\,det\,A'(3\mid 3)=-2\,det\,A'(3\mid 3)=\begin{equation*} \left(\begin{array}{rrr} 1 & -2 & 4 \\ 5 & 0 & 2 \\ 9 & 0 & 1 \end{array}\right) \end{equation*}$

y como $det\,A=-5\,det\,A’=(-5)(-2)\,det\,\begin{equation*} \left(\begin{array}{rrr} 1 & -2 & 4 \\ 5 & 0 & 2 \\ 9 & 0 & 1 \end{array}\right) \end{equation*}$

Sea $A^{\prime\prime}=\begin{equation*} \left(\begin{array}{rrr} 1 & \colorbox{Red}{$-2$} & 4 \\ 5 & \colorbox{Red}{$0$} & 2 \\ 9 & \colorbox{Red}{$0$} & 1 \end{array}\right) \end{equation*}$.

Desarrollemos su determinante por la segunda columna:

$det\,A^{\prime\prime}=det\,\begin{equation*} \left(\begin{array}{rrr} 1 & \colorbox{Red}{$-2$} & 4 \\ 5 & \colorbox{Red}{$0$} & 2 \\ 9 & \colorbox{Red}{$0$} & 1 \end{array}\right) \end{equation*}= (-1)^{1+2}\,(\colorbox{Red}{$-2$})\,det\, A^{\prime\prime} (1\mid 2) + (-1)^{2+2}\,(\colorbox{Red}{$0$})\,det\, A^{\prime\prime} (2\mid 2) + (-1)^{3+2}\,(\colorbox{Red}{$0$})\,det\, A^{\prime\prime} (3\mid 2)$.

Eliminando los términos con cero tenemos que:

$det\,A^{\prime\prime} = (-1)^{1+2}\,(\colorbox{Red}{$-2$})\,det\, A^{\prime\prime} (1\mid 2) =2\,det\, A^{\prime\prime} (1\mid 2) = 2\, \begin{equation*} \left(\begin{array}{rr} 5 & 2 \\ 9 & 1 \end{array}\right). \end{equation*}$

Finalmente, como $det\,A=(-5)(-2)det\,A^{\prime\prime}$ obtenemos que:

$det\, A= (-5)(-2)(2)\,det\, \begin{equation*} \left(\begin{array}{rr} 5 & 2 \\ 9 & 1 \end{array}\right) \end{equation*}=(-5)(-2)(2)[5-18]=(-5)(-2)(2)(-13)=-260$

Para el siguiente ejemplo tienes que tener el consideración las siguientes propiedades de determinantes vistos en la nota anterior.

$2.$ Considera la matriz:

$A=\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 5 & 5 & 1 & 3 \\ 2 & 2 & 2 & 1 \\ 3 & 6 & 4 & 2 \end{array}\right) \end{equation*}$

Escalonemos la matriz para obtener una matriz escalonada reducida por renglones, cuyo determinante será más sencillo de obtener. Dado que sabemos cómo cambia el determinante con las operaciones elementales realizadas, podremos decir cuál es el determinante de $A$:

Explicación de las igualdades
y operaciones elementales
$det\,A=det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 5 & 5 & 1 & 3 \\ 2 & 2 & 2 & 1 \\ 3 & 6 & 4 & 2 \end{array}\right) \end{equation*}$Efectúa las operaciones elementales:
$R_2\to R_2+5R_1$
$R_3\to R_3+2R_1$
$R_4\to R_4+3R_1$
$=det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 25 & 11 & 8 \\ 0 & 10 & 6 & 3 \\ 0 & 18 & 10 & 5 \end{array}\right) \end{equation*}$La igualdad se da por la propiedad 5.
Efectúa la operación elemental:
$\frac{1}{10} R_3$
$=10\,det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 25 & 11 & 8 \\ 0 & 1 & \frac{3}{5} & \frac{3}{10} \\ 0 & 18 & 10 & 5 \end{array}\right) \end{equation*}$La multiplicación por 10 se da por la propiedad 2.
Efectúa la operación elemental:
$R_2\leftrightarrow R_3$
$=-10\,det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 1 & \frac{3}{5} & \frac{3}{10}\\ 0 & 25 & 11 & 8 \\ 0 & 18 & 10 & 5 \end{array}\right) \end{equation*}$El cambio de signo es por la propiedad 3.
Efectúa las operaciones elementales:
$R_3\to R_3+(-2)R_2$
$R_4\to R_4+(-18)R_2$
$=-10\,det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 1 & \frac{3}{5} & \frac{3}{10}\\ 0 & 0 & -4 & \frac{1}{2} \\ 0 & 0 & -\frac{4}{5} & -\frac{2}{5} \end{array}\right) \end{equation*}$La igualdad se da por la propiedad 5.
Efectúa la operación elemental:
$R_4\to R_4+(-\frac{1}{5})R_2$
$=-10\,det\,\begin{equation*} \left(\begin{array}{rrrr} -1 & 4 & 2 & 1 \\ 0 & 1 & \frac{3}{5} & \frac{3}{10}\\ 0 & 0 & -4 & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} \end{array}\right) \end{equation*}$La igualdad se da por la propiedad 5.
$=-10(-1)(1)(-4)(-\frac{1}{2})=20$Por ser una matriz diagonal inferior su determinante es el producto de los elementos de la diagonal. Pruébalo de tarea moral.

Tarea Moral

$1.$ Una matriz cuadrada $A$ es diagonal si $A_{ij}=0$ para $i\neq j$. Por otro lado una matriz cuadrada $A$ es triangular superior si $A_{ij}=0$ para $i>j$. De acuerdo a la definición del determinante.

$i)$ ¿Cuál es el determinante de una matriz diagonal?

$ii)$ ¿Cuál es el determinante de una matriz triangular superior?

$2.$ Sea $A=\begin{equation*} \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 0 & -1 & 0 & 4\\ 3 & 1 & 0 & 4 \\ 4 & 2 & 1 & 4 \end{array}\right) \end{equation*},$ calcula los menores $3,\ 4$ y $1,\,1$ de $A$.

$3.$ Calcula el determinante de $A,B,C.$

$A=\begin{equation*} \left(\begin{array}{rrr} 8 & 2 & -1\\ -3 & 4 & -6\\ 1 & 7 & 2 \end{array}\right) \end{equation*}$

$B=\begin{equation*} \left(\begin{array}{rrrr} 1 & -3 & 4 & 6 \\ -2 & 4 & 1 & 7\\ 3 & -1 & 2 & 5 \\ 1 & 2 & 3 & 7 \end{array}\right) \end{equation*}$

$C=\begin{equation*} \left(\begin{array}{rrr} k & -3 & 9\\ 2 & 4 & k+1\\ 1 & k^2 & 3 \end{array}\right) \end{equation*}$

$4.$ Considera la matriz $\begin{equation*} \left(\begin{array}{rrr} 1 & 1 & 1\\ a & b & c\\ a^2 & b^2 & c^2 \end{array}\right) \end{equation*}$

¿Cómo es su determinante en términos de $a,b,c$?, ¿cómo generalizarías el resultado para matrices $n\times n$ con $n$ un natural positivo?

Más adelante

En la siguiente y última nota veremos la propiedad multiplicativa que tiene el determinante y estudiaremos qué condición debe cumplir el determinante de una matriz para saber si es invertible.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 41. Propiedades de los determinantes.

Enlace a la nota siguiente. Nota 43. Propiedad multiplicativa del determinante y teorema de invertibilidad de matrices.

Nota 41. Propiedades de los determinantes.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota deduciremos propiedades importantes que tienen los determinantes, para ello usaremos la definición dada en la nota anterior. Sería conveniente que, si no lo has hecho, revisaras los ejemplos de la nota anterior para que sea más natural su deducción.

Propiedades

Sean $n$ un natural positivo, $k\in\{1,\dots ,n\}$, $A, A’, A^{\prime\prime}\in \mathscr M_{n\times n}(\mathbb R)$ y $\lambda\in \mathbb{R}.$

$1.$ Si $R_k^{\prime}$ y $R_k^{\prime\prime}$ son los renglones $k$ de $A’$ y $A^{\prime\prime}$ respectivamente, el renglón $k$ de $A$ es $R_k^{\prime}+R_k^{\prime\prime}$, y el resto de los renglones de $A, A’$ y $ A^{\prime\prime}$ coinciden, entonces:

$det\,A=det\,A’+det\,A^{\prime\prime}.$

$2.$ Si $A$ se obtiene de $A’$ multiplicando el renglón $k$ por $\lambda$, entonces:

$det\,A=\lambda det\,A’.$

$3.$ Si $A$ se obtiene de $A’$ intercambiando dos renglones, entonces:

$det\,A=- det\,A’.$

$4.$ Si $A$ tiene dos renglones iguales, entonces:

$det\,A=0.$

$5.$ Si $A$ se obtiene de $A’$ sumando a un renglón un múltiplo de otro, entonces:

$det\,A= det\,A’.$

$6.$ Si $A$ tiene un renglón de ceros, entonces:

$det\,A=0$

$7.$ $det\,A^t=det\,A.$

Ve el siguiente video con las demostraciones de las propiedades $1$ y $2$:

Demostración de las propiedades

Sean $n$ un natural positivo, $k,s\in\{1,\dots ,n\}$, $A, A’, A^{\prime\prime}\in \mathscr M_{n\times n}(\mathbb R)$ y $\lambda\in \mathbb{R}.$

Demostración de la propiedad 1

Supongamos que $a_{ij}=a_{ij}^{\prime}=a_{ij}^{\prime\prime}$ para todo $i\neq k$ y para todo $j$, supongamos también que $a_{kj}=a_{kj}^{\prime}+a_{kj}^{\prime\prime}$ para todo $j$. Por definición de determinante:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{k\sigma(k)}\cdots a_{n\sigma(n)},$

y entonces por hipótesis $a_{k\sigma(k)}=a_{k\sigma(k)}^{\prime}+a_{k\sigma(k)}^{\prime\prime}.$

Así:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots ( a_{k\sigma(k)}^{\prime}+a_{k\sigma(k)}^{\prime\prime} )\cdots a_{n\sigma(n)}.$

Aplicando la propiedad distributiva de los reales tenemos que:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{k\sigma(k)}^{\prime}\cdots a_{n\sigma(n)} + \displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{k\sigma(k)}^{\prime\prime}\cdots a_{n\sigma(n)}$

y por hipótesis $a_{ij}=a_{ij}^{\prime}=a_{ij}^{\prime\prime}$ para todo $i\neq t$ y para todo $j$, por lo tanto:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime}\cdots a_{k\sigma(k)}^{\prime}\cdots a_{n\sigma(n)}^{\prime} + \displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime\prime}\cdots a_{k\sigma(k)}^{\prime\prime}\cdots a_{n\sigma(n)}^{\prime\prime}.$

Entonces por definición determinante tenemos que:

$det\,A=det\,A’+det\,A^{\prime\prime}.$

Demostración de la propiedad 2

Supongamos que $a_{ij}=a_{ij}^{\prime}$ para toda $ i\neq k$ y para toda $ j$, y que $a_{kj}=\lambda a_{kj}^{\prime}$ para toda $j$.

Por definición de determinante tenemos que:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{k\sigma(k)}\cdots a_{n\sigma(n)}$

pero, por hipótesis, $a_{k\sigma(k)}=\lambda a_{k\sigma(k)}^{\prime}$, así:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots \lambda a_{k\sigma(k)}^{\prime}\cdots a_{n\sigma(n)}.$

También por hipótesis $a_{ij}=a_{ij}^{\prime}$ para toda $i\neq t$, entonces:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime}\cdots \lambda a_{k\sigma(k)}^{\prime}\cdots a_{n\sigma(n)}^{\prime},$ y factorizando $\lambda$:

$\det\,A= \lambda \displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime}\cdots a_{k\sigma(k)}^{\prime}\cdots a_{n\sigma(n)}^{\prime},$

entonces por definición:

$det\,A=\lambda det\,A’.$

Ve el siguiente video con las demostraciones de las propiedades $3$ y $4$

Demostración de la propiedad 3

Supongamos que $A$ se obtiene de $A’$ intercambiando los renglones $k$ y $s$.

Por definición tenemos que:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}\cdots a_{k\sigma(k)}\cdots a_{s\sigma(s)}\cdots a_{n\sigma(n)}$

Al intercambiar los renglones $k$ y $s$ tenemos que:

$a_{k\sigma(k)}=a_{s\sigma(k)}^{\prime}$ y $a_{s\sigma(s)}=a_{k\sigma(s)}^{\prime}$, y además $a_{i\sigma(i)}=a_{i\sigma(i)}^{\prime}$ para toda $i$ distinta de $k$ y de $s$.

Entonces:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}^{\prime}\cdots a_{s\sigma(k)}^{\prime}\cdots a_{k\sigma(s)}^{\prime}\cdots a_{n\sigma(n)}^{\prime}$

Observa que la permutación $\gamma = \begin{equation*} \left(\begin{array}{rrrrrrr} 1 & \cdots & k & \cdots & s & \cdots & n\\ \sigma(1) & \cdots & \sigma(s) & \cdots & \sigma(k) & \cdots & \sigma(n) \end{array}\right) \end{equation*}$ es muy parecida a $\sigma$ salvo en su evaluación en $k$ y en $s$. De modo más preciso $\tau\circ \sigma=\gamma$, con $\tau$ la transposición que intercambia a $\sigma(k)$ y a $\sigma(s)$. Entonces difieren sólo en una transposición y por lo tanto $sgn\,\sigma=-sgn\,\gamma$. Vamos a reescribir el determinante en términos de la permutación $\gamma$, y entonces:

$\det\,A=\displaystyle\sum_{\gamma\in S_n} – sgn\,\gamma\,a_{1\gamma(1)}^{\prime}\cdots a_{s\gamma(s)}^{\prime}\cdots a_{k\gamma(k)}^{\prime}\cdots a_{n\gamma(n)}^{\prime},$

entonces por definición tenemos que:

$det\,A=- det\,A’.$

Demostración de la propiedad 4

Supongamos que los renglones $k$ y $s$ de $A$ son iguales . Sea $A’$ la matriz que se obtiene de $A$ intercambiado sus renglones $k$ y $s$, entonces $A’=A$. Por la propiedad $3$ tenemos que $det\,A’=-det\,A$. Así:

$det\,A=- det\,A’=-det\,A,$

entonces $det\,A=-det\,A$. De aquí tenemos que $2det\,A=0$ y por lo tanto:

$det\,A=0$.

Ve el siguiente video con las demostraciones de las propiedades $5,6,7.$

Demostración de la propiedad 5

Supongamos que $A$ se obtiene de $A’$ sumando al renglón $s$, $\lambda$ veces el renglón $k.$

Entonces si:

$A’=\begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} & && \cdots & && a_{1n}^{\prime}\\ \vdots & && \cdots & && \vdots\\a_{k1}^{\prime} & && \cdots & && a_{kn}^{\prime}\\ \vdots & && \cdots & && \vdots\\ a_{s1}^{\prime} & && \cdots & && a_{sn}^{\prime}\\ \vdots & && \cdots & && \vdots\\ a_{n1}^{\prime} & && \cdots & && a_{nn}^{\prime} \end{array}\right) \end{equation*}.$

Entonces $A$ es:

$A=\begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} & &&\cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{k1}^{\prime} &&& \cdots &&& a_{kn}^{\prime}\\ \vdots &&& \cdots && &\vdots\\ a_{s1}^{\prime}+\lambda a_{k1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}+\lambda a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}.$

Por la propiedad $1$ tenemos que:

$detA=$ $det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} & &&\cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{k1}^{\prime} &&& \cdots &&& a_{kn}^{\prime}\\ \vdots &&& \cdots && &\vdots\\ a_{s1}^{\prime}+\lambda a_{k1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}+\lambda a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}$ $=det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{k1}^{\prime} &&& \cdots &&& a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{s1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}$ $+det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{k1}^{\prime} &&& \cdots &&& a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ \lambda a_{k1}^{\prime} &&& \cdots &&& \lambda a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*},$

y por la propiedad $2$ tenemos que:

$det\,A=$ $det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{k1}^{\prime} &&& \cdots &&& a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{s1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}$ $+$ $\lambda det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{k1}^{\prime} &&& \cdots &&& a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{k1}^{\prime} &&& \cdots &&& a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*},$

y como la matriz que aparece en el segundo sumando tiene dos renglones repetidos, su determinante es cero. Por lo tanto:

$det\,A=$ $det \begin{equation*} \left(\begin{array}{ccccccc} a_{11}^{\prime} &&& \cdots &&& a_{1n}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\a_{k1}^{\prime} &&& \cdots &&& a_{kn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{s1}^{\prime} &&& \cdots &&& a_{sn}^{\prime}\\ \vdots &&& \cdots &&& \vdots\\ a_{n1}^{\prime} &&& \cdots &&& a_{nn}^{\prime} \end{array}\right) \end{equation*}=det A’$

Demostración de la propiedad 6

Si el renglón $k$ de $A$ es un renglón de ceros, al multiplicar el renglón $k$ por cero obtenemos $A$, así por la propiedad $2$:

$det\,A=0det\,A=0.$

Observación

Sea $\sigma\in S_n,\,\,sgn\,\sigma=sgn\,\sigma^{-1}$ ya que si $\sigma=\tau_m\circ\cdots\circ\tau_1$ es un producto de transposiciones entonces tenemos que $\sigma^{-1}=\tau_1\circ\cdots\circ\tau_m.$

Demostración de la propiedad 7

Sea $A^t=(b_{ij})$, entonces de la definición de determinante

$\det\,A^t=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,b_{1\sigma(1)}\cdots b_{n\sigma(n)}.$

Por la definición de transpuesta tenemos que $b_{i\sigma(i)}=a_{\sigma(i)i}$ para toda $i$, entonces:

$\det\,A^t=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{\sigma(1)1}\cdots a_{\sigma(n)n}.$

Por la observación tenemos que:

$\det\,A^t=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma^{-1} \,a_{\sigma(1)\sigma^{-1}(\sigma(1))}\cdots a_{\sigma(n)\sigma^{-1}(\sigma(n))}.$

Observemos que cada factor $a_{\sigma(i)\sigma^{-1}(\sigma(i))}$, es de la forma $a_{j\sigma^{-1}(j)}$ con $j\in\{1,2,\dots ,n\}$, entonces reacomodando dichos factores en orden creciente de acuerdo al valor de $j$ tenemos:

$\det\,A^t=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma^{-1}\,a_{1\sigma^{-1}(1)}\cdots a_{n\sigma^{-1}(n)}.$

Si denotamos $\gamma=\sigma^{-1}$, al reescribir en términos de $\gamma$ tenemos que:

$\det\,A^t=\displaystyle\sum_{\gamma\in S_n}sgn\,\gamma\,a_{1\gamma(1)}\cdots a_{n\gamma(n)}=\det\,A.$

$\square$

Gracias a la propiedad 7 tenemos que:

Corolario

Todas las propiedades antes mencionadas de renglones se cumplen también para las columnas.

Tarea Moral

$1.$ Sean $A=\begin{equation*} \left(\begin{array}{cc} a & b \\ c & d \\ \end{array}\right) \end{equation*}$, $B=\begin{equation*} \left(\begin{array}{cc} e & f \\ c & d \\ \end{array}\right) \end{equation*},$ $C=\begin{equation*} \left(\begin{array}{cc} a+e & b+f \\ c & d \\ \end{array}\right) \end{equation*}\in \mathscr M_{2\times 2}(\mathbb R).$

Si $det\,A=7$ y $det\,B=\pi$, ¿cuánto es el determinante de $C$?

$2.$ Sean $B_1=\begin{equation*} \left(\begin{array}{cc} a_{11} & 0 \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*}$, $B_2=\begin{equation*} \left(\begin{array}{cc} 0 & a_{12} \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*},$ $A=\begin{equation*} \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*}\in \mathscr M_{2\times 2}(\mathbb R)$.

$i)$ Calcula el determinante de $A$ en términos de los determinantes de $B_1$ y $B_2$.

$ii)$ ¿Cómo podrías generalizar el resultado del inciso anterior a matrices de $n\times n$ para $n$ un natural positivo?

$3.$ Sean $A\in \mathscr M_{n\times n}(\mathbb R)$ y $\lambda \in \mathbb R$. ¿Cómo es el determinante de $\lambda A$ en términos del determinante de $A$?

$4.$ Sean $A=\begin{equation*} \left(\begin{array}{rrr} a & b & c \\ d & e & f \\ g & h & i \end{array}\right) \end{equation*}$ y $B=\begin{equation*} \left(\begin{array}{rrr} g & h & i \\ a & b & c \\ d & e & f \end{array}\right) \end{equation*}\in \mathscr M_{3\times 3}(\mathbb R).$

¿Cómo es el determinante de $B$ comparado con el determinante de $A$?

$5.$ Sean $n$ un natural positivo y $A\in \mathscr M_{n\times n}(\mathbb R)$. Si un renglón de $A$ es múltiplo de otro. ¿Qué ocurre con el determinante de $A$?

Más adelante

En la siguiente nota deduciremos una fórmula para el calculo del determinante.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 40. Determinantes.

Enlace a la nota siguiente. Nota 42. Formula para obtener el determinante.

Nota 40. Determinantes.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El determinante de una matriz cuadrada es un valor numérico asociado a la matriz, que se puede calcular a partir de sus entradas y que tiene muchas aplicaciones en álgebra lineal y otras áreas de las matemáticas y la física. Una forma de definir el determinante es mediante permutaciones.

Dada una matriz cuadrada de $n$ renglones, para cada permutación de $n$ elementos se consideran los productos de entradas de la matriz, donde hay exactamente un factor en cada renglón de la matriz y exactamente un factor de cada columna; después se les asocia un signo y se suman todos estos productos. El resultado de esta suma es el determinante de la matriz.

Esta definición puede parecer complicada al principio, pero es muy poderosa y se puede utilizar para calcular determinantes de matrices de cualquier tamaño.

En esta entrada estudiaremos las permutaciones de $n$ elementos, daremos la definición de determinante y algunos ejemplos sencillos.

Te invitamos a ver el siguiente video de 3Blue1Brown en el que se da una aproximación geométrica e intuitiva de lo que es el determinante.

Puedes ver también el siguiente video de la clase que te ayudará a comprender lo que aparece en esta entrada.

Antes de llegar a la definición de lo que es un determinante recordemos lo que es una permutación. En la nota 22 estudiamos las permutaciones de un conjunto $A$. Ahora, para $n$ un natural positivo, vamos a concentrarnos en las permutaciones del conjunto $\{1,2,\dots ,n\}$:

Definición

Sea $n$ un natural positivo. Las permutaciones del conjunto $\{1,\dots ,n\}$ o permutaciones de $n$ elementos son la funciones biyectivas de $\set{1,\dotsc,n}$ en sí mismo. El conjunto de todas las permutaciones de $n$ elementos se denotará por $S_n$, esto es:

$S_n=\set{\sigma:\set{1,\dotsc,n}\to\set{1,\dotsc,n}\mid \sigma\,\,es\,\,biyectiva }$

Una permutación $\sigma \in S_n$ se llama una transposición si intercambia dos números y deja fijos a los demás, es decir si existen $i,j\in\set{1,\dotsc,n}$ distintos tales que $\sigma(i)=j$, $\sigma(j)=i$ y $\sigma(k)=k$ para todo $i,j\in\set{1,\dotsc,n}$ con $k\neq i$ y $k\neq j$.

Enunciemos ahora un resultado importante, cuya demostración se omitirá porque va más allá de los objetivos de este curso, pero que puede ser consultada en las notas del curso de Álgebra Moderna I de la Dra. Avella, escritas por la alumna Cecilia Villatoro.

Nota

Toda permutación es una composición de transposiciones. Puede que haya varias composiciones que den la misma permutación, pero todas son la composición de un número par de transposiciones o todas son la composición de un número impar de transposiciones.

Definición

Sean $n$ un natural positivo y $\sigma \in S_n$. Decimos que $\sigma$ es par si es la composición de un número par de transposiciones, e impar en caso contrario.

El signo de $\sigma$ es $+1$ en el primer caso y $-1$ en el segundo caso y se denota por $sgn\,\sigma.$

Ejemplo

Considera el conjunto

$S_3=\set{\sigma:\set{1,2,3}\to\set{1,2,3}\mid \sigma\,\,es\,\,biyectiva }.$

Podemos dar todos elementos del conjunto, es decir todas las funciones biyectivas :

$\sigma_1=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 2 & 3 \end{array}\right) \end{equation*}$, $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$, $\sigma_3=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 3 & 2 \end{array}\right) \end{equation*}$, $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$, $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}$, $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}.$

¿Cuál es el signo de $\sigma_2$?

$\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ es un transposición ya que intercambia el $1$ con el $2$ y deja fijo al $3$, entonces $\sigma_2$ es impar y $sgn\,\sigma_2=-1$.

Observa que $\sigma_3=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 3 & 2 \end{array}\right) \end{equation*}$ y $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ también son transposiciones y por lo tanto también su signo es $-1$.

¿Cuál es el signo de $\sigma_1$?

Observa que la composición de $\sigma_2\circ \sigma_2$ es igual a $\sigma_1$.

Como $\sigma_2\circ \sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 2 & 3 \end{array}\right) \end{equation*}$ $=\sigma_1$, siendo $\sigma_2$ una transposición, entonces $\sigma_1$ es par pues la composición de $\sigma_2$ con si misma. Su signo por lo tanto es $1$, $sgn\,\sigma_1=+1$.

¿Cuál es el signo de $\sigma_5$?

Observa que la composición de $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ con $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ nos da $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}.$

Así, $\sigma_4\circ \sigma_2=\sigma_5$, con $\sigma_4$ y $\sigma_2$ transposiciones.

Concluimos que $\sigma_5$ es par y por tanto $sgn\,\sigma_5=+1.$

¿Cuál es el signo de $\sigma_6$?

La composición de $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ con $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ nos da $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}.$

Así, $\sigma_2\circ \sigma_4=\sigma_6$, con $\sigma_2$ y $\sigma_4$ transposiciones.

Concluimos que $\sigma_6$ es par y por tanto su signo es $+1$.

Observemos que $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}$ es la inversa de $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}$, por eso es la composición de las mismas transposiciones que $\sigma_5$ pero en orden inverso.

Los que acabamos de ver es que:

$\sigma_1,\sigma_5,\sigma_6$ son pares y $\sigma_2,\sigma_3,\sigma_4$ son impares.

Con estos elementos vamos a dar la definición de lo que es el determinante de una matriz.

Pues revisar el siguiente video para ayudarte a entender mejor la definición:

Definición

Sean $n$ un natural positivo y $A\in \mathscr M_{n\times n}(\mathbb R)$. El determinante de $A$ es:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$

Observación Sea $A=\begin{equation*} \left(\begin{array}{rr} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*}\in \mathscr M_{n\times n}(\mathbb R)$, entonces

$\det\,A=a_{11}a_{22}-a_{12}a_{21}.$

Esto se debe a que las únicas permutaciones de $\{1,2\}$ son $\sigma_1=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 2 \end{array}\right) \end{equation*}$, que es la identidad y tiene signo $+1$, y la transposición $\sigma_2=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right) \end{equation*}$ que tiene signo $-1.$ Así,

$\det\,A=sgn\,\sigma_1\,a_{1\sigma_1(1)}a_{2\sigma_1(2)}+sgn\,\sigma_2\,a_{1\sigma_2(1)}a_{2\sigma_2(2)}=(+1)\,a_{11}a_{22}+(-1)\,a_{12}a_{21}=a_{11}a_{22}-a_{12}a_{21}.$

Ejemplos.

En estos ejemplos veremos lo que sucede con el determinante, cuando aplicamos las distintas operaciones elementales a una matriz.

$1.$ Considera las matrices $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$, $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ -1 &5 \\ \end{array}\right) \end{equation*}$, $A^{\prime\prime}=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 2 & 9 \\ \end{array}\right) \end{equation*}.$

Si obtenemos sus determinantes tenemos que:

$det\,A’=4-6=-2,\,\,det\,A^{\prime\prime}=5-(-2)=7\,\,,det\,A=9-4=5$

En este ejemplo, el segundo renglón de $A^{\prime\prime}$ se obtiene de la suma de los segundos renglones de $A$ y $A^{\prime\prime}$ y su primer renglón coincide con los de $A$ y $A^{\prime}$,

Lo que estamos observando es que:

$det\,A^{\prime\prime}=det\,A+det\,A^{\prime}$.

$2.$ Sean $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y $A=\begin{equation*} \left(\begin{array}{rr} 3 & 6 \\ 3 & 4 \\ \end{array}\right) \end{equation*}.$

El primer renglón de $A$ se obtiene multiplicando por $3$ el primer renglón de $A’$

Los determinantes de estas matrices son:

$det\,A’=4-6=-2,\,\,det\,A=12-18=-6$

y lo que estamos observando es que:

$det\,A=3det\,A’.$

$3.$ Veamos qué sucede con el determinante cuando intercambiamos dos renglones en una matriz. Considera las matrices:

$A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y $A=\begin{equation*} \left(\begin{array}{rr} 3 & 4 \\ 1 & 2 \\ \end{array}\right) \end{equation*},$

$det\,A’=4-6=-2,\,\,det\,A=6-4=2.$

En este caso tenemos que:

$det\,A=-det\,A’.$

$4.$ Veamos qué pasa cuando en una matriz hay dos renglones iguales.

Sea $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 2 \\ \end{array}\right) \end{equation*},$ entonces

$det\,A=2-2=0$, es decir el determinante vale cero.

$5.$ Veamos qué pasa cuando le sumamos a un renglón un múltiplo de otro.

Sea $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y considera su matriz equivalente $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 0 \\ \end{array}\right) \end{equation*}$, que se obtiene de $A’$, sumando al renglón dos de $A’$ menos dos veces el primero.

Entonces $det\,A’=4-6=-2,\,\,det\,A=0-2=-2.$ En este caso

$det\,A=det\,A’.$

es decir el determinante coincide.

$6.$ Consideremos una matriz con un renglón de ceros, por ejemplo

$A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 0 & 0 \\ \end{array}\right) \end{equation*}.$ Notamos que su determinante es $det\,A=0-0=0$.

$7.$ Por último veamos qué pasa con el determinante al transponer una matriz.

Sean $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y considera su transpuesta $A^t=\begin{equation*} \left(\begin{array}{rr} 1 & 3 \\ 2 & 4 \\ \end{array}\right) \end{equation*}$

Si calculamos sus determinantes tenemos que:

$det\,A=4-6=-2,\,\,det\,A^t=4-6=-2.$

En este caso:

$det\,A=det\,A^t.$

Tarea Moral

$1.$ Encuentra todas las permutaciones de $\set{1,2,3,4}$ y su signo. ¿Cuántas hay en total?, ¿cuántas son pares?

$2.$ Sea $A=\begin{equation*} \left(\begin{array}{rr} -3& 1 \\ 7 & 9 \\ \end{array}\right) \end{equation*}$ y calcula:

$i)$ Su determinante.

$ii)$ El $det\,B$, donde $B$ se obtiene de $A$ multiplicando su segundo renglón por $4.$

$iii)$ El $det\,C$, donde $C$ se obtiene de $A$ intercambiando sus renglones entre sí.

$iv)$ El $det\,D$, donde $D$ se obtiene de $A$ sumando al segundo renglón dos veces el primero.

Más adelante

En la siguiente nota veremos que las propiedades observadas en los ejemplos se cumplen en general, para ello usaremos la definición que dimos de determinante.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 39. Ejemplos de sistemas de ecuaciones.

Enlace a la nota siguiente. Nota 41. Propiedades de los determinantes.

Álgebra Superior I: Reducción de Gauss-Jordan

Por Eduardo García Caballero

Introducción

En la entrada anterior vimos que los sistemas de ecuaciones se encuentran íntimamente relacionados con los vectores y las matrices. Teniendo esto en cuenta, en esta entrada abordaremos una estrategia que nos permitirá encontrar soluciones de los sistemas de ecuaciones lineales.

Operaciones elementales por filas

Antes de pasar a describir el algoritmo con el cual podremos resolver un sistema de ecuaciones lineales, deberemos definir algunas operaciones y conceptos que nos ayudaran a efectuarlo. Empecemos con una lista de operaciones que se pueden aplicar a las matrices, las cuales son con conocidas como operaciones elementales por filas.

Para esto, consideremos una matriz
\[
A=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix},
\]
y veamos cómo la afecta cada una de estas operaciones.

La primera de estas operaciones es el reescalamiento. Esta operación consiste en seleccionar una fila de una matriz, y multiplicar cada una de las entradas de esta fila por un mismo número real distinto de cero. Por ejemplo, si reescalamos la tercera fila de $A$ por el número $-3$, obtendremos la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
(-3)(-1/3) & (-3)(4) & (-3)(0) \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
1& -12 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Otra operación que podemos aplicar a las matrices es la trasposición, la cual consiste en intercambiar el contenido de dos filas distintas. Por ejemplo, si transponemos las filas 2 y 4 de $A$, el resultado será la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
9 & -3 & 2/3 \\
-1/3 & 4 & 0 \\
\sqrt{2} & -1 & 2
\end{pmatrix}.
\]

La última de las operaciones que nos interesa es la transvección. Esta consiste en sumar el múltiplo de una fila (el resultado de multiplicar cada entrada de una fila por un mismo escalar) a otra fila (la suma se realiza entrada por entrada). Por ejemplo, si en $A$ realizamos la transvección que corresponde a “sumar 3/2 de la cuarta fila a la primera fila”, obtendremos la matriz
\[
\begin{pmatrix}
5 + (3/2)(9) & \pi+(3/2)(-3) & 3+(3/2)(2/3) \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
37/2 & -9/2+\pi & 4 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Si recuerdas, todos los sistemas de ecuaciones se pueden escribir como $Ax=b$. Las operaciones elementales son muy importantes por las siguientes dos razones:

  • Si aplicamos la misma operación elemental a $A$ y $b$ para obtener la matriz $A’$ y el vector $b’$, entonces $Ax=b$ y $A’x=b’$ tienen exactamente el mismo conjunto solución. Decimos que «las operaciones elementales no cambian las soluciones del sistema».
  • Usando operaciones elementales se puede llevar el sistema $Ax=b$ a un sistema mucho más sencillo $A_{red}x=b_{red}$ (que discutiremos más abajo). Entonces «las operaciones ayudan a simplificar un sistema de ecuaciones».

Juntando ambas observaciones, con operaciones elementales podemos llevar cualquier sistema de ecuaciones a uno mucho más sencillo y con el mismo conjunto solución.

Puedes intentar convencerte de la primera afirmación pensando en lo siguiente. En un reescalamiento de filas corresponde a multiplicar por una constante no nula ambos lados de una ecuación; la transposición corresponde a cambiar el orden en el que aparecen dos ecuaciones diferentes; mientras que la transvección corresponde a sumar un múltiplo de una ecuación a otra ecuación, y el sistema tiene las mismas soluciones pues, si un conjunto de valores es solución para dos ecuaciones, entonces es solución para cualquier combinación lineal de estas. En un curso de Álgebra Lineal I puedes encontrar las justificaciones con mucho más detalle.

En las siguientes secciones hablamos un poco más de la segunda afirmación.

Forma escalonada y escalonada reducida para una matriz

Además de las operaciones elementales por filas, es importante definir algunos conceptos.

Comencemos con el concepto de pivote: diremos que una entrada de una matriz es un pivote si es el primer elemento distinto de cero en una fila.

Diremos que una matriz se encuentra en forma escalonada si se cumple: 1. Todas las filas nulas se encuentran hasta abajo; 2. Todos los pivotes de filas no-nulas tienen valor 1; 3. El pivote de cada fila se encuentra la derecha del pivote de una fila superior. Es fácil identificar las matrices en forma escalonada porque parecen “estar en escalerita”. Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 9 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\]
se encuentra en forma escalonada, mientras que las matrices
\[
\begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 0 & 9 & 2 \\
0 & 3 & 0 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 6 & 8 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & 2
\end{pmatrix}
\]
no lo están. ¿Puedes justificar por qué?

Por su parte, diremos que una matriz se encuentra en forma escalonada reducida si está en forma escalonada y, además, si hay un pivote en alguna fila, todas las entradas que no sean pivote en la misma columna del pivote son iguales a $0$ (Ojo. Siempre hablamos de pivotes de renglones).

Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
está en forma escalonada reducida.

Como recordarás de la entrada anterior, un sistema de ecuaciones lineales
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se puede codificar como
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Como podemos cambiar el nombre de las variables, pero el vector de soluciones sigue siendo el mismo, es común codificar el sistema como una única matriz aumentada
\[
\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\
\middle|
\
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{matrix}
\right).
\]

Aquí pusimos una línea vertical, pero sólo es por ayuda visual. Esa matriz la puedes tratar como cualquier matriz que hemos platicado.

Teniendo esto en cuenta, las matrices en forma escalonada reducida nos son de gran utilidad al resolver sistemas de ecuaciones lineales. Por ejemplo, consideremos el sistema
\[
\begin{cases}
x + 3y + 2w &= 8 \\
z + w &= 9,
\end{cases}
\]
el cual tiene como matriz aumentada a
\[
\left(
\begin{matrix}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
8 \\
9
\end{matrix}
\right),
\]
la cual se encuentra en forma escalonada.

Gracias a que la matriz está en forma escalonada, podemos elegir en orden inverso $w$, $z$, $y$, $x$ a las variables libres y pivote como en la entrada anterior. En este caso, podemos elegir como queramos el valor de $w$ ($w$ es variable libre). Usando la segunda ecuación, podemos despejar $z$ en términos de $w$ ($z$ es variable pivote). Estos dos valores los sustituimos en la primera ecuación y notamos que $y$ puede ser lo que queramos ($y$ es variable libre). Finalmente, $x$ queda totalmente determinado por las demás variables ($x$ es pivote). Las variables pivote justo corresponden a columnas de la matriz que tengan pivote de alguna fila.

La ventaja de la forma escalonada es que podremos ir obteniendo fácilmente el valor de cada variable “de abajo hacia arriba”. En el caso de un sistema cuya matriz se encuentre en forma escalonada reducida, será aún más sencillo pues ya no tendremos que sustituir valores y obtenemos el despeje directamente.

Teorema de reducción de Gauss-Jordan

El siguiente teorema relaciona las operaciones elementales por filas con la forma escalonada reducida de una matriz.

Teorema (de reducción de Gauss-Jordan o reducción gaussiana). Cualquier matriz con entradas reales se puede a una forma escalonada reducida aplicando una cantidad finita de pasos.

A continuación presentamos un algoritmo con el cual podemos pasar de una matriz arbitraria a una matriz en su forma escalonada reducida. Para hacer más sencilla su aplicación, nos enfocaremos en comprender la estrategia que sigue el algoritmo. La descripción formal del algoritmo y demostración de que en efecto funciona como esperamos es un tema que abordarás en el curso de Álgebra Lineal I (puedes echarle un ojo a esta entrada).

Primeramente, describiremos los pasos del algoritmo, al que se le conoce como reducción de Gauss-Jordan o reducción gaussiana.

Estrategia: Iremos arreglando la matriz de izquierda a derecha. Para ello, haremos los siguientes pasos repetidamente.

  1. Buscamos la primera columna de la matriz (de izquierda a derecha) que no tenga puros ceros.
  2. Una vez encontrada dicha columna, buscamos la primera entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos la fila que contiene a dicha entrada hasta arriba mediante la operación de transposición.
  4. Multiplicamos cada entrada de la fila que acabamos de mover hasta arriba por el inverso multiplicativo de su primera entrada (aquí usamos la operación de reescalamiento). La primera entrada de esta fila ahora será 1.
  5. Mediante la operación de transvección, sustraemos múltiplos de la primera fila al resto de renglones de la matriz, de modo que el resto de los valores en la columna correspondiente a la primera entrada de la fila en la que estamos trabajando pasen a ser 0 (como puedes observar, la entrada primera entrada no-nula de la fila en la que estamos trabajando ahora será un pivote).
  6. Ignorando la primera fila, buscamos la primera columna (de izquierda a derecha) que no tenga puros ceros.
  7. Repetimos los pasos anteriores (2 a 6), pero ahora, en vez de mover la fila con la que estamos trabajando “hasta arriba”, la moveremos inmediatamente después de la última fila con la que trabajamos.
  8. Hacemos esto hasta haber arreglado todas las columnas.

Ejemplo de reducción de Gauss-Jordan

Ahora, como ejemplo, veamos cómo podemos implementar este algoritmo en la matriz
\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 & 3 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
la cual, si la consideramos como la matriz aumentada
\[
\left(
\begin{matrix}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
3 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
4 \\
3 \\
2 \\
1
\end{matrix}
\right),
\]
corresponde al sistema de ecuaciones
\[
\begin{cases}
y + 2z + 3w &= 4 \\
-x + z + 2w &= 2 \\
3x + y -z &= 0 \\
y + z + w &= 1.
\end{cases}
\]

Buscamos la primera la primera columna no nula, la cual resulta ser la primera columna de la matriz. En esta columna, vemos que la segunda entrada es la primera entrada distinta de cero. Entonces, mediante trasposicón, intercambiamos las filas 1 y 2 (“movemos la segunda columna hasta arriba”):
\[
\begin{pmatrix}
-1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3& 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, nos fijamos en la primera entrada no nula de la primera fila, que es $-1$, y reescalamos la fila por su inverso multiplicativo, que es $-1$:
\[
\begin{pmatrix}
(-1)(-1) & (-1)(0) & (-1)(1) & (-1)(2) & (-1)(3) \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, observamos el valor de la primera entrada de la tercera fila, el cual es $3$. Entonces, mediante transvección, sumamos $-3$ veces la fila 1 a la fila 3:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3+(-3)(1) & 1+(-3)(0) & -1+(-3)(-1) & 0+(-3)(-2) & 2+(-3)(-3) \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
y realizamos lo mismo, pero ahora considerando la fila 4.
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0+(0)(1) & 1+(0)(0) & 1+(0)(-1) & 1+(0)(-2) & 1+(0)(-3)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Como puedes observar, ninguna de las transvecciones influye en la otra, de manera que las podemos enlistar en un único paso. Además, al hacer una transvección con escalar $0$ no cambia nada de la fila, así que estas no se necesita hacerlas.

Ahora, ignorando la última fila con la que trabajamos (que es la primera), buscamos la primera columna no-nula, que en este caso será la segunda, posteriormente buscamos el primer elemento no nulo de la columna, el cual se encuentra en la segunda fila, y la “movemos enseguida de la última fila con la que trabajamos” (en este caso no tendríamos que realizar ninguna transposición, o bien, la transposición sería la de la segunda fila consigo misma, ya que ya se encuentra en seguida de la última fila con la que trabajamos). Después, reescalamos por el inverso multiplicativo del primer elemento no nulo de la fila, que es $1$:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
(1)(0) & (1)(1) & (1)(2) & (1)(3) & (1)(4) \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
(observa que reescalar por $1$ deja todas las entradas iguales) y posteriormente realizamos las transvecciones necesarias para que el resto de entradas de la segunda columna sean cero.
\[
\begin{pmatrix}
1 & 0+(0)(1) & -1+(0)(2) & -2+(0)(3) & -3+(0)(4) \\
0 & 1 & 2 & 3 & 4 \\
0 & 1+(-1)(1) & 2+(-1)(2) & 6+(-1)(3) & 11+(-1)(4) \\
0 & 1+(-1)(1) & 1+(-1)(2) & 1+(-1)(3) & 1+(-1)(4)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 7 \\
0 & 0 & -1 & -2 & -3
\end{pmatrix}
\]

De manera similar, ignorando ahora las primeras dos filas, buscamos la primera columna no-nula, la cual corresponde ahora a la tercera, y buscamos el primer elemento no-nulo de esta columna, el cual se encuentra en la cuarta fila. Entonces, transponemos las filas 3 y 4 para que el primer elemento no-nulo quede inmediatamente después de la última fila con la que trabajamos:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Seguidamente, reescalamos la tercera fila,
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
(-1)(0) & (-1)(0) & (-1)(-1) & (-1)(-2) & (-1)(-3) \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
\]
y relizamos las transvecciones necesarias:
\[
\begin{pmatrix}
1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(2) & -3+(1)(3) \\
0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(2) & 4+(-2)(3) \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Finalmente, como nuestra última columna no cero es la cuarta y la primera fila no cero (ignorando las filas que ya tienen pivote) tiene un $3$, reescalamos de la siguiente manera:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
(1/3)(0) & (1/3)(0) & (1/3)(0) & (1/3)(3) & (1/3)(7)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix},
\]

Y hacemos las transvecciones necesarias:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0+(1)(0) & 1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(7/3) \\
0+(-2)(0) & 0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(7/3) \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1/3 \\
0 & 0 & 1 & 0 & -5/3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}.
\]

Notemos que si consideramos esta matriz como la matriz aumentada
\[
\left(
\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
0 \\
1/3 \\
-5/3 \\
7/3
\end{matrix}
\right),
\]
este corresponde al sistema
\[
\begin{cases}
x = 0 \\
y = 1/3 \\
z = -5/3 \\
w = 7/3,
\end{cases}
\]
del cual sabemos inmediatamente su solución. Como mencionamos anteriormente, los sistemas de ecuaciones asociados a la matriz original y la matriz escalonada reducida resultante de aplicar operaciones elementales por filas, consideradas como matrices aumentadas, tienen las mismas soluciones. Entonces, ¡este último sistema es la solución para nuestro sistema de ecuaciones original!

Como podemos ver, los sistemas de ecuaciones asociados a una matriz en su forma escalonada reducida son fáciles de resolver por que vamos escogiendo valores arbitrarios para las variables en posición que no es pivote, mientras que podemos obtener el valor de las variables que son pivote mediante despejes sencillos.

Recuerda que este algoritmo funciona para cualquier matriz con entradas reales. ¿Podrías proponer otro sistema de ecuaciones e implementar la misma estrategia para resolverlo?

Más adelante…

Ahora vimos una estrategia para resolver sistemas de ecuaciones lineales de distintos tamaños. En las siguientes entradas conoceremos más propiedades sobre las matrices. Estas nuevas propiedades también juegan un rol fundamental en poder determinar de manera más rápida cuándo un sistema de ecuaciones lineales tiene solución, y tener otras alternativas para resolverlo bajo ciertas condiciones.

Tarea moral

  1. Aplica reducción gaussiana a las siguientes matrices:
    $$\begin{pmatrix} 5 & 2 \\ 13 & 5 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$
  2. Resuelve el siguiente sistema de ecuaciones llevándolo a forma escalonada reducida, y luego aplicando a técnica de variables libres y pivote:
    $$\begin{cases} a + b + c + d + e &= -5\\2a+2b-3c-3d+e&=5 \\ a – b + c – d + e &= 0. \end{cases}$$
  3. Sea $I$ la matriz identidad de $n\times n$ y $A$ otra matriz de $n\times n$. Sea $E$ la matriz obtenida de aplicar una transvección a $I$. Sea $B$ la matriz de aplicar esa misma transvección a $A$. Demuestra que $EA=B$.
  4. Demuestra que una matriz $A$ de $2\times 2$ es invertible si y sólo si al aplicar reducción de Gauss-Jordan al final se obtiene la matriz identidad $I$. ¿Puedes hacerlo para matrices de $3\times 3$? ¿De $n\times n$?
  5. Sea $A$ una matriz de $2\times 2$ invertible. A $A$ le «pegamos» una identidad del mismo tamaño a la derecha para llegar a $(A|I)$, por ejemplo $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se convertiría en $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$. Muestra que si aplicamos reducción de Gauss-Jordan a $(A|I)$, se llega a $(I|A^{-1})$. Intenta extender tu demostración a matrices de $3\times 3$ ó $n\times n$.

Entradas relacionadas

Geometría Moderna II: Los Diez Problemas de Apolonio

Por Armando Arzola Pérez

Introducción

Un problema clásico de la geometría es el Problema de Apolonio el cual enuncia:

Encontrar una circunferencia dado tres condiciones, las cuales pueden surgir de lo siguiente:

  1. La circunferencia pasa por uno o más puntos «P»
  2. La circunferencia es tangente a una o más líneas «L»
  3. La circunferencia debe de ser tangente a uno o más círculos «C»

De lo anterior nacen los 10 Problemas de Apolonio (Las soluciones se darán a partir de construcciones).

Los Diez Problemas de Apolonio

Problema 1. Construir una circunferencia que pase por tres puntos dados (PPP).

Construcción. Dados tres puntos $A$, $B$ y $C$, de los cuales podemos formar un triángulo $\triangle ABC$. Trazando las mediatrices de cada lado encontraremos el circuncentro «$O$», que resulta ser el centro de la circunferencia circunscrita al triángulo $\triangle ABC$. De esta forma podemos dibujar la circunferencia $C(O,r)$.

$\square$

Problema 2. Construir una circunferencia que pase por dos puntos dados y tangente a una recta dada (PPL).

Construcción. Sean $A$ y $B$ dos puntos dados y $r$ una recta tangente a la circunferencia buscada.

El centro de la circunferencia buscada $C$ debe estar ubicada en la mediatriz del segmento $AB$, por ello dibujemos la mediatriz a través del arco de dos circunferencias con centro $A$ y centro $B$ las cuales se intersecan y se puede trazar la mediatriz.

Ahora tomamos un punto «$D$» de la mediatriz, del cual lo tomamos como centro de una circunferencia $C_1$ que pase por $A$ y $B$. También trazamos el segmento $AB$ que corte $r$ en $C$.

Debemos de encontrar una recta tangente a $C_1$ y que pase por el punto $C$. Por ello unimos $DC$ y sacamos la mediatriz con centro $E$, trazamos la circunferencia $C_2$ que interseca a $C_1$ en dos puntos del cual solo nos interesa uno que es $F$ y al unirlo con $C$ este forma una recta tangente a $C_1$.
Por ahora tenemos por potencia $CA * CB = CF^2$.

Ahora trazamos el arco de circunferencia con centro $C$ y radio $CF$ que corta a la recta $r$ en dos puntos $T_1$ y $T_2$ cumplen $CA * CB =CF^2 =CT_1^2 = CT_2^2$ perpendiculares por $T_1$ y otra por $T_2$, y cortan a la mediatriz $AB$.
Y en esas intersecciones van a estar los centros de las circunferencias que pasan por $A$, $B$ y tangentes a $r$.

$\square$

Problema 3. Construir una circunferencia tangente a dos líneas dadas y que pasa por un punto (PLL).

Construcción. Sean $l_1$ y $l_2$ dos rectas dadas y $P$ un punto dado, notemos que el centro de la circunferencia buscada es un punto de la bisectriz; Por otro lado, la circunferencia buscada debe contener a $P$ y $P’$ punto simétrico respecto a la bisectriz.
Si observamos tenemos el caso del problema 2 PPL, ya que tenemos dos puntos $P$ y $P’$ por los cuales pasara la circunferencia buscada, además de que es tangente a una recta $l_1$. Por tal motivo se puede seguir la misma construcción anterior para llegar a la solución.

$\square$

Problema 4. Construir un círculo tangente a tres líneas dadas (LLL).

Construcción. Sean tres rectas dadas $l_1$, $l_2$ y $l_3$, las cuales forman un triángulo $\triangle ABC$. Trazando las bisectrices de los ángulos internos del triángulo $\triangle ABC$ se intersecan en un único punto $O$.
El punto $O$ es el centro de la circunferencia inscrita del triángulo $\triangle ABC$ , ahora trazamos las perpendiculares por $O$ a cada lado y encontraremos el radio $OS$ el cual nos da la circunferencia tangente a $l_1$, $l_2$ y $l_3$.

$\square$

Problema 5. Construye una circunferencia pasando por dos puntos dados y tangente a un círculo dado (PPC).

Construcción. Existen varios casos para este problema, en este caso tomaremos a los puntos $A$ y $B$ fuera de la circunferencia dada $C(O,r)$.
Trazamos la mediatriz de $A$ y $B$, después tomamos un punto cuál sea $x$ en la mediatriz y generamos una circunferencia con centro en $x$ y radio $A$ o $B$ y que corta a la circunferencia $C(O,r)$. Los dos puntos de intersección los llamaremos $D$ y $E$ los uniremos y prolongaremos hasta que corte a la recta $AB$, el punto de intersección será $F$.

Unimos $F$ con $O$ y sacamos su mediatriz, denotamos a $G$ al punto de intersección de $FO$ con la mediatriz. Ahora trazamos la circunferencia con centro $G$ y radio $O$ la cual corta a $C(O,r)$ en $H$ y $I$.

Si unimos $I$ con $O$ corta a la mediatriz $AB$ en $O_1$, el cual será el centro de la circunferencia buscada con radio $O_1I$ y por lo cual pasa por $A$, $B$ y tangente $C(O,r)$. Ocurre lo mismo si unimos $H$ con $O$, corta a la mediatriz de $AB$ en $O_2$, este sería el centro $O_2$ y radio $O_2A$, el cual genera la otra circunferencia tangente a $C(O,r)$ y pasa por $A$ y $B$.

$\square$

Problema 6. Construir una circunferencia que pase por un punto dado, tangente a una recta dada y tangente a un círculo dado (PLC).

Construcción. Para este problema 6 podemos encontrar cuatro soluciones, pero por ahora solo se dará una parte de la construcción, ya que lo demás ya se ha venido trabajando en las construcciones anteriores.
Tenemos la circunferencia $C$, el punto $P$ y la recta $r$. Trazamos una perpendicular a $r$ que pase por $C$, ahora sea $O$ el punto de corte que será el centro de inversión que convierte la circunferencia $C$ en la recta $r$, entonces los puntos $x$ y $x’$ son inversos.
Ahora debemos encontrar el punto inverso de $P$, por ello trazamos la mediatriz de $xx’$ y trazamos la mediatriz de $xP$, estas dos rectas cortan en $Y$ el cual es el centro de circunferencia que corto a $x$, $x’$ y $P$, y el punto de intersección de esta circunferencia con la recta $OP$ tendremos $P’$.

Nos daremos cuenta de que tenemos el mismo problema 2 PPL, por lo cual solo se debe seguir la misma construcción para hallar las circunferencias buscadas.

De aquí en adelante se enunciarán únicamente los problemas faltantes.

Problema 7. Construir una circunferencia que pase por un punto $P$ dado y dos círculos tangentes a esta circunferencia buscada (PCC) (4 soluciones).

Problema 8. Construir una circunferencia tangente a dos rectas dadas y a un círculo dado (LLC) (8 soluciones).

Problema 9. Construir una circunferencia tangente a una línea dada y a dos círculos dados (LCC) (8 soluciones).

Problema 10. (Problema de Apollonius) Construir una circunferencia tangente a tres círculos dados (CCC).

Más adelante…

Una vez visto el tema de Polos y Polares, es hora de realizar unos ejercicios que se dejaran, todo con el objetivo de fortalecer los temas vistos.

Entradas relacionadas