Ecuaciones Diferenciales I: Valores y vectores propios para resolver sistemas lineales

Por Omar González Franco

En la vida real, te lo aseguro, no hay algo como el álgebra.
– Fran Lebowitz

Introducción

Ya hemos dado inicio con el desarrollo de métodos de resolución de sistemas lineales de primer orden. En la entrada anterior desarrollamos el método de eliminación de variables que, a pesar de ser muy limitado, es un método sencillo y práctico para resolver sistemas con dos ecuaciones diferenciales lineales de primer orden.

Debido a que un sistema lineal puede ser visto como una ecuación matricial los resultados de álgebra lineal sobre valores y vectores propios de matrices pueden ser aplicados aquí. En esta entrada daremos un breve repaso sobre estos conceptos y veremos cómo es que estos resultados nos pueden ayudar a determinar la solución general de algunos sistemas de ecuaciones diferenciales.

La teoría que desarrollaremos a continuación es aplicable a sistemas lineales homogéneos con coeficientes constantes.

Sistemas lineales homogéneos

Un sistema lineal homogéneo con coeficientes constantes es de la forma

y1(t)=a11y1+a12y2++a1nyny2(t)=a21y1+a22y2++a2nyn(1)yn(t)=an1y1+an2y2++annyn

Si A es la matriz de n×n con componentes constantes

(2)A=(a11a12a1na21a22a2nan1an2ann)

entonces el sistema lineal a resolver es

(3)Y=AY

En la segunda entrada de esta unidad vimos que la solución general del sistema lineal homogéneo

Y=(110110003)Y

es

Y(t)=c1(110)e0t+c2(110)e2t+c3(001)e3t

Y en la entrada anterior vimos que la solución del sistema lineal homogéneo

Y=(4121)Y

es

Y(t)=c1(12)e2t+c2(11)e3t

Aunque para el primer caso aún no sabemos cómo obtener esa solución lo que sabemos es que efectivamente corresponde a la solución general del sistema homogéneo. Notemos que cada vector solución es de la forma

Yi=(k1k2k3)eλit,i=1,2,3

donde ki y λi, i=1,2,3, son constantes. Lo mismo para el segundo caso, con ki, λi, i=1,2, constantes. Esta particularidad nos hace preguntarnos si siempre es posible hallar una solución de la forma

(4)Y(t)=(k1k2kn)eλt=Keλt

como solución general del sistema lineal (3).

La respuesta es que sí, pero antes de continuar con nuestro desarrollo nos parece pertinente repasar brevemente algunos conceptos de Álgebra Lineal, en particular el de valores y vectores propios.

Valores y vectores propios

Sea T:VW una transformación lineal, en álgebra lineal muchas veces resulta útil encontrar un vector v en el espacio vectorial V tal que Tv y v sean paralelos, es decir, se busca un vector v y un escalar λ, tal que

(5)Tv=λv

Recordemos que si v0 y λ satisfacen la ecuación (5), entonces λ se denomina un valor característico o valor propio de T y v un vector característico o vector propio de T correspondiente al valor propio λ.

También recordemos que si V tiene dimensión finita, entonces la transformación T se puede representar por una matriz AT, de manera que se pueden definir los valores y vectores propios de esta matriz.

Denotaremos con Mn×n al conjunto de todas las matrices cuadradas de n×n con componentes reales y constantes.

Como nota interesante, los valores y vectores propios también son conocidos como valores y vectores característicos o eigenvalores y eigenvectores, donde el término eigen es un término alemán que significa propio. En este curso los llamaremos valores y vectores propios.

Recordemos nuevamente el concepto de matriz inversa.

Para el caso especial A=I, con I la matriz identidad, se tiene que para cualquier vector vV

(8)Av=Iv=v

Así, el único valor propio de A es 1 y todo v0V es un vector propio de I.

Otra observación interesante es que cualquier múltiplo de un vector propio de A es también un vector propio de A, con el mismo valor propio.

(9)A(cv)=cAv=cλv=λ(cv)

Ecuación característica

Supongamos que λ es un valor propio de A, entonces existe un vector diferente de cero

v=(v1v2vn)0

tal que

(10)Av=λv=λIv

Reescribiendo esto, se tiene

(11)(AλI)v=0

Si A es una matriz de n×n, la ecuación anterior corresponde a un sistema homogéneo de n ecuaciones con las incógnitas v1,v2,,vn. Como se ha supuesto que v0, entonces el sistema no tiene solución trivial y por tanto el determinante de (11) debe ser cero.

(12)|AλI|=0

De manera equivalente, si ocurre que |AλI|0, entonces la única solución a (11) es la trivial v=0, lo que significa que λ no es un valor propio de A.

Estos resultados quedan establecidos en el siguiente teorema.

La relación (13) es muy importante, tanto que merece nombres particulares.

El polinomio P(λ) es del mismo grado que el número de filas y columnas de la matriz A. Si AMn×n, entonces P(λ) es un polinomio de grado n en λ. Por ejemplo, si

(14)A=(abcd)

entonces,

(15)AλI=(abcd)(λ00λ)=(aλbcdλ)

y

P(λ)=|AλI|=(aλ)(dλ)bc(16)=λ2(a+d)λ+(adbc)

La matriz es de 2×2 y el polinomio característico es un polinomio de grado 2.

El teorema fundamental del álgebra nos dice que cualquier polinomio de grado n con coeficientes reales o complejos tiene exactamente n raíces contando multiplicidades y dado que cualquier valor propio de A es una raíz de la ecuación característica de A, se concluye que, contando multiplicidades, toda matriz AMn×n tiene exactamente n valores propios.

Realicemos dos ejemplos sencillos en donde determinemos los valores y vectores propios de una matriz. Uno en donde los valores propios sean distintos (con multiplicidad 1) y uno en donde los valores propios sean números complejos.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

A=(811642083)

Solución: De acuerdo a (13), determinemos la ecuación característica.

|81λ1642083λ|=(81λ)(83λ)16(420)=0

Reordenando obtenemos que la ecuación característica es

λ22λ3=0

y el polinomio característico es

P(λ)=λ22λ3

Resolviendo para λ se obtienen las raíces λ1=1 y λ2=3. Para obtener los vectores propios buscamos un vector v0, tal que se cumpla (11) para cada valor propio λ. Comencemos con λ1.

Caso 1: λ1=1.

(81(1)1642083(1))(v1v2)=(801642084)(v1v2)=(00)

Este resultado lo podemos escribir como las siguientes dos ecuaciones.

80v1+16v2=0420v1+84v2=0

Que en realidad corresponden a una sola.

5v1+v2=0v2=5v1

Si elegimos v1=1, entonces v2=5, así el primer vector propio es

v1=(15)

Caso 2: λ2=3.

(81316420833)(v1v2)=(841642080)(v1v2)=(00)

La ecuación que se obtiene es

21v1+4v2=0v2=214v1

Por conveniencia elegimos v1=4, entonces v2=21, así

v2=(421)

En conclusión, los valores y vectores propios de la matriz A son λ1=1, λ2=3, v1=(15) y v2=(421), respectivamente.

◻

Realicemos el segundo ejemplo.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

A=(2152)

Solución: Determinemos la ecuación característica.

|2λ152λ|=(2λ)(2λ)+5=0

La ecuación característica es

λ2+1=0

De donde λ1=i y λ2=i. Determinemos los vectores propios.

Caso 1: λ1=i.

(2i152i)(v1v2)=(00)

Las ecuaciones que se obtienen son

(2i)v1v2=05v1(2+i)v2=0

Resolviendo el sistema se obtiene que v1=2+i y v2=5, así

v1=(2+i5)

Caso 2: λ2=i

(2+i152+i)(v1v2)=(00)

Las ecuaciones que se obtienen son

(2+i)v1v2=05v1+(2+i)v2=0

Resolviendo el sistema se obtiene que v1=2i y v2=5, así

v2=(2i5)

◻

En caso de requerir conocer más a fondo sobre el algoritmo que llevamos a cabo para obtener los valores y vectores propios de una matriz se recomienda revisar directamente en el curso de Álgebra Lineal I. Recordemos que aquí sólo estamos haciendo un breve repaso.

Para concluir con nuestro repaso, enunciemos un teorema de suma importancia que nos será de utilidad mas adelante. Haremos la demostración por inducción.

Demostración: Como el caso m=1 se trata de un solo vector es evidente que se satisface el teorema, hagamos el caso m=2, para ello consideremos la combinación lineal

(17)c1v1+c2v2=0

Multipliquemos ambos lados de la ecuación por la matriz A.

(18)c1Av1+c2Av2=0

Como Avi=λivi, para i=1,2, entonces

(19)c1λ1v1+c2λ2v2=0

A la ecuación (17) la multiplicamos por λ1 y la restamos de la ecuación (19).

(c1λ1v1+c2λ2v2)(c1λ1v1c2λ1v2)=0

que se reduce a

(20)c2(λ2λ1)v2=0

Como v20 por definición de vector característico y por hipótesis λ1λ2, entonces se concluye que c2=0, sustituyendo en (17) se ve que c1=0, por tanto se cumple el teorema para m=2, es decir, v1 y v2 son linealmente independientes.

Ahora supongamos que el teorema es cierto para m=n, es decir, cualquier conjunto de n vectores propios de A con valores propios diferentes es linealmente independiente. Hay que demostrar que cualquier conjunto de n+1 vectores propios de A con valores propios diferentes es también linealmente independiente. La demostración sigue el mismo procedimiento que como lo hicimos para m=2, consideremos la siguiente combinación lineal.

(21)c1v1+c2v2++cn+1vn+1=0

Multipliquemos por A en ambos lados.

(22)c1Av1+c2Av2++cn+1Avn+1=0

Aplicando Avi=λiv1 para i=1,2,3,,n+1, se tiene

(23)c1λ1v1+c2λ2v2++cn+1λn+1vn+1=0

Si se multiplica ambos lados de la ecuación (21) por λ1 y se resta de (23), se obtiene

(24)c2(λ2λ1)v2+c3(λ3λ1)v3++cn+1(λn+1λ1)vn+1=0

Pero v2,v3,,vn+1 son vectores propios de A con valores propios distintos λ2,λ3,,λn+1, respectivamente. Por hipótesis de inducción, los vectores son linealmente independientes, así que

c2(λ2λ1)=0,c3(λ3λ1)=0,,cn+1(λn+1λ1)=0

Como los valores propios son distintos entre sí, entonces necesariamente

c2=c3==cn+1=0

Con este resultado la ecuación (21) obliga a que c1 sea cero. Por lo tanto, v1,v2,v3,,vn+1 son linealmente independientes. De esta manera queda demostrado el teorema.

◻

En conclusión, vectores propios correspondientes a valores propios distintos son linealmente independientes.

Con este breve repaso en mente regresemos a los sistemas de ecuaciones diferenciales.

Valores y vectores propios en sistemas de ecuaciones diferenciales

Ahora que hemos recordado las definiciones de valores y vectores propios y algunas propiedades veamos cómo es que estos conceptos son útiles para resolver sistemas lineales de primer orden homogéneos.

Al inicio de la entrada decíamos que es posible encontrar soluciones de la forma (4).

Y(t)=(k1k2kn)eλt=Keλt

Si derivamos este vector, se obtiene

(25)Y=Kλeλt

Sustituyamos en el sistema homogéneo Y=AY.

(26)Kλeλt=AKeλt

Si dividimos entre eλt y reordenamos, se tiene

AK=λK

o bien,

AKλK=0

Debido a que K=IK, con I la matriz identidad, la última expresión se puede escribir como

(27)(AλI)K=0

Si A es la matriz dada en (2), entonces la ecuación matricial (27) es equivalente a las n ecuaciones algebraicas simultáneas

(a11λ)k1+a12k2++a1nkn=0a21k1+(a22λ)k2++a2nkn=0(28)an1k1+an2k2++(annλ)kn=0

Si queremos encontrar soluciones Y(t) como (4), necesitamos primero encontrar una solución no trivial del sistema (28), de lo visto en nuestro repaso de valores y vectores propios, si la solución debe ser la no trivial, entonces se requiere que el determinante sea igual a cero, esto es

(29)|AλI|=0

Esta ecuación polinomial corresponde a la ecuación característica de la matriz A. Sus soluciones son los valores propios de A. Una solución K0 de (27) correspondiente a un valor propio λ es el vector propio de A.

La ecuación (29) al tratarse de una ecuación polinomial existen tres casos posibles, cuando los valores propios son reales y distintos, cuando son repetidos y cuando son complejos. Para cada caso existe una forma particular de la solución de (3).

Para concluir con esta entrada demostremos un resultado que establece la forma de la solución general del sistema lineal (3).

Demostración: Definamos las funciones

Y1(t)=eλ1tK1,Y2(t)=eλ2tK2,,Yn(t)=eλntKn

Notemos que para la i-ésima función Yi(t)=eλitKi se cumple lo siguiente.

(32)Yi=eλit(λiKi)=eλit(AKi)=AYi

En donde se hecho uso de la relación (6). Esto nos muestra que Yi(t) es solución del sistema Y=AY para cada i=1,2,,n. Basta mostrar que el Wronskiano es distinto de cero para probar que las funciones definidas forman un conjunto fundamental de soluciones. El Wronskiano está dado por

W(Y1,Y2,,Yn)=|eλ1tK1eλ2tK2eλntKn|(33)=e(λ1+λ2++λn)t|K1K2Kn|

Como la exponencial nunca se hace cero y por hipótesis los vectores K1,K2,,Kn son linealmente independientes, es decir, el determinante nunca es cero

(34)|K1K2Kn|0

entonces el Wronskiano es distinto de cero. Por el teorema de solución general de un sistema homogéneo concluimos que el conjunto

S={eλ1tK1,eλ2tK2,,eλntKn}

es un conjunto fundamental de soluciones del sistema Y=AY y la solución general es

Y(t)=c1eλ1tK1+c2eλ2tK2++cneλntKn

con c1,c2,,cn constantes arbitrarias.

◻

En la siguiente entrada aplicaremos todo esto en el desarrollo de un nuevo método de resolución de sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener los valores y vectores propios de las siguientes matrices.
  • A=(622019262)
  • A=(250520001)
  1. Demostrar que para cualesquiera números reales α y β, la matriz A=(αββα) tiene valores propios α±iβ.
  1. Suponer que la matriz A tiene valores propios λ1,λ2,,λn. Demostrar lo siguiente:
  • Demostrar que A1 (la matriz inversa de A) existe si y sólo si λ1,λ2,,λn son todos distintos de cero.
  • Si A1 existe, demostrar que los valores propios de A1 son 1λ1,1λ2,,1λn.
  1. Suponer que la matriz A tiene valores propios λ1,λ2,,λn. Demostrar que la matriz AαI tiene valores propios λ1α,λ2α,,λnα.
  1. Suponer que la matriz A tiene valores propios λ1,λ2,,λn. Demostrar que los valores propios de Am son λ1m,λ2m,,λnm para m=1,2,3,.

    Recuerda que para calcular la potencia de una matriz, debemos multiplicar la matriz por ella misma tantas veces como indique el exponente, por ejemplo
    A5=AAAAA

Más adelante…

Un nuevo método para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas con coeficientes constantes es el que estamos por desarrollar. Dicho método involucra obtener los valores y vectores propios de la matriz que conforma al sistema lineal, es por ello que hemos dedicado esta entrada en hacer un breve repaso sobre estos conceptos y hemos visto cómo es que se ven involucrados en la resolución de estos sistemas.

Como vimos, los valores propios se obtienen de encontrar las raíces del polinomio característico lo que significa que se pueden tener raíces reales y distintas, raíces con multiplicidad mayor a uno, es decir, que se repiten o raíces complejas, para cada caso existe una forma distinta de obtener la solución de los sistemas lineales homogéneos Y=AY.

En las próximas tres entradas estudiaremos cada caso. Comenzaremos con el caso en el que los valores propios del sistema son todos reales y distintos entre sí.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.