Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Geometría Analítica I: Valores y vectores propios

Por Paola Lizeth Rojas Salazar

Introducción

Mucho hemos hablado, a lo largo de las entradas anteriores, sobre las soluciones de las ecuaciones resultantes de la forma $det(A-I\lambda)=0$ con $A$ matriz y $x$ vector; sin embargo, aún no nos hemos dedicado a resolver este tipo de ecuaciones. En esta entrada, hablaremos de las soluciones de estas ecuaciones que se llaman valores propios y que tienen un vector propio asociado.

¿Qué son?

Si tienes una matriz cuadrada $A$, vamos a decir que un vector $v$ es vector propio de $A$ con valor propio $\lambda \in \mathbb R$, si $v\neq 0$ y $Av=\lambda v$. A la pareja $\lambda , v$, la vamos a llamar pareja propia de A y el principal problema de estudio de esta entrada será encontrar a estas parejas.

Implicaciones importantes

Lema 4.7: Si $u$ y $v$ son vectores propios de $A$ con el mismo valor $\lambda \in \mathbb R$, entonces cualquier combinación lineal no trivial de ellos también es vector propio de $A$.

Demostración

Si tenemos dos parejas de $A$, $u$, $v$ que cumplen $Au=\lambda u$ y $Av=\lambda v$, entonces, para cualquier par de coeficientes $\alpha, \beta \in \mathbb R$ se tiene que, la combinación lineal de $u$ y $v$ con estos vectores, se cumple:

\begin{equation} A(\alpha u+\beta v)=\alpha (Au)+ \beta(Av)=\alpha (\lambda u)+\beta (\lambda v)=\lambda (\alpha u+\beta v)\end{equation}

Lo que significa que, si $\alpha u+ \beta v\neq 0$, entonces es vector propio de $A$ con valor propio $\lambda$.

Con lo que hemos terminado la demostración.

El siguiente lema es muy importante para realizar los cálculos.

Lema 4.8: Para cualquier matriz A cuadrada, se cumple: $\lambda$ es un valor propio de $A$ si y solo si, $det(A-\lambda I)=0$

Demostración

Sabemos que, como $\lambda$ es valor propio de $A$, entonces tiene a su vector propio $v$ correspondiente que cumple que: $Av=\lambda v$.

$\Longleftrightarrow Av-\lambda v=0$

$\Longleftrightarrow (A-\lambda I)v=0$

Y, como $v\neq 0$, entonces:

$\Longleftrightarrow det(A-\lambda I)=0$

Fin de la demostración.

Observa que, con los conocimientos que tenemos hasta el momento, ya puedes demostrar fácilmente el siguiente Lema y Corolario.

Lema 4.9: Si A es una matriz simétrica de $2×2$, entonces $A$ tiene dos valores propios $\lambda_1$ y $\lambda_2$ en $\mathbb R$.

Corolario 4.10: Sea $A$ una matriz simétrica de $2×2$, con valores propios $\lambda_1$ y $\lambda_2$. Entonces, sus valores propios coinciden ($\lambda_1 =\lambda_2$) si y solo si, $A= \lambda_1 I$. En este caso, cualquier vector $v\neq 0$ es vector propio.

Corolario 4.11: Considera una matriz simétrica $A$ de $2×2$. Entonces, existe una base $u, v \in \mathbb R^2$, donde $u$ y $v$ son vectores propios de $A$.

Demostración

Por el Lema 4.9, sabemos que $A$ tiene dos valores propios $\lambda_1$ y $\lambda_2$.

Caso 1, $\lambda_1=\lambda_2$

Por el Corolario 4.10, cualquier base $u,v \in \mathbb R^2$ funciona.

Caso 2, $\lambda_1\neq \lambda_2$

Por la definición de valor propio, existen $u,v$, vectores distintos de $0$ que corresponden a los valores propios $\lambda_1$ y $\lambda_2$ respectivamente.

Estos vectores no pueden ser paralelos porque por el Lema 4.8, esto implicaría que $\lambda_1=\lambda_2$.

Entonces, $u$ y $v$ forman una base de $\mathbb R^2$.

Terminamos la demostración.

Ejemplo

Calculemos los valores y vectores propios de la siguiente matriz simétrica:

\begin{equation}A=\begin{pmatrix} 2 & 2 \\ 2 & -1\end{pmatrix}\end{equation}

Valores propios

Recordemos que, para encontrar los valores propios, debemos resolver su polinomio característico que está dado por $det(A-\lambda I)$:

\begin{equation}det(A-\lambda I)=det\left(\begin{pmatrix} 2 & 2 \\ 2 & -1\end{pmatrix}-\begin{pmatrix} \lambda & 0\\ 0 & \lambda\end{pmatrix}\right)\end{equation}

Si continuamos con el desarrollo de la expresión anterior, comprueba que llegamos al siguiente polinomio característico:

\begin{equation}det(A-\lambda I)= \lambda^2-\lambda -6\end{equation}

Para resolver el polinomio anterior, debemos igualarlo a $0$, de donde vamos a obtener que, las raíces del polinomio son: $\lambda_1=\frac{1+\sqrt{1+24}}{2}=3$ y $\lambda_2=\frac{1-5}{2}=-2$

Vectores propios

Para encontrar los vectores propios correspondientes a $\lambda_1$ y $\lambda_2$, debemos encontrar una solución no trivial para los sistemas $(A-\lambda_i I)x=0$ con $i=1,2$

Para $\lambda_1=3$

\begin{equation}(A-3I)x=\begin{pmatrix} -1 & 2 \\ 2 & -4\end{pmatrix}\begin{pmatrix} x\\ y\end{pmatrix}=\begin{pmatrix} -x+2y\\ 2x-4y\end{pmatrix}=\begin{pmatrix} 0 \\ 0\end{pmatrix}\end{equation}

De donde obtenemos el siguiente sistema:

\begin{equation}\begin{matrix}-x+2y=0\\2x-4y=0\end{matrix}\end{equation}

Donde, una de sus soluciones no triviales es $u^T=(2,1)$

Para $\lambda_2=-2$

\begin{equation}(A-(-2)I)x=\begin{pmatrix} 4 & 2 \\ 2 & 1\end{pmatrix}\begin{pmatrix} x\\ y\end{pmatrix}=\begin{pmatrix} 4x+2y\\ 2x+y\end{pmatrix}=\begin{pmatrix} 0 \\ 0\end{pmatrix}\end{equation}

De donde obtenemos el siguiente sistema:

\begin{equation}\begin{matrix}4x+2y=0\\2x+y=0\end{matrix}\end{equation}

Donde, una de sus soluciones no triviales es $v^T=(-1,2)$

Observa que estos vectores $u$ y $v$ son ortogonales, ¿será coincidencia? Lo veremos más adelante.

Tarea moral

  1. Comprueba que, para los vectores propios obtenidos en los sistemas de ecuaciones $(6)$ y $(7)$, se cumple que $Au=3u$ y que $Av=-2v$.
  2. Demuestra, con un argumento algebraico y uno geométrico, que la matriz \begin{equation}\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\end{equation} no tiene vectores propios.
  3. Demuestra que la matriz \begin{equation}\begin{pmatrix} a & -b \\ b & a \end{pmatrix}\end{equation} no tiene vectores propios para $b\neq0$.
  4. Usa el Lema 4.9 para demostrar el Corolario 4.10.
  5. Demuestra el Lema 4.9. Hint: usa que, al ser $A$ matriz simétrica, entonces $A=A^T$, después, expresa a $A$ de la siguiente forma y desarrolla:

\begin{equation}A=\begin{pmatrix} a & b \\ b & c\end{pmatrix} \end{equation}

Más adelante…

En la siguiente entrada, concluiremos nuestro estudio de los valores y vectores propios, analizando la diagonalización ortogonal de matrices simétricas.

Cálculo Diferencial e Integral I: La regla de la cadena

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente revisamos, entre otras cosas, cómo derivar la suma, el producto y el cociente de funciones. La siguiente operación a analizar es la composición de funciones, tema del cual tratará esta entrada.

Demostración de la regla de la cadena

Teorema. Sean $A$, $B \subset \RR$, $g: A \to \RR$, $f: B \to \RR$ y $x_0 \in A$ tales que

  1. Para todo $x \in A$, $g(x) \in B$.
  2. $g$ es derivable en $x_0$, es decir $$\lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} = g'(x_0).$$
  3. $f$ es derivable en $g(x_0)$, es decir $$\lim_{t \to x_0} \frac{f(t)-f(g(x_0))}{t-g(x_0)} = f'(g(x_0)).$$

Entonces $f \circ g$ es derivable en $x_0$, además $$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

Demostración.

Para realizar esta demostración haremos uso de una función auxiliar de la que probaremos propiedades específicas.

$$\rho (t) = \begin{cases}
\frac{f(t)-f(g(x_0))}{t-g(x_0)}-f'(g(x_0)), & \text{ si $t \neq g(x_0)$} \\
0, & \text{ si $t = g(x_0)$.}
\end{cases}$$

Podemos observar que la función $\rho$ está «inspirada» en la definición de derivada de $f$ en el punto $g(x_0)$. Procederemos a puntualizar 5 observaciones de nuestra función auxiliar.

  1. Como $f: B \to \RR$, entonces $\rho: B \to \RR$.
  2. El límite de $\rho$ en $g(x_0)$ es cero, puesto que
    \begin{align*}
    \lim_{t \to g(x_0)} \rho (t) & = \lim_{t \to g(x_0)} \left( \frac{f(t)-f(g(x_0))}{t-g(x_0)} – f'(g(x_0)) \right) \\ \\
    & = \lim_{t \to g(x_0)} \frac{f(t)-f(g(x_0))}{t-g(x_0)} – \lim_{t \to g(x_0)} f'(g(x_0)) \\ \\
    & =f'(g(x_0))-f'(g(x_0)) \text{, por el supuesto 3} \\ \\
    & = 0.
    \end{align*}

    $$\therefore \lim_{t \to g(x_0)} \rho (t) = 0.$$
  3. $\rho$ es continua en $g(x_0)$, puesto que $$\lim_{t \to g(x_0)} \rho(t) = 0 = \rho (g(x_0)).$$
  4. Para todo $t \in B$, se sigue de la definición de $\rho$ que $$f(t)-f(g(x_0)) = (\rho(t)+f'(g(x_0)) (t-g(x_0)).$$
  5. Por el supuesto 2, $g$ es derivable en $x_0$ lo que implica que también es continua en tal punto, además por la observación 3, sabemos que $\rho$ es continua en $g(x_0).$ Por tanto, se tiene que
    \begin{gather*}
    \lim_{x \to x_0} \rho (g(x)) = \rho (g(x_0)) = 0. \\
    \therefore \rho \circ g \text{ es continua en } x_0.
    \end{gather*}

Ahora que establecimos las 5 observaciones, estamos listos para calcular la derivada de la composición:

\begin{align*}
(f \circ g)'(x_0) & = \lim_{x \to x_0} \frac{ f(g(x))-f(g(x_0)) }{x – x_0} \\ \\
& = \lim_{x \to x_0} \frac{ ( \rho(g(x))+f'(g(x_0)) )( g(x)-g(x_0) ) }{x-x_0} \text{, por la obs 4} \\ \\
&= \lim_{x \to x_0} \left( ( \rho(g(x))+f'(g(x_0)) ) \cdot \frac{g(x)-g(x_0)}{x-x_0} \right) \\ \\
& =\lim_{x \to x_0} ( \rho(g(x))+f'(g(x_0)) ) \cdot \lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} \\ \\
& =(0+f'(g(x_0))) \cdot g'(x_0) \text{, por la obs 3 y el supuesto 2} \\ \\
& = f'(g(x_0)) g'(x_0).
\end{align*}

$$\therefore (f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

$\square$

Aplicando la regla de la cadena

A continuación revisaremos algunos ejemplos donde aplicaremos la proposición anterior. La idea general de los ejercicios será expresar una función en términos de la composición de otras dos.

Ejemplo 1. Encuentra la derivada de la función $F(x) = (3x+1)^2$.

Notemos que podemos ver a $F$ como la composición de las siguientes dos funciones
$$ f(x) = x^2, \qquad g(x) = 3x + 1.$$

Así, $F(x) = f(g(x))$. Y empleando la regla de la cadena se tiene que

\begin{align*}
F'(x) & = f'(g(x)) g'(x) \\
& = 2g(x)g'(x) \\
& =2 (3x+1)(3) \\
& = 6(3x+1) \\
& = 18x+6.
\end{align*}

Ejemplo 2. Deriva la función $F(x) = \sqrt{\frac{x^2+1}{x^3+3}}$.

Definimos las funciones

$f(x) = \sqrt{x}$ con derivada $f'(x) = \frac{1}{2 \sqrt{x}}$ y $g(x) = \frac{x^2+1}{x^3+3}$ con derivada
\begin{align*}
g'(x) & = \frac{ (x^3+3)(2x)-(x^2+1)(3x^2) }{ (x^3+3)^2 } \\
& = \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }.
\end{align*}

Con lo anterior, se tiene que $F(x) = f(g(x))$, y empleando la regla de la cadena tenemos

\begin{align*}
F'(x) & = f'(g(x)) g'(x) \\
& =\frac{1}{ 2\sqrt{g(x)} } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 } \\
& = \frac{1}{ 2\sqrt{ \frac{ x^2+1 }{ x^3+3 } } } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }\\
& = \frac{ \sqrt{x^3+3} }{2 \sqrt{x^2+1} } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }.
\end{align*}

Más adelante…

En las siguientes entradas haremos un resumen de las «reglas de derivación» que hemos visto hasta ahora y probaremos algunas más; particularmente se hará la revisión de las derivadas para las funciones trigonométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Teorema de Carathéodory. Sea $f$ definida en un intervalo $A$ y sea $a \in A$. Entonces $f$ es derivable en $a$ si y solo si existe una función $\rho$ en $A$ que es continua en $a$ y satisface:
    $$f(x) – f(a) = \rho (x) (x-a) \text{ para } x \in A.$$
    En este caso, se tiene que $\rho(a) = f'(a)$.
  • Deriva la función $f(x) = \sqrt{5-2x+x^2}$.
  • Si $f: \RR \to \RR$ es derivable en $x_0$ y $f(x_0) = 0$. Prueba que $g(x) := |f(x)|$ es derivable en $x_0$ si y solo si $f'(x_0) = 0$.
  • Determina en dónde es derivable cada una de las siguientes funciones de $\RR \to \RR$ y encuentra la derivada:
    • $f(x) = |x|+|x+1|.$
    • $g(x) = 2x + |x|.$
    • $h(x) = x|x|.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Analítica I: Encontrar el centro y los ejes de una cónica

Por Paola Lizeth Rojas Salazar

Introducción

En esta entrada, continuaremos con el estudio de las cónicas, pero en esta ocasión, vamos a encontrar su centro y ejes, a partir de dos grupos de isometrías que ya son familiares para nosotros, las rotaciones y traslaciones y usando otro tema que ya ha sido estudiado con anterioridad, la equivalencia de polinomios y reducción de términos lineales y cuadráticos.

Encontrando el centro de las traslaciones

Para cualquier vector $h \in \mathbb R^2$, consideremos la traslación $g(x)=x+h$ y veamos cómo se escribe el polinomio $P \circ g$ con $P(x)=x*Ax+k*x+f$:

\begin{equation}\left(P\circ g\right)(x)= P(x+h)=(x+h)*A(x+h)+k*(x+h)+f\end{equation}

Factorizando y desarrollando un poco la expresión anterior, obtenemos:

\begin{equation}\left(P\circ g\right)(x)=x*Ax+x*Ah+h*Ax+k*x+(h*Ah+k*h+f)\end{equation}

Donde $h*Ah+k*h+f=P(h)$

Lo que nos lleva, finalmente, a:

\begin{equation}\left(P\circ g\right)(x)=x*Ax+x*Ah+h*Ax+k*x+P(h)\end{equation}

La pregunta ahora es, ¿hay una forma de encontrar el centro de la traslación g a partir de esta expresión? Lo que, por muy extraño que parezca, es cierto, pero, ¿cómo?

Enunciemos unos lemas que nos ayudarán a encontrar la respuesta a la pregunta anterior.

Lema 4.4: Dadas $A$ y $B$ dos matrices que se puedan multiplicar, se cumple que $(AB)^T=B^TA^T$

Lema 4.5: Si tenemos una matriz simétrica $A$ (recordemos que una matriz $A$ es simétrica si $A=A^T$), entonces, para todo par de vectores $x,y$ en $\mathbb R$, se cumple que $x*Ay=Ax*y$

Demostración

Sean $x,y$ vectores, recordemos que $x=x^T$ y que $y=y^T$, por esto y el lema anterior, tenemos que:

\begin{equation}x*Ay=x^TAy=\left(x^TAy\right)^T=\left(Ay\right)^T\left(x^T\right)^T=y^TA^Tx=y*Ax=Ax*y\end{equation}

Ahora sí podemos encontrar el centro de la traslación considerando:

\begin{equation}\left(P\circ g\right)(x)=x*Ax+x*Ah+h*Ax+k*x+P(h)\end{equation}

Ya que, considerando el lema anterior, podemos simplificar $\left(P\circ g\right)(x)$ de la siguiente manera:

\begin{equation}\left(P\circ g\right)(x)=x*Ax+x*Ah+h*Ax+k*x+P(h)=2(Ah*x)+k*x+P(h)\end{equation}

Y, finalmente:

\begin{equation}\left(P\circ g\right)(x)=(2Ah+k)*x+P(h)\end{equation}

Donde $(2Ah+k)*x$ es la parte lineal de esta composición por lo que, si podemos encontrar una $h \in \mathbb R^2$ que cumpla que $2Ah+k=0$, entonces habremos encontrado una traslación que no contenga la parte lineal del polinomio. Si esta $h$ existe, es el centro de la traslación (en el caso de este capítulo, estaremos hablando de traslaciones de cónicas).

Lo anterior lo podemos resumir en el siguiente lema:

Lema 4.6: Sea $P(x)=x*Ax+k*x+f$ un polinomio cuadrático (es decir que $A=A^T$) tal que $det(A)\neq 0$. Si definimos $c:=-\frac{A^{-1}}{k}$, $c$ es el centro de la curva asociada al polinomio $P$, $C(P)$ donde:

\begin{equation}P(x+c)=x*Ax+P(c)\end{equation}

Como buena conclusión de este apartado, observa que las traslaciones afectan la parte lineal de los polinomios cuadráticos.

Encontrando los ejes de las rotaciones

Ahora considera la rotación $g(x)=Bx$ con $B$ en el general lineal de $\mathbb R^2$, es decir, $B \in Gl(2)$ y $P$ el polinomio cuadrático general. Entonces:

\begin{equation}(P\circ g)(x) = P(Bx)=(Bx)*A(Bx)+k(Bx)+f\end{equation}

Si desarrollamos y simplificamos esta expresión, obtenemos:

\begin{equation}(P\circ g)(x) = x*(B^TAB)x+(B^Tk)*x+f\end{equation}

La pregunta en este caso es, ¿existe una forma de encontrar los ejes de la rotación a partir de esta expresión? La respuesta es sí.

A diferencia de las traslaciones, en las que se afectaba la parte lineal, para las rotaciones nos vamos a enfocar en la parte cuadrática. Debemos encontrar una manera de simplificar la expresión $B^TAB$.

Considera a $B$ como matriz ortogonal $(B \in O(2))$, esto implica que $B^TAB=B^{-1}AB$ que es la matriz que expresa la función $A$ en la base de las columnas de $B$.

Finalmente, toma a $u,v$ columnas de $B$ que forman una base ortonormal y que $A$ alarga estas columnas en factores $\lambda, \mu$, es decir, que $Au=\lambda u$ y $Av=\mu v$. Entonces, las siguientes igualdades se cumplen:

\begin{equation}A=\begin{pmatrix} \lambda & 0 \\
0 & \mu\end{pmatrix}\end{equation}

\begin{equation}B^TAB=\begin{pmatrix} u,&v \end{pmatrix}^T*A\begin{pmatrix} u,&v \end{pmatrix}=\begin{pmatrix} u^TAu & u^TAv\\ v^TAu & v^TAv\end{pmatrix}\end{equation}

Si desarrollamos esta última igualdad, obtenemos:

\begin{equation}B^TAB=\begin{pmatrix} \lambda & 0 \\
0 & \mu\end{pmatrix}\end{equation}

Si encontramos una matriz B que cumpla $(3)$, podemos eliminar el término mixto del polinomio $P$ y acercarnos a los polinomios canónicos.

Tarea moral

  1. Demuestra el Lema 4.4.
  2. Demuestra que, para $A,B,C$ matrices que se pueden multiplicar, se tiene que: $\left(ABC\right)^T=C^TB^TA^T$
  3. Encuentra el centro, si es que tienen, de las curvas asociadas a los siguientes polinomios:
    • $xy-3x-2y-2$,
    • $x^2+2y^2-6x+4y+3$
    • $9x^2-4xy+6y^2-58x+24y+59$

Más adelante…

Continuaremos con el estudio de la equivalencia y reducción de polinomios, con valores y vectores propios.

Cálculo Diferencial e Integral I: Rectas tangente y normal a una curva

Por Karen González Cárdenas

Introducción

En la unidad anterior vimos la teoría relacionada a las funciones derivables. A lo largo de esta última parte del curso, veremos una serie de aplicaciones de la derivada en distintos ámbitos. Esperamos que te parezcan interesantes los ejemplos que aquí expondremos y la relación del Cálculo en problemáticas de otras áreas. Comenzaremos con obtener la recta tangente y normal de una función en un punto dado.

¿Qué dice la geometría?

Recordemos algunos conceptos geométricos para entrar en contexto:
Decimos que una recta $T$ es tangente si toca a una curva en un sólo punto. Y que una recta $N$ es normal si es perpendicular a la recta tangente en el punto de tangencia.

  • $T$ es la recta tangente en el punto $p$
  • $N$ es la recta normal en $p$

En los cursos de geometría probablemente te encontraste con la siguiente ecuación para definir a una recta:
$$y-y_1= m(x-x_1) $$
ésta es conocida como la forma punto-pendiente.


Vemos que gráficamente estamos considerando un punto $(x_1,y_1)$ sobre la recta y decimos que un punto cualquiera $(x,y)$ se encuentra también sobre la recta si cumple la igualdad anterior.

Recordando…

A principios de la unidad pasada vimos que una función $f$ es derivable en un punto $x_{0}$ si existe el siguiente límite:
$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=f'(x_0).$$

Y que además la interpretación geométrica de dicho límite es justo la pendiente de la recta tangente a la gráfica de nuestra función $f$ en un $ (x_{0},f(x_{0}))$.
Con ayuda de este concepto y la definición vista en la sección anterior, vemos que la recta que pasa por el punto $ (x_{0},f(x_{0}))$ y que es tangente a la gráfica sería:
\begin{align*}
y-y_1&= m(x-x_1)\\
y-f(x_0)&=f'(x_0)(x-x_0)\\
y&=f'(x_0) (x-x_0) +f(x_0)
\end{align*}
donde $m=f'(x_0)$ y consideramos $(x_1,y_1)= (x_{0},f(x_{0})) $.

Definición de la recta tangente

Motivados por lo anterior tenemos la siguiente definición:
Definición (recta tangente): Sea $f$ una función derivable en un punto $x_0$. Definimos a la recta tangente a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$ como:
$$T(x)= f'(x_0) (x-x_0) +f(x_0).$$

Esta definición es la que estaremos usando en todos los ejercicios de esta entrada por lo que recomendamos tenerla presente. Pasaremos ahora a definir la recta normal a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$.

Definición de la recta normal

Como ya vimos que geométricamente la recta normal es perpendicular a la recta tangente, modificaremos la pendiente a la definición anterior tomando $m=-\frac{1}{f'(x_0)}$ con $f'(x_0) \neq 0$ :
Definición (recta normal): Tomando $f$ una función derivable en un punto $x_0$. Definimos a la recta normal a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$ con la ecuación:
$$N(x)= -\frac{1}{f'(x_0)}(x-x_0) +f(x_0).$$

Con ambas rectas definidas pasaremos a resolver algunos ejercicios.

Ejemplo 1

Encuentra la recta tangente y normal de la función:
$$f(x)=x^{3}+2x^{2}-x+2$$
en el punto $(4,94)$.
Solución:
Comenzaremos por obtener la derivada de $f(x)$ haciendo uso de las reglas de derivación:
$$f'(x)=3x^{2}+4x-1.$$

Para obtener la pendiente en el punto indicado debemos sustituir $x=4$, así:
\begin{align*}
f'(4)&= 3(4)^{2}+4(4)-1\\
&=48+16-1\\
&=63
\end{align*}

Ahora comenzamos sustituyendo lo anterior en la definición de recta tangente:
\begin{align*}
T(x)&= 63 \cdot (x-4)+94\\
&=63x-252+94\\
&=63x-158
\end{align*}
$$\therefore T(x)= 63x-158 .$$

Finalmente sustituyendo en la definición de la recta normal:
\begin{align*}
N(x)&= -\frac{1}{63} \cdot (x-4)+94\\
&=-\frac{x}{63}+\frac{4}{63}+94\\
&=-\frac{x}{63} + \frac{5926}{63}
\end{align*}
$$\therefore N(x)= -\frac{x}{63} + \frac{5926}{63}.$$

Ejemplo 2

Encuentra la recta tangente y normal con $x_0=2$ de la función:
$$f(x)=3x^{2}-5x+6.$$
Solución:
Comenzamos por sustituir $x_0=2$ para obtener el punto $p$ por donde pasarán ambas rectas:
\begin{align*}
f(2)&=3(2)^{2}-5(2)+6\\
&= 12-10+6\\
&=8
\end{align*}
$$\therefore p=(2,8).$$
Ahora pasemos a obtener la pendiente derivando la función y sustituyendo $x_0=2$:
$$f'(x)=6x-5 \Rightarrow f'(2)=6(2)-5=12-5=7.$$

Procedamos a sustituir en las definiciones para la tangente y la normal:
\begin{align*}
T(x)&= 7(x-2)+8 & N(x)&= -\frac{1}{7} (x-2)+8 \\
&= 7x-14+8 & &=-\frac{x}{7}+\frac{2}{7}+8\\
&= 7x-6 & &= -\frac{x}{7}+\frac{58}{7}
\end{align*}
Así concluimos que:
\begin{align*}
T(x)&= 7x-6 \\
N(x)&= -\frac{x}{7}+\frac{58}{7}
\end{align*}

Ejemplo 3

Hallar la recta tangente y normal de la función:
$$f(x)=\sqrt{-x}$$
en el punto $p=(-9,3)$.
Solución:
Procederemos a derivar la función haciendo uso de la Regla de la cadena:
\begin{align*}
f'(x)&= \frac{1}{2}(-x)^{\frac{1}{2}-1} \cdot (-1)\\
&=-\frac{1}{2}(-x)^{-\frac{1}{2}}\\
&=-\frac{1}{2\sqrt{-x}}
\end{align*}

Obtenemos la pendiente al sustituir $x_0=-9$:
\begin{align*}
f'(-9)&=-\frac{1}{2\sqrt{-(-9)}}\\
&=-\frac{1}{2\sqrt{9}}\\
&= -\frac{1}{6}
\end{align*}

Ahora hallamos la recta tangente y normal sustituyendo $f'(-9)= -\frac{1}{6}$:
\begin{align*}
T(x)&= -\frac{1}{6} (x-(-9))+3 & N(x)&=-\frac{1}{-\frac{1}{6}} (x-(-9))+3 \\
&= -\frac{1}{6}(x+9)+3 & &= 6 (x+9)+3 \\
&=-\frac{x}{6}-\frac{3}{2}+3 & &= 6x+54+3\\
&= -\frac{x}{6}+\frac{3}{2} & &=6x+57
\end{align*}

Por lo que finalmente tenemos:
\begin{align*}
T(x)&= -\frac{x}{6}+\frac{3}{2}\\
N(x) &=6x+57
\end{align*}

Más adelante

En la siguiente entrada veremos cómo encontrar máximos y mínimos de una función. Por lo tanto, definiremos dichos conceptos y probaremos algunos resultados que nos brindarán los criterios necesarios, haciendo uso de la derivada, para identificarlos.

Tarea moral

Encuentra la recta tangente y normal en cada uno de los incisos:

  • $f(x)=2x^{3}+3x^{2}+4x-2$ con $x_0=2$.
  • $f(x)=x^{3}-3x$ en $p=(2,2)$.
  • $f(x)=4x^{2}$ en $p=(2,16)$.
  • $f(x)=sen(\frac{\pi}{2}-x)$ en $p=\left(\frac{\pi}{3},\frac{1}{2} \right)$.
  • $f(x)=\frac{x+1}{x-1}$ en $p=(2,3)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Analítica I: Equivalencia de polinomios y reducción de polinomios cuadráticos

Por Paola Lizeth Rojas Salazar

Introducción

En las entradas anteriores, estuvimos hablando de la clasificación de las curvas cuadráticas módulo transformaciones afines (las $G$-equivalencias), en esta entrada, vamos a responder preguntas para saber cuándo tienen sentido estas clasificaciones. Estas preguntas, principalmente derivan en la equivalencia de polinomios y la reducción de polinomios cuadráticos.

Equivalencia de polinomios

Antes de definir la equivalencia de polinomios, es importante preguntarnos si las imágenes afínes de curvas cuadráticas son de nuevo curvas cuadráticas.

Para responder la pregunta anterior, considera una curva cuadrática $C$ y una transformación afín $g \in Af(2)$. Entonces, existe un polinomio $P$ que define a $C$, es decir, que se cumple la siguiente igualdad:

\begin{equation} C=C(P)=\{x\in \mathbb R^2|P(x)=0\}\end{equation}

Dado lo anterior, podemos afirmar que:

\begin{equation} g(C)=\{y \in \mathbb R^2|(P\circ g^{-1})(y)=0\}\end{equation}

Demostración

$\subset$

Observemos que cualquier punto en $g(C)$ es de la forma $g(x)$ con $x\in C$, esto implica que $P(x)=0$. Entonces:

\begin{equation} (P\circ g^{-1})(g(x))=P(g^{-1}(g(x)))=P(x)=0\end{equation}

Entonces $g(x)\in\{y \in \mathbb R^2|(P\circ g^{-1})(y)=0\}$ y, finalmente,

\begin{equation} g(C)\subset\{y \in \mathbb R^2|(P\circ g^{-1})(y)=0\}\end{equation}

$\supset$

Sea $Y$ tal que $(P\circ g^{-1})(y)=0$, si definimos $x:=g^{-1}(y)$, entonces $P(x)=(P\circ g^{-1})(y)=0$.

Entonces, $x\in C$, lo que implica que $y=g(x)\in g(C)$. Finalmente:

\begin{equation} g(C)\supset\{y \in \mathbb R^2|(P\circ g^{-1})(y)=0\}\end{equation}

Lo que termina la demostración.

Observa que en la demostración anterior, solo se usó que $C$ estuviera definida como los ceros de una función y que $g$ fuera invertible, pero, ¿$g(C)$ es una curva cuadrática? Sí, lo anterior lo vemos en el siguiente lema:

Lema 4.1: Sea $C$ una curva cuadrática y $g\in Af(2)$, entonces $g(C)$ también es una curva cuadrática. Además, si $C=C(P)$, entonces $g(C)=C(P\circ g^{-1})$

Demostración

Si $P$ es un polinomio cuadrático y $g$ una transformación afín, entonces, $(P\circ g):\mathbb R^2 \to \mathbb R$ también es un polinomio cuadrático.

Y como las dos coordenadas de $g$ son polinomios lineales y $P\circ g$ es cuadrático, al sustituir ambos polinomios, obtendremos un polinomio con monomios de grado a lo más $2$.

Entonces $g(C)$ también es una curva cuadrática.

Con lo que termina la demostración.

Definición: Sea $G$ un subgrupo de $Af(2)$.

Decimos que dos polinomios cuadráticos $P_1$ y $P_2$ son $G-equivalentes$ o equivalentes módulo $G$ ($P_1\sim^G P_2$), si existen $g\in G$ y $k\in \mathbb R$, con $k\neq 0$, tales que $kP_1=P_2\circ g$. $(*)$

Finalmente, tenemos el siguiente teorema que relaciona esta entrada con la entrada anterior en la que se clasificó a las curvas cuadráticas:

Teorema 4.2: Sea $P$ un polinomio cuadrático en dos variables $x, y$. Entonces $P$ es afinmente equivalente a uno y solo uno de los polinomios que clasificamos en la entrada anterior.

Reducción de polinomios cuadráticos

Ahora veremos cómo reducir o simplificar un polinomio cuadrático, usando coordenadas afines. Para esto, vamos a simplificar los polinomios con matrices y vectores.

Recordemos que el polinomio general de segundo grado se puede escribir como:

\begin{equation}P(x,y)=ax^2+2bxy+cy^2+dx+ey+f\end{equation}

Ahora considera un vector variable $x^T=(x,y)$ y a la matriz $A$ y un vector $k$ definidos de la siguiente forma:

\begin{equation}A:=\begin{pmatrix} a & b \\ b & c \end{pmatrix}, \hspace{1cm} k=\begin{pmatrix} d \\ e\end{pmatrix}\end{equation}

Con estos datos, podemos escribir $P$ como:

\begin{equation} P(x)=x*Ax+k*x+f\end{equation}

Con $A=A^T\neq 0$.

A esta expresión se le conoce como la expresión vectorial del P.

Tarea moral

  1. Demuestra que, la relación definida en $(*)$ es de equivalencia.
  2. Demuestra el Teorema 4.2.
  3. Muestra que, la expresión en $(8)$, es cierta.
  4. Demuestra que, para un subgrupo $G$ de $Af(2)$, la relación de ser $G$-equivalentes, es una relación de equivalencia en los polinomios cuadráticos de dos variables.
  5. Da una expresión general para un polinomio cuadrático en tres variables $x,y,z$ y luego define una expresión vectorial para él.
  6. Encuentra la matriz simétrica $A$ y el vector constante $k$ que dan la expresión vectorial de los siguientes polinomios cuadráticos:
    • $x^2+2y^2-6x+4y+3$
    • $2xy-6x-4y-4$

Más adelante

En la siguiente entrada, vamos a usar los conocimientos adquiridos de esta entrada, para encontrar el centro y los ejes de las cónicas.