Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Nota 3. El complemento de un conjunto.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción.

En notas anteriores hemos estado usando la noción intuitiva de un conjunto, concretamos ciertas ideas como la relación de pertenencia y establecimos algunos axiomas. Por otra parte definimos lo que es un subconjunto: dados $A$ y $B$ conjuntos $A\subseteq B$ si y sólo si para toda $z$, $z\in A$ implica que $z\in B.$ Dedujimos también propiedades de la contención haciendo énfasis en la manera en la que se hace una prueba. Ver la nota 2.

Vimos entre otras cosas que dada una propiedad $P$, no todos los elementos que cumplan la propiedad van a ser un conjunto. Si consideramos por ejemplo $\set{x\mid x\notin x}$, resultaba no ser un conjunto ya que de considerarlo como tal podemos tener paradojas como la de Russell, llegando a contradicciones. Por otro lado si ya tenemos un conjunto $A$ y consideramos los elementos en él que cumplan una propiedad $\set{\,x\in A\mid\,x\,cumple\,P\,}$, ese sí es un conjunto y establecemos ese hecho como un axioma de la teoría llamado de comprensión o de separación.

En esta tercera nota retomaremos esas ideas y definiremos el complemento de un conjunto. Deduciremos algunas propiedades básicas pero muy importantes.

Como mencionamos la colección $\set{x\mid x\notin x}$, no es un conjunto, pero no debemos preocuparnos, ya que usualmente trabajaremos con objetos que sabemos perfectamente que sí son un conjunto, gracias al axioma de separación, por ejemplo con los números racionales, o con los puntos del plano cartesiano, o con la colección de todas las funciones de los reales en sí mismos. A este conjunto dentro del cual se encuentran todos los objetos que trabajaremos en algún momento dado, le llamaremos el conjunto universo y lo denotaremos usualmente por $X$.

Definición

Sea $X$ el conjunto universo, $A$ un subconjunto de $X$. El complemento de $A$ respecto a $X$ es:

$X\setminus A =A^c=\set{x\in X\mid x\notin A}.$

Ejemplos:

  1. Si $X=\set{1,2,3,4,5}$ y $A=\set{1,3,5}$
    $X\setminus A =A^c=\set{ 2,4}$.
  2. Si $X=\mathbb N$ y $A=\set{x\in \mathbb N\mid 5\leq x}=\set{5,6,7,…}$
    $ \mathbb N \setminus A =A^c=\set{x\in \mathbb N \mid x\notin A}$ = $\set{x\in \mathbb N \mid x< 5}=\{0,1,2,3,4\}.$
  3. Si $X=\mathbb Z$ y $A=\set{x\in \mathbb N\mid 5\leq x}=\set{5,6,7,…}\phantom{zzzzzzz}$ $\mathbb Z \setminus A =A^c=\set{x\in \mathbb Z \mid x\notin A}$ = $\set{x\in \mathbb Z \mid x< 5}=\{\dots, -2,-1,0,1,2,3,4\}.$

De acuerdo a los ejemplos 2 y 3 nota que siempre tienes que delimitar el conjunto universo $X$ para hablar del complemento de un conjunto. La notación $A^c$ es bastante útil pero debemos tener claro quién es el conjunto $X$ con respecto al cual estamos calculando el complemento del conjunto $A$.

En el siguiente recurso de Geogebra, mueve los deslizadores para construir el conjunto $A$ y obtener su complemento.

Vamos a revisar algunas propiedades del complemento.

Propiedades

Sean $X$ el conjunto universo, $A$ y $B$ subconjuntos de $X$.

  1. $(A^c)^c=A.$
  2. $A\subseteq B \Longleftrightarrow B^c\subseteq A^c.$
  3. $A=B \Longleftrightarrow B^c=A^c.$
  4. $\emptyset^c=X.$
  5. $X^c=\emptyset .$

Demostración de 1.

Según el axioma de extensionalidad $A=B$ es equivalente a $A\subseteq B$ y $B\subseteq A$.

Estas pruebas de igualdad entre conjuntos se realizan usando el axioma de extensionalidad y se dice entonces que se trata de una prueba por doble contención.

Así, para demostrar que:

$(A^c)^c=A$

mostraremos que $(A^c)^c\subseteq A$ y que $A\subseteq (A^c)^c$.

Primero probemos que $(A^c)^c\subseteq A$.

Sea $z\in (A^c)^c$, por definición de complemento tenemos que $ (A^c)^c=\set{x\in X \mid x\notin A^c}$, así:

$z\in \set{x\in X \mid x\notin A^c}$

por lo que $z$ cumple la propiedad que define al conjunto, es decir $z\in X$ pero $z\notin A^c$. Como $ A^c=\set{x\in X \mid x\notin A}$, se deduce que $z\in A$ (pues en caso contrario $z$ sería un elemento de $A^c$), y de esta manera tenemos lo que queríamos demostrar pues cada vez que $z\in (A^c)^c$ también $z\in A$. Por lo tanto $(A^c)^c\subseteq A$.

Procedamos a probar la segunda contención $A\subseteq (A^c)^c$.

Sea $z\in A$, entonces $z\notin \set{x\in X \mid x\notin A}= A^c$ (debido a que no cumple la segunda condición que se pide para que un elemento pertenezca a este conjunto, el hecho de no ser elemento de $A$). Por otro lado, como $z\in A$ y $A\subseteq X$ (ya que $X$ es el conjunto universo), se tiene que $z\in X$. Así, $z$ cumple la propiedad que define al siguiente conjunto:

$\set{x\in X\mid x\notin A^c}$

cuyos elementos son aquellos elementos de $X$ que cumplen con la propiedad de no pertenecer al complemento de $A$, pero por definición ese conjunto es $(A^c)^c$, y por lo tanto $z\in (A^c)^c$. Así, $A\subseteq (A^c)^c$.

Como hemos probado las dos contenciones, $(A^c)^c\subseteq A$ y $A\subseteq (A^c)^c$, por el axioma de extensionalidad podemos afirmar que $A=(A^c)^c$.

Demostración de 2.

Por demostrar que $A\subseteq B \Longleftrightarrow B^c\subseteq A^c$.

Esta es una implicación de ida y vuelta, bicondicional o si y sólo si.

Debemos demostrar ambas implicaciones, es decir que:

  • $A\subseteq B \Longrightarrow B^c\subseteq A^c$ y que
  • $B^c\subseteq A^c \Longrightarrow A\subseteq B.$

Por demostrar que $A\subseteq B \Longrightarrow B^c\subseteq A^c$.

Supongamos por hipótesis que $A\subseteq B$. A partir de ello mostremos que $ B^c\subseteq A^c$. Para probar dicha contención sea $z\in B^c$ y veamos que $z\in A^c$. Como $z\in B^c=\set{x\in X\mid x\notin B}$ tenemos que $z\in X$ y $z\notin B$. Sabemos que hay dos opciones, que $z\in A$ o que $z\notin A$. Pero si $z\in A$, dado que por hipótesis $A\subseteq B$, tendríamos que $z\in B,$ lo que contradice el hecho de que $z\notin B$. Concluimos entonces que $z\notin A$, lo que muestra que $z$ es elemento del conjunto $\set{x\in X \mid x\notin A}=A^c$, que es lo que queríamos demostrar y por tanto: $A\subseteq B \Longrightarrow B^c\subseteq A^c$.

Por demostrar que $B^c\subseteq A^c \Longrightarrow A\subseteq B$.

Supongamos como hipótesis que $B^c\subseteq A^c$ y probemos con ello que $A\subseteq B$.

Por la implicación que acabamos de probar podemos afirmar que si:

$B^c\subseteq A^c$

entonces:

$(A^c)^c\subseteq (B^c)^c.$

Además, por lo demostrado en 1:

$(A^c)^c=A$ y $(B^c)^c=B.$

Así:

$A\subseteq B$.

Por lo tanto: $B^c\subseteq A^c \Longrightarrow A\subseteq B$.

Demostración 3.

Por demostrar que $A=B \Longleftrightarrow B^c=A^c$.

$ A=B \Longleftrightarrow A\subseteq B \text{ y } B\subseteq A$por el Ax. de extensionalidad
$\phantom{A=B}\Longleftrightarrow B^c\subseteq A^c \text{ y } A^c\subseteq B^c$ por la propiedad 2
$\phantom{A=B}\Longleftrightarrow A^c=B^c.$por el Ax. de extensionalidad

Nota cómo esta cadena de implicaciones son derivadas de los axiomas o de las propiedades ya demostradas.

Demostración 4.

Por demostrar que $\emptyset^c=X$

La prueba se hará por doble contención.

Así, primero mostremos que $\emptyset^c\subseteq X$.

Sea $z\in \emptyset^c=\set{x\in X\mid x\notin \emptyset}.$ Entonces $z$ cumple las condiciones que caracterizan a los elementos de dicho conjunto, en particular $z\in X$.

Por lo tanto $\emptyset^c\subseteq X$, lo que nos da la primera contención.

Ahora mostremos que $X\subseteq \emptyset^c$

Sea $z\in X$. Sabemos que el vacío no tiene elementos así que ningún objeto puede ser elemento del vacío, en particular $z\notin\emptyset$. Entonces, por definición de complemento:

$z\in \set{x\in X \mid z\notin \emptyset}=\emptyset^c.$

Así, $X\subseteq \emptyset^c$, lo que nos da la segunda contención.

Finalmente como $\emptyset^c\subseteq X$ y $X\subseteq \emptyset^c$ por el axioma de extensionalidad tenemos que $X= \emptyset^c$, que es lo que queríamos demostrar.

Demostración 5.

Por demostrar que $X^c=\emptyset.$

De la propiedad 4 sabemos que: $\emptyset^c=X$, y por la propiedad 3 esto implica que $(\emptyset^c)^c=X^c$. Pero $(\emptyset^c)^c=\emptyset$ por la propiedad 1, así $\emptyset=X^c$, que es lo que queríamos demostrar.

Esto concluye la demostración de las 5 propiedades mencionadas, en la tarea moral hay ejercicios que te permitirán aplicar los nuevos teoremas que hemos estudiado.

$\square$

Tarea Moral.

  1. Considera el conjunto universal de los números enteros y los siguientes subconjuntos de los enteros:

$$C=\set{t\in \mathbb Z\mid\,t=9k+3\,para\,alguna\,k\in \mathbb Z}$$ $$D=\set{t\in \mathbb Z\mid\,t\,es\,un\,múltiplo\,de\,3}. $$

Prueba lo siguiente:

  • Prueba que $C\subseteq D$.
  • Encuentra $C^c$.
  • Encuentra $D^c$
  • Verifica que $D^c\subseteq C^c$ a partir de cómo están definidos los conjuntos $C^c$ y $D^c$ .

3. Sea $X=\mathbb R$ el conjunto universo. Encuentra el complemento de los siguientes conjuntos:

  • $\set{x\in \mathbb R \mid x<2}.$
  • $\set{x\in \mathbb R \mid -3\leq x< 2}.$
  • $\set{x\in \mathbb R \mid\,x\,es\,un\,número\,racional\, }.$
  • $\set{x\in \mathbb R \mid \,x\,es\,irracional\,y\,x\leq0\,}.$

Más adelante

En la siguiente sección definiremos dos operaciones con conjuntos, la unión e intersección de conjuntos. Además demostraremos propiedades bastante útiles para el desarrollo de muchas áreas de la matemática como la topología y el análisis.

Entradas relacionadas

Página principal del curso.

Nota. Las imágenes mostradas para ilustrar los conjuntos no fueron de diseño propio, y se da las gracias a: https://www.spanish.cl/ por sus divertidos dibujos. Se deja el link de donde se obtuvieron: https://www.spanish.cl/vocabulario/animales-de-la-granja.htm.

Nota 1. Noción de Conjunto

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

No nos rompamos tanto la cabeza, desde que estamos en educación preescolar hemos estado trabajando con ellos, colocamos objetos con alguna característica común o no y consideramos esa colección como una unidad.

De esta manera podemos dar una definición intuitiva de lo que es un conjunto:

Definición (intuitiva)

Un conjunto es una colección de objetos considerada como un todo, y los objetos que pertenecen a un conjunto son sus elementos.

La pertenencia es una relación binaria que se aplica entre los objetos de la teoría de conjuntos.

Notación:

$x\in A$ indica que $x$ es un elemento del conjunto $A$, mientras que la negación $x\notin A$ indica que $x$ no es un elemento de $A$ . Se acostumbra escribir a los elementos del conjunto entre llaves, separados por una coma.

Para poder trabajar con los conjuntos de forma adecuada, debemos establecer reglas llamadas axiomas que nos permitan saber cuándo una colección será considerada un conjunto. Veremos sólo algunos de ellos para darnos una idea de qué tipo de reglas son las que se establecen en la teoría de conjuntos. Por ahora mencionemos los siguientes:

Axioma del conjunto vacío

Podemos construir un conjunto que no tenga elementos, se llamará el conjunto vacío, se denotará por $\emptyset$ o por $\{\}$.

Notemos que, dado que el conjunto vacío no tiene elementos, se tiene que $\emptyset\notin \emptyset$ y, de manera más general, para todo conjunto $a$ se tiene que $a\notin \emptyset$.

Axioma del par

Dados dos objetos $C$ y $D$ podemos construir un conjunto que tiene por elementos exactamente a $C$ y $D$, denotado por $\set{C,D}$. En particular, si $C=D$ se puede formar el conjunto unitario cuyo único elemento es $C$, que se denota por $\{C\}$.

En general si $C_1,…,C_n$ son objetos, podemos construir el conjunto $\set{ C_1,…,C_n }$ .

Cabe señalar que todos los objetos que trabajaremos serán conjuntos, así que todo elemento de un conjunto es a su vez un conjunto.

Como veremos más adelante, los números naturales serán conjuntos y resultarán ser distintos como conjuntos cuando sean distintos como números, ver la sección 5.1, página 207, del libro de Avella y Campero que se menciona en la bibliografía de este curso.

Ejemplo:

  1. Consideremos el conjunto vacío, $\emptyset$. Podemos formar el conjunto unitario cuyo único elemento es el conjunto vacío que se denota por $\{\emptyset\}$. En este caso tenemos que $\emptyset\in\{\emptyset\}$.
  2. Consideremos el conjunto cuyos elementos son $\emptyset$ y $\{\emptyset\}$, es decir el conjunto $\{\emptyset,\{\emptyset\}\}$. En este caso tenemos que $\emptyset\in\{\emptyset,\{\emptyset\}\}$ y $\{\emptyset\}\in\{\emptyset,\{\emptyset\}\}$.
  3. Consideremos el conjunto cuyo único elemento es el unitario del vacío, es decir el conjunto $\{\{\emptyset\}\}$. En este caso tenemos que $\{\emptyset\}\in\{\{\emptyset\}\}$.
  4. Dados los números $4$ y $7$ formamos el conjunto que tiene a éstos como elementos y lo denotamos como $\set{4,7}$. Observa que: $4\in \set{4,7}$ y $7\in \set{4,7}$. Formemos ahora un conjunto que tiene como elementos al conjunto $\set{4,7}$ y al número $6$, denotado por $\set{\set{4,7},6}$. Entonces, $\set{4,7}\in \set{\set{4,7},6}$ y $6\in \set{\set{4,7},6}$.
  5. Considera el conjunto formado por los números $2$ y $3$, denotado por $\set{2,3}$. Ahora considera al conjunto formado por los números $3$, $9$ y $11$, es decir el conjunto $,\set{\,3,9,11\,}$. Formemos después al conjunto que tiene por elementos a los números $33$, $1$ y al conjunto $\set{\,3,9,11\,}$ que se denota por $\set{\,33,1,\set{\,3,9,11\,}\,}$. Finalmente sea $A$ el conjunto cuyos elementos son exactamente el conjunto $\set{2,3}$, el número $4$ y el conjunto $\set{\,33,1,\set{\,3,9, 11\,}\,}$, es decir, $$A=\set{\,\set{2,3},4,\set{\,33,1,\set{\,3,9, 11\,}\,}\,}.$$ Notemos entonces que, dado que los elementos de $A$ son el conjunto $\set{2,3}$, el número $4$ y el conjunto $\set{\,33,1,\set{\,3,9, 11\,}\,}$, podemos afirmar que $\set{2,3}\in A$, $4\in A$ y $\set{\,33,1,\set{\,3,9,11\,}\,}\in A$.

Los conjuntos se pueden describir a partir de propiedades que caracterizan a sus elementos.

Ejemplos:

  1. $\set{\,x \mid x=1 \,\,o\,\, x=2}=\set{1,2}$.
  2. $\set{\,x \mid x \, \text{es un número tal que $x^2=1$}}=\set{1,-1}$.
  3. $\set{\,x \mid x\neq x}$ es un conjunto sin elementos, es decir es el conjunto vacío, es decir, $\set{\,x \mid x\neq x}=\{\}=\emptyset$.
  4. $A=\set{2,-7,\frac{1}{4},5,\pi}$.

En general, si una propiedad $P$ describe a los elementos del conjunto $A$ escribimos:

$A=\set{x \mid x\, \text{cumple $P$}}$

¿Toda propiedad $P$ define un conjunto?

Si cualquier propiedad $P$ puede definir un conjunto, en particular la propiedad de no pertenecer a sí mismo debería determinar un conjunto.

Así, consideremos la colección $C = \set{ x \mid x \notin x }$, formado por todos los conjuntos que no se pertenecen a sí mismos.

Si $C$ es un conjunto es razonable preguntarse si $C$ pertenece o no a sí mismo. Analicemos entonces ambas posibilidades.

Si $C \in C$, entonces $C$ es un elemento de sí mismo y, por lo tanto, tiene que cumplir la propiedad que caracteriza a sus elementos, así que $C \notin C$.

Si $C \notin C$, $C$ cumple la propiedad que caracteriza a los elementos de $C$ y, por lo tanto, $C \in C$.

En cualquiera de ambos casos hemos llegado a que $C \in C$ y $C \notin C$. Esto contradice la lógica matemática clásica, pues sólo una de las aseveraciones es cierta: $C \in C$ o $C \notin C$. Esto es una paradoja, es decir una contradicción a la que se llega mediante un razonamiento lógico. Fue encontrada por el filósofo y matemático Bertrand Russell en la teoría de conjuntos que desarrollaba el matemático Georg Cantor. En honor a él se le conoce como la paradoja de Russell.

Así, no toda propiedad define un conjunto y por ello se tiene la necesidad de establecer las reglas o axiomas que mencionamos, para saber qué colecciones sí se considerarán un conjunto.

Definición

Dada una propiedad $P$ decimos que $\set{x \mid x\, \text{cumple $P$}}$ es la colección o clase formada por todos los objetos que cumplen la propiedad $P$.

Nota que todo conjunto es una clase, pero, por lo dicho anteriormente, no toda clase será considerada un conjunto. Esto puede verse con más claridad en la tarea moral.

Tarea Moral

Ve el siguiente video:

Más adelante

Es necesario determinar cuándo dos conjuntos son iguales y para ello es importante entender qué es lo que nos interesará de los conjuntos. Intuitivamente lo que determina a un conjunto son sus elementos, no el orden en que aparecen , ni si se escribe un mismo elemento varias veces. Para lograr formalizar esta idea requerimos el concepto de subconjunto por lo que en la siguiente nota veremos más objetos de la teoría de conjuntos que se obtienen de considerar colecciones formadas al elegir algunos elementos de un conjunto dado, además será la primera entrada donde haremos afirmaciones y las probaremos.

Entradas relacionadas

Página principal del curso

Nota siguiente del curso: Nota 2. Subconjuntos.

Nota. Las imágenes mostradas para ilustrar los conjuntos no fueron de diseño propio, y se da las gracias a: https://www.spanish.cl/ por sus divertidos dibujos. Se deja el link de donde se obtuvieron: https://www.spanish.cl/vocabulario/animales-de-la-granja.htm.

Álgebra Superior II: El algoritmo de Euclides

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores estudiamos los conceptos de máximo común divisor y de mínimo común múltiplo. Ahora nos enfocaremos en un aspecto un poco más práctico sobre el máximo común divisor que dejamos pendiente: ¿cómo lo calculamos? Para ello hablaremos de un procedimiento conocido como el algoritmo de Euclides, el cual afirma que afirma que podemos aplicar iteradas veces el algoritmo de la división en ciertos números específicos, comenzando con dos enteros $a$ y $b$ para encontrar su máximo común divisor de dos enteros positivos $a$ y $b$.

Lo primero que haremos es explicar el procedimiento mediante el cual podemos encontrar el máximo común divisor de dos números aplicando repetidamente el algoritmo de la división. En la siguiente sección daremos la demostración de por qué funciona este procedimiento. Hacia el final de la entrada también veremos que este mismo procedimiento nos permite también escribir al máximo común divisor de dos enteros $a$ y $b$ como combinación lineal de ellos, es decir, de la forma $ra+sb$ con $r$ y $s$ números enteros.

El procedimiento del algoritmo de Euclides

Sean $a, b$ cualesquiera enteros positivos, con $a \neq b$ y $a > b.$ Por el algoritmo de la división, sabemos que siempre existen $q, r \in \mathbb{Z}$ tales que podemos escribir $$a = bq + r, \enspace \text{con} \quad \quad 0 \leq r < b. $$

Luego, como $b$ y $r$ son enteros, también existen $q_1$ y $r_1$ tales que $$b = rq_1 + r_1,\enspace \text{con} \quad \quad 0 \leq r_1 < r.$$

Y como $r$ y $r_1$ son enteros, existen $q_2$ y $r_2 \in \mathbb{Z}^+$ tales que $$r = r_1q_2 + r_2,\enspace \text{con} \quad \quad 0 \leq r_2 < r_1.$$

Se puede continuar así sucesivamente. Pero este procedimiento debe de terminar, pues tenemos $b>r>r_1>r_2>\ldots \geq 0$, de modo que debe existir una $i$ tal que $r_i=0$. De esta forma, en el penúltimo paso tendremos que existen $q_{i-1}$ y $r_{i-1}$ enteros tales que $$r_{i-3} = r_{i-2}q_{i-1} + r_{i-1}, \enspace \text{con} \quad \quad 0 \leq r_{i-1} < r_{i-2}.$$

Y en el último paso tendríamos $q_i \in \mathbb{Z}^+$ y $r_i = 0$ tales que
$$r_{i-2} = r_{i-1}q_i + 0, \enspace \text{con} \quad \quad 0 = r_i < r_{i-1} .$$

Lo que nos dice el algoritmo de Euclides es que el último residuo no cero, en este caso $r_{i-1}$ es el máximo común divisor de $a$ y $b$.

Este procedimiento es particularmente útil cuando $a$ y $b$ son números tan grandes, tanto que determinar el máximo común divisor de ellos no sea inmediato. Aunque se comience con números muy grandes, el algoritmo de Euclides encuentra el MCD de manera rápida.

Ejemplo del algoritmo de Euclides

A continuación veremos el algoritmo de Euclides en acción.

Problema. Encuentra el máximo común divisor de $3456$ y $6524$.

Solución. Observamos que $6524 > 3456$. Así, $$6524 = 3456\cdot 1 + 3068, \quad \quad 0 \leq 3068 < 3456. $$
Aplicando nuevamente el algoritmo de la división, obtenemos
$$3456 = 3068 \cdot 1 + 388, \quad \quad 0 \leq 388 < 3068. $$
Aplicando una vez más el algoritmo de la división, se tiene
$$3068 = 388\cdot 7 + 352, \quad \quad 0 \leq 352 < 388. $$
Siguiendo este procedimiento,
$$388 = 352 \cdot 1 + 36, \quad \quad 0 \leq 36 < 352. $$
$$352 = 36 \cdot 9 + 28, \quad \quad 0 \leq 28 < 36. $$
$$36 = 28\cdot 1 + 8, \quad \quad 0 \leq 8 < 28.$$
$$28 = 8 \cdot 3 + 4, \quad \quad 0 \leq 4 < 8.$$
$$8 = 4\cdot 2 + 0.$$

Como el último residuo no cero es $4$, entonces $(6524, 3456)=4$.

$\triangle$

Observación. Aunque el algoritmo de Euclides requiere que los números $a$ y $b$ sean positivos, cuando ocurre el caso de que uno de ellos o los dos fueran negativos, no hay un gran obstáculo. Basta sacar el valor absoluto de ambos números al inicio, ya que los divisores de un número negativo son los mismos que los de su valor absoluto.

Veamos un ejemplo que usa esta observación.

Ejemplo. Obtén el máximo común divisor de $-100$ y $45$.

Solución. Como uno de los números es negativo, antes que nada sacamos valores absolutos: $|-100| = 100$ y $|45| = 45.$ Le aplicamos el algoritmo de Euclides a estos números:
$$ 100 = 45 \cdot 2 + 10, \quad \quad 0 \leq 10 < 45. $$
$$ 45 = 10 \cdot 4 + 5, \quad \quad 0 \leq 5 < 10. $$
$$10 = 5 \cdot 2 + 0.$$

Notemos que el último residuo no cero es $5$. Por lo tanto, $(-100, 45) = 5.$

$\triangle$

Demostración de la validez del algoritmo de Euclides

Ahora, veamos la demostración de que el algoritmo de Euclides funciona. El resultado clave para demostrarlo es la siguiente proposición.

Proposición. Sean $a,b \in \mathbb{Z}^+, $ tales que $a = bq + r.$ Entonces $(a,b) = (b,r).$

Demostración. Sean $a,b \in \mathbb{Z}^+$. Sea $d=(a,b)$ el máximo común divisor de $a$ y $b$, y sea $f=(b,r)$ el máximo común divisor de $b$ y $r$.

Tenemos que $d\mid a$. Además, $d \mid b,$ por lo que $d\mid bq$. Así, $d\mid a-bq=r$. De este modo, $d$ es un divisor común de $b$ y de $r$, de modo que $d\mid f$.

Por otro lado, $f\mid b$, de donde $f\mid bq$. Además, $f\mid r$. De este modo, $f\mid bq+r=a$. Concluimos entonces que $f$ es divisor común de $a$ y $b$. Pero entonces $f\mid d$.

Por propiedades de divisibilidad, tenemos entonces que $|f|=|d|$, pero como ambos son números no negativos concluimos entonces que $f=d$, como queríamos.

$\square$

Ya con este resultado demostrado, enunciemos formalmente el algoritmo de Euclides y demos su demostración.

Teorema. Empecemos tomando dos enteros positivos $a$ y $b$, con $a\geq b$. Usando el algoritmo de la división, definimos sucesivamente los números $r_0,r_1,\ldots,r_i$ y $q_0,q_1,\ldots,q_i$ de manera que se cumpla

\begin{align*}
b=aq_0+r_0\\
a=r_0q_1+r_1
\end{align*}

con $0\leq r_0<a$, y $0\leq r_1 < r_0$ y para $j=2,\ldots,i$ que se cumpla

\begin{align*}
r_{j-2}=r_{j-1}q_j+r_{j},
\end{align*}

con $0\leq r_j < r_{j-1}.$

Como $b\geq a > r_0 > r_1 > r_2 > \ldots > r_i$, entonces podemos suponer que $r_i=0$. Entonces $(a,b)=r_{i-1}$.

Demostración. Por la proposición anterior, tenemos que $(a,b)=(b,r_0)$. También por esa misma proposición, tenemos que $(b,r_0)=(r_0,r_1)$. Y, de hecho, aplicando repetidamente la proposición tenemos que:

$$(r_0,r_1)=(r_1,r_2)=\ldots=(r_{i-1},r_i)=(r_{i-1},0)=r_{i-1}.$$

La penúltima igualdad es porque $r_i=0$ y la última porque $(n,0)=n$ para cualquier entero positivo $n$.

$\square$

Máximo común divisor como combinación lineal entera

Una última consecuencia del algoritmo de Euclides es que nos ayuda a poner al máximo común divisor de dos números $a$ y $b$ como combinación lineal entera de ellos dos.

Una forma práctica de encontrar la combinación lineal correspondiente es mediante el siguiente procedimiento. Tomaremos como ejemplo el algoritmo de Euclides que ya habíamos hecho para encontrar $(6524,3456)$.

$$6524 = 3456\cdot 1 + 3068, \quad \quad 0 \leq 3068 < 3456. $$
$$3456 = 3068 \cdot 1 + 388, \quad \quad 0 \leq 388 < 3068. $$
$$3068 = 388\cdot 7 + 352, \quad \quad 0 \leq 352 < 388. $$
$$388 = 352 \cdot 1 + 36, \quad \quad 0 \leq 36 < 352. $$
$$352 = 36 \cdot 9 + 28, \quad \quad 0 \leq 28 < 36. $$
$$36 = 28\cdot 1 + 8, \quad \quad 0 \leq 8 < 28.$$
$$28 = 8 \cdot 3 + 4, \quad \quad 0 \leq 4 < 8.$$
$$8 = 4\cdot 2 + 0.$$

Lo que haremos es la siguiente tabla, en donde en la columna izquierda ponemos todos los residuos que vamos encontrando. Además, completaremos la primera fila con $1,0$ y la segunda con $0,1$.

$6524$$1$$0$
$3456$$0$$1$
$3068$
$388$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Vamos a ir llenando la tabla con lo que ya sabemos del algoritmo de Euclides. Por el algoritmo de Euclides, sabemos que $3456$ cabe $1$ vez en $6524$. Por esta razón, restamos $1$ vez la segunda fila de la primera, para obtener $1-0=1$ y $0-1=-1$. Estos son los números que van en la fila $3$, columnas $2$ y $3$:

$6524$$1$$0$
$3456$$0$$1$
$3068$$\mathbf{1}$$\mathbf{-1}$
$388$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

De nuevo, $3068$ cabe una vez en $3456$, así que de nuevo restamos una vez el tercer renglón del segundo. Nos queda $0-1=-1$ y $1-(-1)=2$ para las nuevas entradas:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$\mathbf{-1}$$\mathbf{2}$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Ahora cambia un poco, pues $388$ ya sabemos que cabe $7$ veces en $3068$ (por lo que hicimos del algoritmo de Euclides). Así, para la nueva fila restamos siete veces la cuarta fila de la tercera, para obtener como nuevos números $1-7\cdot (-1)=8$ y $-1-7\cdot (2)=-15$. La tabla queda así:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$-1$$2$
$352$$\mathbf{8}$$\mathbf{-15}$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Siguiendo este procedimiento repetidamente, llegamos a la siguiente tabla:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$-1$$2$
$352$$8$$-15$
$36$$-9$$17$
$28$$89$$-168$
$8$$-98$$185$
$4$$383$$-723$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Los últimos dos números que pusimos en la tabla nos dan la respuesta de cómo poner a $4$ como combinación lineal entera de $6524$ y de $3456$:

$$4=383 \cdot 6524 – 723 \cdot 3456.$$

Verifica que en efecto las cuentas son correctas, y que esta expresión final es válida.

¿Cómo se demuestra que este procedimiento siempre funciona? Se puede mostrar inductivamente que, de hecho, para cada uno de los renglones con entradas $a,b,c$ se cumple que $a=6524b+3456c$. Esto queda como uno de los problemas de tarea moral.

Más adelante…

Esta entrada termina nuestra exploración introductoria al mundo de la aritmética de los números enteros. Sin embargo, todavía hay otros lugares a los que nos llevará el algoritmo de la división. Hasta ahora hemos discutido mucho el caso de la divisibilidad, es decir, cuando el residuo de la división de un número entre otro es igual a cero. Pero también podemos encontrar estructuras matemáticas muy ricas si estudiamos al resto de los posibles residuos. A partir de la siguiente entrada hablaremos del anillo de enteros módulo $n$, lo cual nos ayudará a formalizar estas ideas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Usa el algoritmo de Euclides para encontrar el máximo común divisor de las siguientes parejas de números, y para escribirlo como combinación lineal entera de ellos.
    1. $15$ y $35$
    2. $18$ y $92$
    3. $201$ y $153$
    4. $328$ y $528$
  2. ¿Cómo usarías el algoritmo de Euclides para encontrar el máximo común divisor de los números $91$, $105$ y $119$? Es decir, debes encontrar el mayor entero $d$ que divida a estos tres números de manera simultánea.
  3. Hay otra forma de encontrar el máximo común divisor de dos números si conocemos su factorización en números primos. Imagina que tenemos dos números $n$ y $m$ y que, conjuntamente, usan los números primos distintos $p_1,p_2,\ldots, p_k$ en su factorización en primos (quizás con exponente cero). Esto nos permite escribirlos como:
    \begin{align*} m=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_k^{\alpha_k} \\ n=p_1^{\beta_1}p_2^{\beta_2}\ldots p_k^{\beta_k}\ \end{align*}.
    1. Demuestra que la máxima potencia de $p_1$ que divide tanto a $m$ como a $n$ es $p_1^{\text{min}(\alpha_1,\beta_1)}$.
    2. Demuestra que el máximo común divisor de $m$ y $n$ es $$p_1^{\text{min}(\alpha_1,\beta_1)} p_2^{\text{min}(\alpha_2,\beta_2)}\cdots p_k^{\text{min}(\alpha_k,\beta_k)}.$$
  4. Demuestra un resultado análogo al del inciso anterior para el mínimo común múltiplo y usa ambos resultados para dar otra demostración de que $(m,n)[m,n]=mn$.
  5. Verifica que, en efecto, el método explicado en la entrada ayuda a escribir al máximo común divisor de dos enteros como combinación lineal de ellos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Analítica II: Cilindros sobre cónicas

Por Brian Manzano

Introducción

Con esta entrada comenzamos nuestra exploración de los objetos en el espacio de tres dimensiones. Lo primero que haremos es estudiar los cilindros que se construyen sobre cónicas. La mayoría de nosotros tiene una noción bastante buena sobre ellos, o por lo menos de los «cilindros usuales», en donde las secciones horizontales son círculos. Sin embargo, si bien entendemos muy bien su forma de manera intuitiva, ¿cómo los podemos representar en el lenguaje matemático?

A continuación definiremos qué entenderemos por un cilindro sobre una cónica. Veremos algunos ejemplos y luego haremos cilindros con objetos que hemos estudiado en el curso de Geometría Analítica I: con cónicas.

Definición de cilindros sobre curvas

Los cilindros que conocemos de manera intuitiva comienzan con una circunferencia y luego esta se extiende sin cambios a lo largo de un eje. Los cilindros con los que nos encontramos cotidianamente (por ejemplo, un vaso) se extienden sólo de manera acotada. Pero podemos pensar en qué sucedería si los extendemos indefinidamente. Si hacemos esto, llegamos a la siguiente definición.

Definición. Un cilindro es una superficie en $\mathbb{R}^3$ que se pueda obtener tomando un plano $\Pi$, tomando en él una curva $\mathcal{C}$ y tomando para cada punto $p$ de $\mathcal{C}$ una recta ortogonal a $\Pi$ que pase por $p$. La unión de estas rectas son el cilindro. A cada una de las rectas le llamamos una directriz del cilindro y a la curva $\mathcal{C}$ le llamamos la curva generatriz del cilindro.

Así, un cilindro es un conjunto de lineas paralelas que se encuentran «guiadas» o «dirigidas» de acuerdo a una curva plana. Podemos imaginarlo como sigue: dibujamos la curva sobre un papel, y luego sobre ella pegamos palos perpendiculares a la hoja

Cilindros a partir de cónicas

La definición de cilindro, tal y como está arriba, no restringe el tipo de cónicas que podemos tener. Sin embargo, hay una familia de cónicas que conocemos bien debido a cursos anteriores: las cónicas. Ya que podemos elegir con libertad la curva plana, pensemos en lo que sucede si usamos de las cónicas que conocemos. Para simplificar la situación, supondremos que dibujamos la cónica en el plano XY y entonces que las directrices son perpendiculares al plano $XY$, es decir, paralelas al eje $Z$. Podemos entonces hacer ejemplos de acuerdo a subfamilia de cónicas que usemos.

Cilindros elípticos

Recordemos que una elipse en el plano $XY$ puede pensarse (salvo rotaciones y traslaciones) como el lugar geométrico de los puntos $(x,y)$ que satisfacen una ecuación del estilo $$\frac{x^2}{a^2}+\frac{y^2}{b^2} =1,$$ donde $a$ y $b$ son parámetros que determinan la longitud de los ejes de la elipse.

Si ahora pensamos en todo $\mathbb{R}^3$ y nos preguntamos por el lugar geométrico de los puntos $(x,y,z)$ que satisfacen la ecuación, la respuesta es similar. Los valores de $(x,y)$ están dados por la ecuación y el valor de $z$ no está restringido de ninguna manera por la ecuación, de modo que puede ser lo que sea. ¡Hemos logrado «levantar la cónica» a líneas perpendiculares al plano $XY$!

De tener $a=b$, tendremos un cilindro circular en el origen. Si $a=b=1$, entonces es un cilindro mucho más especial, pues es uno que se obtiene de levantar la circunferencia unitaria canónica.

Por supuesto, pudimos haber comenzado con una elipse en el plano $YZ$, que tendría una ecuación del estilo $$\frac{y^2}{a^2}+\frac{z^2}{b^2} =1.$$ En este caso, el valor de $x$ sería libre, así que puede valer lo que sea. Así, esta ecuación pensada en todo $\mathbb{R}^3$ nos daría un cilindro cuya curva directriz es una elipse, y cuyas generatrices son paralelas al eje $x$.

Cilindros parabólicos

Para crear cilindros parabólicos podemos proceder de la misma manera. Para ellos, comenzamos con una parábola, por ejemplo, en el plano $XY$. Sabemos que una parábola así está dada, salvo rotaciones y traslaciones, por una ecuación del siguiente tipo: $$y^2 = 2px.$$ Una vez más, si en vez de pensar en esto como una ecuación en $\mathbb{R}^2$, la pensamos como una ecuación en $\mathbb{R}^3$, entonces el valor de $z$ es arbitrario y entonces al tomar el lugar geométrico en efecto obtenemos una línea perpendicular al plano $XY$ por cada punto de la parábola.

Cilindros hiperbólicos

La tercer familia sería la de cilindros hiperbólicos. En este caso, la curva generatriz es una hipérbola. Recordemos que salvo rotaciones y traslaciones, una hipérbola es el lugar geométrico de los puntos $(x,y)$ del plano $XY$ tales que satisfacen una ecuación del estilo $$\frac{x^2}{a^2}-\frac{y^2}{b^2} =1.$$ Al pensar a esta ecuación como una restricción para puntos $(x,y,z)$ de $\mathbb{R}^3$, obtenemos entonces un cilindro hiperbólico.

Problemas ejemplo de cilindros

Para aterrizar las ideas anteriores, veamos algunos ejemplos concretos.

Ejemplo. Tomemos el lugar geométrico de los puntos $(x,y,z) \in $ $\mathbb{R} ^3$ que cumplen con la siguiente ecuación: $$\frac{x^2}{4}+\frac{y^2}{25} = 1.$$

Podemos comenzar detectando la ausencia de la variable $z$, con lo que las generatrices serán rectas paralelas al eje $Z$. De hecho, el eje del cilindro precisamente será será el eje $Z$. Esto no siempre ocurre ya que no necesariamente el centro de la curva dada está en el origen del plano $XY$, pero debido a que no tenemos constantes que acompañen los valores $x$ o $y $ su centro no se encontrará desplazado.

¿Qué nos dicen los valores $4,25$ que acompañan a sus variables correspondientes ?Con todo en mente veamos su gráfica

Veamos desde otra perspectiva, no solo sobre el plano, sino con una vista incluyendo el otro eje coordenado obtenemos la siguiente gráfica.

$\square$

Ejemplo. Tomemos el lugar geométrico en $\mathbb{R}^3$ de los puntos $(x,y,z)$ que cumplen la siguiente ecuación: $$y^2=6x.$$

De manera muy similar notamos que la ausencia de la variable $z$ llevara a que su directriz se encuentre en el plano $XY$ de forma que vista desde este plano:

¿Puedes decir a que cónica pertenece esta gráfica?

Agregando la perspectiva con el eje faltante obtenemos:

Nota importante. Como habrás notado al graficar obtenemos estas representaciones que parecen estar cortadas o seccionadas por planos paralelos al $XY$ , en realidad estos cilindros se extienden sin límite.

$\square$

Ejemplo. Para la siguiente ecuación: $$\frac{z^2}{4}-\frac{y^2}{9} = 1,$$ ¿cuál es el lugar geométrico de los puntos $(x,y,z)$ en $\mathbb{R}^3$ que la cumplen?

Notemos ahora que además de representar otro tipo de cónica tenemos ahora un cambio importante, ya no contamos de manera explicita con la $y$ en la ecuación, ¿Qué cambios conllevara esto? ¿En que plano podremos observar la cónica correspondiente?

Veamos si tu intuición fue correcta

Gráfica de la ecuación en el plano YZ

Desde otra perspectiva donde podremos ver su profundidad, tenemos ahora que las generatrices se extienden desde $- \infty$ hasta $\infty$.

$\square$

Más adelante…

En esta primer entrada del curso hablamos de los primeros objetos geométricos de tres dimensiones que nos interesan: los cilindros con cierta curva generatriz. En la siguiente entrada veremos otra manera con la cual podemos crear un objeto de tres dimensiones a partir de rectas: las superficies de revolución. Un poco más adelante estudiaremos una versión más general de objetos que podemos obtener de esta manera: los conjuntos cero de ecuaciones de segundo grado en tres variables.

Tarea moral

Estos ejercicios te ayudaran a comprender de mejor forma los conceptos vistos.

  1. Reescribe las ecuaciones de los ejemplos que dimos para que sus directrices se encuentren en diferentes planos.
    Sugerencia: Nota qué pasa con el tercer ejemplo.
  2. Ahora que hemos cambiado los planos donde se encuentran las directrices, grafica estas ecuaciones, ¿Cómo cambian los cilindros? Realiza un cambio de variable para el segundo ejemplo haciendo el reemplazo $x\to x-3$. ¿Qué cambia? ¿pasa lo mismo para el primer ejemplo?
  3. Determina la ecuación para un cilindro parabólico cuya parábola directriz esté contenida en el plano XY y cuyo foco sea el punto $(2, 0)$ de este plano. Hay varias de estas parábolas. Puedes usar la que gustes.
  4. Gráfica los cilindros asociados a cada una de las siguientes ecuaciones:
    1. $x^2-z^2=0$.
    2. $(y-9)^2+(z-4)^2=0$.
    3. $x^2=y$.

Entradas relacionadas

Álgebra Superior II: Teorema fundamental de la aritmética e infinidad de números primos

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior comenzamos a hablar de los números primos. Lo que ahora veremos es que, en un sentido muy preciso, los números primos son los bloques con los cuales se construyen todos los demás enteros. El enunciado preciso estará dado por el teorema fundamental de la aritmética.

A grandes rasgos, el teorema fundamental de la aritmética afirma que todo entero se puede escribir como producto de primos, quizás algunos repetidos. Nos referimos a situaciones del tipo
\begin{align*}
8 &= 2 \cdot 2 \cdot 2 = 2^3,\\
13 &= 13^1,\\
152 &= 2^3\cdot 19, \enspace \text{etc.}
\end{align*}

Otro resultado que demostraremos en esta entrada es que hay una infinidad de primos. Euclides fue una de las primeras personas de quienes nos queda registro que lo notó. Veremos una demostración similar a la que él dió.

El teorema fundamental de la aritmética

El teorema fundamental de la aritmética dice que cualquier número entero es producto de números primos. Pero, más aún, nos dice que este producto es único, bajo ciertas condiciones que le ponemos a la representación. Para simplificar la presentación, estudiaremos primero lo que dice el enunciado para enteros positivos.

Teorema. Sea $n$ un entero positivo. Entonces, existe un único entero $k$ y únicos números primos $p_1\leq p_2 \leq p_3 \leq \ldots \leq p_k$ tales que $$n=p_1\cdot p_2\cdot \ldots \cdot p_k.$$

Por ejemplo, consideremos el número $1060$. Notemos que en efecto se puede escribir como producto de primos de la siguiente manera: $1060=2\cdot 2 \cdot 5 \cdot 53$. El teorema fundamental de la aritmética nos dice que esta es la única manera en la que podemos ponerlo como producto de primos. Si lo piensas un poco, no es totalmente obvio. ¿Qué impide que, por ejemplo, no pase que $1060$ tenga otra posible representación en donde el $5$ aparezca más veces, o el $2$ menos veces? Es lo que debemos estudiar.

Demostración de la existencia

Vamos a partir la demostración del teorema fundamental de la aritmética en dos partes. Primero veremos la existencia, y después la unicidad. Así, nos enfocaremos primero en ver que cualquier entero positivo tiene una factorización en números primos.

La demostración será por inducción fuerte. Si $n=1$, la factorización es la factorización vacía, en donde $k=0$, y como no estamos multiplicando nada obtenemos $1$. Si $n=2$, entonces la factorización es precisamente $2=2$, pues $2$ es un número primo. Supongamos que el resultado es cierto hasta antes de cierto número fijo $n$ y veamos qué pasa con $n$. Si $n$ es un número primo, entonces $n=n$ ya es una factorización como las que buscamos. Si $n$ no es un número primo, entonces lo podemos factorizar como $n=ab$, en donde $a$ y $b$ son enteros positivos distintos de $1$. Por ello, cada uno de $a$ y $b$ son menores que $n$ y por hipótesis inductiva tienen una factorización en primos, digamos
\begin{align*}
a&=q_1\cdot q_2 \cdot \ldots\cdot q_l\\
b&=r_1\cdot r_2 \cdot \ldots \cdot r_m.
\end{align*}

Así, renombrando $q_1,\ldots,q_l,r_1,\ldots,r_m$ como $p_1\leq \ldots \leq p_k$ (donde $k=l+m$) para que queden en orden no decreciente obtenemos la factorización $$n=p_1\cdot p_2\cdot \ldots \cdot p_k $$ buscada. Esto termina la prueba de la primera parte.

Demostración de la unicidad

Veamos ahora que las factorizaciones en primos son únicas. Una vez más, procedemos por inducción fuerte. El resultado claramente es cierto para $n=1$ y $n=2$. Supongamos que el resultado es cierto hasta antes de cierto entero $n$ dado y supongamos que tenemos dos factorizaciones para $n$:

\begin{align*}
n&=p_1\cdot p_2 \cdot \ldots\cdot p_k\\
n&=q_1\cdot q_2 \cdot \ldots \cdot q_l.
\end{align*}

Notemos que $p_k$ es un divisor de $n$, así que debe dividir a $q_1\cdot\ldots\cdot q_l$. Por una propiedad de divisibilidad que vimos en la entrada pasada, debe suceder que o bien $p_k$ divide a $q_l$, o bien que divide a $q_1\cdot \ldots \cdot q_{l-1}$. Si pasa lo segundo, debe dividir o bien a $q_{l-1}$, o bien a $q_1\cdot \ldots \cdot q_{l-2}$. Y así sucesivamente, de modo que $p_k$ debe dividir a alguno de los $q_i$. Pero como $p_k$ y $q_i$ son primos, debe suceder entonces que $p_k=q_i$. Tras cancelar este término en ambas expresiones de $n$, llegamos a que:

$$p_1\cdot p_2 \cdot \ldots\cdot p_{k-1}=q_1\cdot \ldots \cdot q_{i-1} \cdot q_i \cdot \ldots \cdot q_l,$$

pero esto es una igualdad de factorizaciones en primos para un número menor estricto a $n$. Por hipótesis inductiva, ambas factorizaciones deben de ser la misma. Así, ambas factorizaciones de $n$ son la misma, pues se obtienen a partir de estas multiplicando por el número $p_k=q_i$.

$\square$

Otra forma de escribir el teorema fundamental de la aritmética

Hay otra manera de escribir el teorema fundamental de la aritmética, en donde los primos iguales se agrupan en un mismo término, y se coloca la potencia correspondiente.

Teorema. Sea $n$ un entero positivo. Existe un único entero no negativo $k$, únicos primos $p_1\leq \ldots \leq p_k$ y únicos exponentes $\alpha_1,\ldots,\alpha_k$ tales que:

$$n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot \ldots \cdot p_k^{\alpha_k}.$$

En realidad esta segunda versión del teorema se deduce de manera inmediata de la anterior.

Ejemplo. Consideremos el número $36$. El $2$ lo divide, así que $36=18\cdot 2$. Luego, el $3$ divide al $18$, de manera que $36=3\cdot 6\cdot 2$. Finalmente, notamos que $6=2\cdot 3$, de donde $36=3\cdot 2 \cdot 3 \cdot 2$. Para obtener la «forma estándar» de la factorización, agrupamos los primos iguales, les ponenmos el orden correspondiente y escribimos en orden creciente de primos. Así, la factorización de $36$ quedaría $36=2^2\cdot 3^2$.

$\triangle$

El conjunto de primos es infinito

En esta sección queremos demostrar otro resultado importante sobre el conjunto de los números primos.

Teorema. El conjunto de números primos es infinito.

Para dar la demostración, usaremos el método de demostración por contradicción, es decir, partiremos de que el conjunto de primos no es finito y, eventualmente se disparatará el asunto.

Este en efecto parece ser el método más conveniente. Sería difícil usar inducción dado que, si bien el conjunto de primos puede indexarse por $p_1, p_2, p_3, \ldots$, no es fácil determinar cuál es el primo que sigue en la lista. O bien, dado un entero $n$, no es fácil determinar si $n+1$ será o no un número primo. Resultaría igualmente difícil intentar la demostración por algún otro método directo.

La idea que usaremos es la siguiente. Si hay finitos primos, digamos $k$, significa que se puede crear una lista finita con ellos: $p_1, p_2, \ldots , p_k$. Veremos que siempre debe existir un primo distinto de los de la lista, lo que llevará a una contradicción con la hipótesis de que sólo existían $k$ primos.

Veamos primero unos casos particulares del argumento que usaremos. Supongamos que sólo existieran $2$ primos, el $2$ y el $3$. Consideremos el número $z = 2\cdot 3 + 1$. De acuerdo al teorema fundamental de la aritmética, este número o bien es primo, o bien debe tener un divisor primo $p$. No puede ser primo, pues dijimos que los únicos primos eran $2$ y $3$. No puede ser divisible entre $2$ pues deja residuo $1$ al hacer la división. Tampoco puede ser divisible entre $3$ pues también deja residuo $1$ al hacer la división. Así, debe haber otro primo que no sea $2$ y $3$ y que divida a este número. Esto contradice que sólo existieran $2$ primos.

Veamos otro ejemplo. Supongamos que hay únicamente 4 primos: $2,3,5,7$. Consideremos el número $2 \cdot 3 \cdot 5 \cdot 7 + 1 = 211.$ Si dividimos este número entre $2$, nos da $211=105\cdot 2 +1$, así que $2\nmid 211$. Si lo dividimos entre $3$, nos da $211=70\cdot 3 + 1$, así que $3\nmid 211$. De manera similar, se puede ver que las divisiones entre $5$ y $7$ también dejan residuo $1$, así que $5 \nmid 211$ y $7\nmid 211$.

Por el teorema fundamental de la aritmética, debe haber algún primo que divida a $211$. Pero estamos suponiendo que los únicos primos que existen son $2,3,5,7$ y acabamos de ver que ninguno de estos funciona. ¡Esto es una contradicción! Lo mismo ocurrirá sin importar la cantidad de primos $p_1, p_2, \ldots , p_k$ inicial. El problema no es cuántos son exactamente, sino la suposición de que son una cantidad finita.

Demostración. Supongamos, para buscar una contradicción, que el conjunto de números primos es finito y que consiste de exactamente los $k$ números primos $p_1, p_2, \ldots , p_k$. Consideremos el número $$p_1\cdot p_2 \cdot \ldots \cdot p_k +1.$$

El anterior número no es divisible por ninguno de los primos $$p_1, p_2, \ldots , p_k,$$ pues precisamente al hacer la división el residuo que queda es igual a $1$.

Por el teorema fundamental de la aritmética, $$p_1\cdot p_2 \cdot \ldots \cdot p_k + 1$$ debe tener entonces un divisor primo $p$ diferente de $$p_1, p_2, \ldots , p_k. $$ Esto es una contradicción, pues supusimos que sólo existían los primos $p_1,\ldots,p_k$.

$\square$

Más adelante…

Con los dos teoremas de esta entrada hemos profundizando un poco más en por qué los números primos son interesantes e importantes. La exploración de los números primos en este curso no irá mucho más lejos, pues pronto comenzaremos a tratar otros temas de aritmética modular. Sin embargo, te dejamos algunos pocos párrafos más sobre los números primos.

Los números primos siguen siendo interesantes para los matemáticos hoy en día; primero por la irregularidad con que van apareciendo en la recta numérica y porque hay muchas cosas que aún no se sabe acerca de su raro comportamiento. Por ejemplo, se conjetura que hay infinitos «primos gemelos», es decir, se cree que siempre es posible encontrar dos primos $a$ y $b$ que estén distanciados en dos unidades; no importa qué tan alejados estén del cero. El $3$ y el $5$ son primos gemelos. También los son el $17$ y el $19$. Nadie sabe si esta conjetura es cierta o falsa.

Los números primos aparecen en patrones muy irregulares, pero sí es posible decir algunas cosas al respecto. Por ejemplo, después del $2$ todo número primo $p$, es de la forma $4n +1$ o de la forma $4n -1$ para alguna $n \in \mathbb{N}$. Un resultado lindo en teoría de números es que para aquéllos primos que pertenecen a la primera categoría, que son los de la forma $4n+1$, siempre existe su expresión como una suma de cuadrados: $p = 4n + 1 = m^2 + n^2$, $n, m \in \mathbb{Z}.$ Pero a los primos de la segunda categoría es imposible expresarlos como suma de cuadrados. Estos son dos de los muchos resultados que demostró Euler para números primos, y puedes ahondar en ello en un curso de teoría de números.

Los números primos también han encontrado aplicaciones en criptografía, pues es bien sabido que si se eligen dos primos $p_1$ y $p_2$ tales que al multiplicarlos se obtenga un número compuesto $z$ de más de 100 dígitos, y si luego se establece que $p_1$ y $p_2$ sean la «clave» de mi mensaje cifrado pero yo únicamente doy a conocer el número compuesto $z$ a otra persona, entonces a una computadora le resultaría imposible factorizar $z$ en un corto lapso de tiempo. ¡Le tomaría años! De ahí que la contraseña secreta sería indescifrable.

Ahora, lo que se conoce como el «teorema fundamental de la aritmética» también tiene varias extensiones interesantes en otras áreas de las matemáticas. De hecho, en algunas estructuras la unicidad deja de ser cierta. Si combinamos a los números enteros con los números complejos (que veremos después), tenemos algunos ejemplos como $$12 = (1 + \sqrt{-11})(1 – \sqrt{-11})$$ pero también $$12 = (2 + \sqrt{-8})(2 – \sqrt{-8}).$$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra la factorización en primos de cada uno de los siguientes números 100, 170, 2022, 5000 y 713.
  2. Encuentra el menor entero positivo $k$ que haga que $775k$ sea un número cuadrado perfecto, es decir, de la forma $n^2$ para algún entero $n$.
  3. Halla el número de divisores de $2360$ y calcula la suma de todos ellos.
  4. ¿Cuál es el número entero de $1$ a $100$ que tiene la mayor cantidad posible de divisores?
  5. Demuestra que un entero tiene una cantidad impar de divisores si y sólo si es un número cuadrado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»