Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Variable Compleja I: Funciones complejas elementales como series de potencias

Por Pedro Rivera Herrera

Introducción

En la entrada 16 abordamos algunas de las funciones elementales en el estudio de la variable compleja. Vimos que todas las funciones de dicha entrada estaban motivadas por la extensión de las funciones reales a $\mathbb{C}$, además de que todas las funciones definidas en dicha entrada estuvieron dadas en términos de la función exponencial compleja, por lo que nos resulta de gran interés estudiar a detalle las propiedades de dicha función y justificar el por qué la definición dada para dicha función realmente extiende a la función exponencial real.

En esta entrada abordaremos de nueva cuenta a algunas de las funciones elementales desde el sentido complejo, pero utilizando series de potencias. Como veremos, esta caracterización nos permitirá entender mejor la analicidad de dichas funciones.

Primeramente consideremos la definición de la función exponencial como una serie de potencias dada en nuestros cursos de cálculo. Si $x \in \mathbb{R}$, entonces:
\begin{equation*}
\operatorname{exp}(x) = e^x = \sum_{n=0}^\infty \frac{x^n}{n!} \tag{31.1}.
\end{equation*}

De acuerdo con la definición 20.1, tenemos que si $z=x+iy\in\mathbb{C}$, entonces la función exponencial compleja está dada por:
\begin{equation*}
\operatorname{exp}(z) = e^x\left[\operatorname{cos}(y) + i \operatorname{sen}(y)\right]. \tag{31.2}
\end{equation*}

Por la fórmula de Euler tenemos que si $z\in\mathbb{C}$ es un número complejo puro, es decir, $z=iy$ con $y\in\mathbb{R}$, entonces:
\begin{equation*}
\operatorname{exp}(iy) =\operatorname{cos}(y) + i \operatorname{sen}(y). \tag{31.3}
\end{equation*}

Motivados en la definición de la función exponencial para el caso real (31.1), veamos que mediante series de potencias podemos dar una definición similar para el caso complejo, que extienda de manera natural a la exponencial real a su versión compleja. Más aún, veamos que a través de dicha definición podemos justificar la definición (31.2) y todos los resultados de la entrada 20, como la fórmula de Euler (31.1), que resultarán ser consecuencia de esta expansión en series y sus propiedades.

Entonces, la pregunta fundamental es ¿cómo podemos llegar a una expresión similar a la de (31.1) para el caso complejo?

Sea $z\in\mathbb{C}$. Definimos a la función:
\begin{equation*}
f(z) = \sum_{n=0}^\infty c_n z^n.
\end{equation*}

Dado que $f$ es nuestra función candidata a ser la exponencial compleja, de acuerdo con las propiedades de la exponencial compleja vistas en la entrada 20, planteamos la siguiente ecuación diferencial con condición inicial.
\begin{equation*}
f(z) = f'(z), \quad f(0) = 1 \tag{31.4}
\end{equation*}

La respuesta a nuestra pregunta está dada por la solución de la ecuación diferencial anterior.

Tenemos que:
\begin{equation*}
f(z) = c_0 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots,
\end{equation*}como la función exponencial es entera, entonces el radio de convergencia de la serie que define a $f$ debe ser infinito, entonces, por la proposición 30.2 tenemos que el de su derivada también es infinito y $f’$ deberá estar dada por la derivada término a término de la serie que la define, es decir:
\begin{align*}
f(z) = c_0 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots,\\
f'(z) = c_1 + 2c_2 z + 3c_3 z^2 + 4 c_4 z^3 + \cdots .
\end{align*}

Como $f(z) = f'(z)$, entonces, por el corolario 30.2, los coeficientes de ambas series deben ser iguales, es decir:
\begin{equation*}
c_0 = c_1, \,\, c_1 = 2 c_2, \,\, c_2 = 3 c_3, \,\, \ldots, c_{n-1} = n c_n,
\end{equation*}de donde $c_n = \dfrac{1}{n} c_{n-1}$, para todo $n\geq 1$.

Considerando lo anterior y la condición inicial $f(0) = 1$, entonces $c_0 = 1$, por lo que:
\begin{equation*}
c_1 = 1, \,\, c_2 = \frac{1}{2} = \frac{1}{2!}, \,\, c_3 = \left(\frac{1}{3}\right) \left(\frac{1}{2}\right) = \frac{1}{3!}, \,\, \ldots \,\, , c_{n} = \left( \frac{1}{n}\right)\left( \frac{1}{(n-1)!}\right) = \frac{1}{n!}.
\end{equation*}

Por lo que, la solución a la ecuación diferencial (31.4) es:
\begin{equation*}
f(z) = \sum_{n=0}^\infty \frac{z^n}{n!}, \forall z\in\mathbb{C}.
\end{equation*}

Definición 31.1. (Exponencial compleja como serie de potencias.)
Sea $z \in\mathbb{C}$, entonces definimos a la exponencial compleja como la serie de potencias:
\begin{equation*}
\operatorname{exp}(z) = \sum_{n=0}^\infty \frac{z^n}{n!}. \tag{31.5}
\end{equation*}

Observación 31.1.
En el ejemplo 27.8 hemos probado que la serie de potencias que define a la exponencial compleja es absolutamente convergente para todo $z\in\mathbb{C}$. Por lo que la función exponencial compleja está bien definida para todo $z\in\mathbb{C}$.

Podemos mencionar algunas de las propiedades más importantes de esta función, dada como series de potencias, en la siguiente:

Proposición 31.1. (Propiedades de la exponencial compleja.)
La función exponencial compleja definida como en (31.5) satisface las siguientes propiedades.

  1. Es una función entera y para todo $z\in\mathbb{C}$ se cumple que $\dfrac{d}{dz} \operatorname{exp}(z) = \operatorname{exp}(z)$.
  2. $\operatorname{exp}(0) = 1$.
  3. $\operatorname{exp}(z_1 + z_2) = \operatorname{exp}(z_1) \operatorname{exp}(z_2)$ para todo $z_1, z_2 \in\mathbb{C}$.
  4. $\operatorname{exp}(z) \neq 0$ para todo $z\in\mathbb{C}$.
  5. $\operatorname{exp}(-z) = \dfrac{1}{\operatorname{exp}(z)}$ y $\operatorname{exp}(z_1 – z_2) = \dfrac{\operatorname{exp}(z_1)}{\operatorname{exp}(z_2)}$, para cualesquiera $z, z_1, z_2 \in\mathbb{C}$.
  6. $\overline{\operatorname{exp}(z)} = \operatorname{exp}\left(\overline{z}\right)$ para todo $z\in\mathbb{C}$.
  7. Para todo $z\in\mathbb{C}$ se cumple que $|\operatorname{exp}(z)| = \operatorname{exp}\left(\operatorname{Re}(z)\right)$, de donde:
    \begin{equation*}
    |\operatorname{exp}(i\theta)| = 1 \quad \Longleftrightarrow \quad \theta \in\mathbb{R} \quad \text{y} \quad |\operatorname{exp}(z)| \leq \operatorname{exp}(|z|).
    \end{equation*}

Demostración.

  1. Sea $z\in\mathbb{C}$, entonces, por la proposición 30.2 se cumple que:
    \begin{equation*}
    \dfrac{d}{dz} \operatorname{exp}(z) = \dfrac{d}{dz} \sum_{n=0}^\infty \frac{z^n}{n!} = \sum_{n=1}^\infty \frac{n z^{n-1}}{n (n-1)!} = \sum_{n=0}^\infty \frac{z^n}{n!} = \operatorname{exp}(z).
    \end{equation*}
  2. Es inmediata de la definición de la función exponencial compleja.
  3. Sean $z_1, z_2 \in\mathbb{C}$, entonces:
    \begin{equation*}
    \operatorname{exp}(z_1) = \sum_{n=0}^\infty \frac{z_1^n}{n!} \quad \text{y} \quad \operatorname{exp}(z_2) = \sum_{n=0}^\infty \frac{z_2^n}{n!}.
    \end{equation*}Por el ejemplo 27.8 sabemos que ambas series son absolutamente convergentes. Del ejemplo 27.11, tenemos que el producto de Cauchy de dichas series es:
    \begin{equation*}
    \sum_{n=0}^\infty c_n = \sum_{n=0}^\infty \frac{(z_1 + z_2)^n}{n!}.
    \end{equation*}Por último, por el ejemplo 27.12, sabemos que el producto de estas series absolutamente convergentes, converge a su producto de Cauchy, es decir:
    \begin{align*}
    \operatorname{exp}(z_1) \operatorname{exp}(z_2) & = \left(\sum_{n=0}^\infty \frac{z_1^n}{n!}\right) \left(\sum_{n=0}^\infty \frac{z_2^n}{n!}\right)\\
    & = \sum_{n=0}^\infty \frac{(z_1 + z_2)^n}{n!}\\
    & = \operatorname{exp}(z_1 + z_2).
    \end{align*}Por inducción es fácil verificar que:
    \begin{equation*}
    \prod_{i=1}^n \operatorname{exp}(z_i) = \operatorname{exp}\left( \sum_{i=1}^n z_i\right), \quad \forall n\geq 2.
    \end{equation*}
  4. Se sigue de los incisos 2 y 3, por lo que los detalles se dejan como ejercicio al lector.
  5. Se sigue de los incisos 2 y 3, por lo que los detalles se dejan como ejercicio al lector.
  6. El resultado se sigue de la proposición 27.2(2).
  7. Sea $z\in\mathbb{C}$. Sabemos que:
    \begin{equation*}
    \operatorname{Re}(z) = \frac{z + \overline{z}}{2} \quad \text{y} \quad |z|^2 = z \overline{z}.
    \end{equation*}De los incisos 3, 4 y 6 tenemos que:
    \begin{equation*}
    |\operatorname{exp}(z)|^2 = \operatorname{exp}(z) \overline{\operatorname{exp}(z)} = \operatorname{exp}(z) \operatorname{exp}\left(\overline{z}\right) = \operatorname{exp}\left(z+\overline{z}\right) = \operatorname{exp}\left(2 \operatorname{Re}(z)\right) = \left[\operatorname{exp}\left(\operatorname{Re}(z)\right)\right]^2 >0,
    \end{equation*}de donde:
    \begin{equation*}
    |\operatorname{exp}(z)| = \operatorname{exp}\left(\operatorname{Re}(z)\right).
    \end{equation*}La parte restante del resultado se sigue de esta última igualdad, por lo que los detalles se dejan como ejercicio al lector.

$\blacksquare$

Es claro que si $z=x\in\mathbb{R}$, entonces las definiciones (31.5) y (31.1), correspondientes con la exponencial compleja y la exponencial real, coinciden. Sin embargo, procedemos a verificar que en efecto la exponencial compleja extiende a la exponencial real de manera formal.

Recordemos los siguientes resultados de Cálculo.

Teorema 31.1. (Teorema del Valor Intermedio.)
Sea $f:[a, b] \to \mathbb{R}$ una función continua en $[a, b]$. Entonces, para todo $y$ entre $f(a)$ y $f(b)$ existe $c\in [a, b]$ tal que $f(c) = y$.

Teorema 31.2. (Teorema del Valor Medio.)
Sea $f:[a,b] \to \mathbb{R}$ una función continua en $[a, b]$ y diferenciable en $(a, b)$. Entonces, existe $c\in (a, b)$ tal que:
\begin{equation*}
f'(c) = \frac{f(b) – f(a)}{b – a}.
\end{equation*}

Lema 31.1.
Si $f:(a,b) \to \mathbb{R}$ es una función diferenciable en $(a, b)$ tal que $f'(x)>0$ para todo $x\in(a, b)$, entonces $f$ es estrictamente creciente en $(a, b)$.

Demostración. Es una consecuencia de teorema del valor medio, por lo que se deja como ejercicio al lector.

$\blacksquare$

Lema 31.2.
Si $f:[a,b] \to \mathbb{R}$ es una función estrictamente creciente en $[a, b]$, entonces $f$ es inyectiva.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Lema 31.3.
Sea $I\subset\mathbb{R}$ un intervalo. Si $f:I \to \mathbb{R}$ es una función continua e inyectiva. Entonces $f^{-1}$ es continua.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Puede consultarse la prueba de estos resultados en alguno de los siguientes textos:

  • Elementary Analysis: The Theory of Calculus de Kenneth A. Ross.
  • An Introduction to Analysis de William R. Wade.
  • An Introduction to Analysis de James R. Kirkwood.

Procedemos con el resultado.

Corolario 31.1. ($\pmb{e^x = \operatorname{exp}|_{\mathbb{R}}(x)}$.)
Si $z = x+i0 \in\mathbb{C}$, con $x\in\mathbb{R}$, entonces la función $u(x) = \operatorname{exp}|_{\mathbb{R}}(x)$, es decir, la exponencial compleja restringida a $\mathbb{R}$, satisface lo siguiente:

  1. $u$ es una función real, continua y estrictamente creciente en su dominio $\mathbb{R}$.
  2. $u(\mathbb{R}) = (0, \infty)$.
  3. $u$ es un homeomorfismo, definición 9.2, entre $\mathbb{R}$ y $(0, \infty)$ y la única solución de la ecuación $u(0)=1$ es $x=0$.

Demostración. Dadas las hipótesis.

  1. De acuerdo con la definición 30.1, es claro que al evaluar la expresión (31.5) con $z=x\in\mathbb{R}$, la función $u(x) = \operatorname{exp}(x)$ es una función real de variable real. La continuidad de la función $u$ se sigue de la proposición 31.1(1), pues la exponencial compleja es una función entera y por tanto continua en $\mathbb{C}$, proposición 16.1, en particular es continua en $\mathbb{R}\subset\mathbb{C}$.

    Por otra parte, de la proposición 31.1(4) sabemos que para todo $z\in\mathbb{C}$ se cumple que $\operatorname{exp}(z) \neq 0$, y por el inciso 2, de la misma proposición, para todo $z=x\in\mathbb{R}$ tenemos que:
    \begin{equation*}
    u(x) = \operatorname{exp}(x) = \operatorname{exp}\left(\frac{x}{2} + \frac{x}{2} \right) = \left[\operatorname{exp}\left(\frac{x}{2}\right)\right]^2 >0.
    \end{equation*}Dado que $u'(x) = u(x) > 0$, proposición 31.1(1), entonces se sigue del lema 31.1 que la función $u$ es estrictamente creciente en $\mathbb{R}$.
  2. Como $u$ es continua y $\mathbb{R}$ es un conjunto conexo, entonces de la proposición 10.3 se sigue que $u(\mathbb{R}) = \operatorname{exp}(\mathbb{R}) \subset{\mathbb{R}}$ debe ser un conjunto conexo, por lo tanto, proposición 10.1, es un intervalo. Puesto que para todo $z=x\in\mathbb{R}$ se cumple que $u(x)>0$, entonces $u(\mathbb{R}) \subset (0, \infty)$.

    Probemos la otra contención. De acuerdo con la definición de $u$, es claro que para $z = x>0$ se cumple que:
    \begin{equation*}
    u(x) = \operatorname{exp}(x) > 1 + x,
    \end{equation*}por lo que:
    \begin{equation*}
    \lim_{x \to\infty} u(x) = \infty. \tag{31.6}
    \end{equation*}Dado que para todo $z\in\mathbb{C}$ se cumple que $\operatorname{exp}(z) = 1/\operatorname{exp}(-z)$, proposición 31.1(5), entonces, para $z=t\in\mathbb{R}$ tal que $t<0$, es claro que:
    \begin{equation*}
    \lim_{t \to -\infty} u(t) = \lim_{-t \to \infty} \frac{1}{u(-t)} = \lim_{x \to\infty} \frac{1}{u(x)} = 0. \tag{31.7}
    \end{equation*}Sea $L>0$. De acuerdo con la definición del límite, de (31.6) se sigue que si $K=L>0$, entonces existe $M>0$ tal que:
    \begin{equation*}
    f(x) > K, \quad \text{si} \quad x>M.
    \end{equation*}En particular, para $x=M+1$ tenemos que $u(M+1) > L$.

    Análogamente, considerando la definición del límite (31.7), si $\varepsilon=L>0$, entonces existe $N<0$ tal que:
    \begin{equation*}
    |u(x) – 0| = |u(x)| = u(x) < L, \quad \text{si} \quad x < N.
    \end{equation*}Entonces, para $x=N-1$ tenemos que $u(N-1) < L$. Por lo tanto, dado $L>0$ existen $a=N-1<0$ y $b = M+1>0$ tales que:
    \begin{equation*}
    u(a) < L < u(b).
    \end{equation*}Como $u$ es continua en $\mathbb{R}$, en particular lo es en $(a, b)$, entonces, del teorema del valor intermedio se sigue que existe $c\in(a, b)$ tal que $u(c) = L$, lo cual prueba la contención restante, por lo que $u(\mathbb{R}) = (0, \infty)$.
  3. Dado que $u$ es estrictamente creciente, entonces, del lema 31.2 se sigue que es una función inyectiva. Por otra parte, del inciso anterior tenemos que $u:\mathbb{R} \to (0,\infty)$ es una función suprayectiva, por lo que $u$ es una función biyectiva y por tanto invertible. Denotamos a $u^{-1}(y)=x$ como la función inversa, entonces $u^{-1}$ es continua, lema 31.3, ya que $u$ es continua e inyectiva, por lo que $\mathbb{R}$ y $(0, \infty)$ son homeomorfos, definición 9.2.

    Como $u$ es inyectiva es claro que la única solución de la ecuación $u(0)=1$ es $x=0$.

$\blacksquare$

Observación 31.2.
De acuerdo con estos resultados, es claro que para $z=x\in\mathbb{R}$, la definición de la exponencial compleja dada en (31.5) se reduce al caso real dado por (31.1), por lo que de manera natural hemos hecho una extensión de la función exponencial real a $\mathbb{C}$, y como la serie que define a la exponencial converge absolutamente para todo $z\in\mathbb{C}$, entonces podemos utilizar las expresiones $e^z$ y $\operatorname{exp}(z)$ de manera indistinta para referirnos a la función exponencial compleja.

De nuestros cursos de cálculo, sabemos que las series de potencias de las funciones trigonométricas reales seno y coseno son:
\begin{align*}
\operatorname{sen}(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!},\\
\operatorname{cos}(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n)!}.
\end{align*}

Notemos que si $z = iy \in\mathbb{C}$, con $y\in\mathbb{R}$, entonces:
\begin{align*}
\operatorname{exp}(iy) & = \sum_{n=0}^\infty \frac{(iy)^n}{n!}\\
& = 1 + iy – \frac{y^2}{2!} – i\frac{y^3}{3!} + \frac{y^4}{4!} + i \frac{y^5}{5!} – \frac{y^6}{6!} – i
\frac{y^7}{7!} + \frac{y^8}{8!} + \cdots\\
& = \left( 1 – \frac{y^2}{2!} + \frac{y^4}{4!} – \frac{y^6}{6!} + \frac{y^8}{8!} – \cdots \right) + i \left( y – \frac{y^3}{3!} + \frac{y^5}{5!} – \frac{y^7}{7!} – \cdots \right)\\
& = \sum_{n=0}^\infty \frac{(-1)^n y^{2n}}{(2n)!} + i \sum_{n=0}^\infty \frac{(-1)^n y^{2n+1}}{(2n+1)!}\\
& = \operatorname{cos}(y) + i \operatorname{sen}(y).
\end{align*}

De acuerdo con la proposición 31.1(3), para $z = x+ iy \in\mathbb{C}$ se tiene que:
\begin{align*}
e^z = \operatorname{exp}(z) & = \operatorname{exp}(x + iy)\\
& = \operatorname{exp}(x) \operatorname{exp}(iy)\\
& = e^x \left[ \operatorname{cos}(y) + i \operatorname{sen}(y)\right],
\end{align*}lo cual justifica la definición 20.1 y por tanto todos los resultados de las entradas 20, 21, 22 y 23 son válidos.

De manera análoga, se puede utilizar la definición en series de potencias de la función exponencial compleja y las definiciones de las funciones trigonométricas e hiperbólicas, dadas en la entrada 22, para obtener sus correspondientes definiciones en series de potencias, que extienden de manera natural a $\mathbb{C}$ a sus versiones reales.

Proposición 31.2. (Series de las funciones trigonométricas e hiperbólicas seno y coseno.)
Sea $z\in\mathbb{C}$, entonces:
\begin{align*}
\operatorname{sen}(z) := \sum_{n=0}^\infty \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \tag{31.8} \\
\operatorname{cos}(z) := \sum_{n=0}^\infty \frac{(-1)^n z^{2n}}{(2n)!}, \tag{31.9}\\
\operatorname{senh}(z) := \sum_{n=0}^\infty \frac{z^{2n+1}}{(2n+1)!}, \tag{31.10} \\
\operatorname{cosh}(z) := \sum_{n=0}^\infty \frac{z^{2n}}{(2n)!}. \tag{31.11}
\end{align*}

Demostración. La demostración es análoga para las cuatro funciones y se sigue de las definiciones 22.1, 22.3, 31.1 y de la proposición 27.2(1). Para ejemplificar el procedimiento realicemos la prueba de la serie de la función coseno hiperbólico y el resto de las series se dejan como ejercicio al lector.

De las definiciones 22.3 y 30.1, para todo $z\in\mathbb{C}$, por la proposición 27.2(1) tenemos que:
\begin{align*}
\operatorname{cosh}(z) & = \frac{\operatorname{exp}(z) + \operatorname{exp}(-z)}{2}\\
& = \dfrac{\displaystyle \sum_{n=0}^\infty \dfrac{z^n}{n!} + \displaystyle \sum_{n=0}^\infty \dfrac{(-z)^n}{n!}}{2}\\
& = \displaystyle \sum_{n=0}^\infty \dfrac{z^n + (-z)^n}{2 \cdot n!}\\
& = \displaystyle \sum_{n=0}^\infty \dfrac{z^n \left[1 + (-1)^n\right]}{2 \cdot n!}.
\end{align*}

Sea $c_n = \dfrac{1 + (-1)^n}{2 \cdot n!}$, para todo $n\in\mathbb{N}$. Notemos que:
\begin{equation*}
c_n = \left\{ \begin{array}{lcc}
0 & \text{si} & n = 2k+1, \\
\\ \dfrac{1}{(2k)!} & \text{si} & n=2k,
\end{array}
\right.
\end{equation*} donde $k\in\mathbb{N}$.

Entonces:
\begin{equation*}
\operatorname{cosh}(z) = \sum_{n=0}^\infty \frac{z^{2n}}{(2n)!}.
\end{equation*}

$\blacksquare$

De manera análoga es posible deducir las series de potencias del resto de funciones trigonométricas e hiperbólicas, por lo que se deja como ejercicio al lector.

Observación 31.2.
De estas definiciones para las funciones trigonométricas e hiperbólicas seno y coseno es claro que para todo $z\in\mathbb{C}$ se cumple que:
\begin{equation*}
\operatorname{sen}(-z) = -\operatorname{sen}(z) \quad \text{y} \quad \operatorname{cos}(-z) = \operatorname{cos}(z),
\end{equation*}
\begin{equation*}
\operatorname{senh}(-z) = -\operatorname{senh}(z) \quad \text{y} \quad \operatorname{cosh}(-z) = \operatorname{cosh}(z),
\end{equation*}ya que las series de potencias de las funciones $\operatorname{sen}$ y $\operatorname{senh}$ solo consideran a las potencias impares de $z$, mientras que las series de potencias de las funciones $\operatorname{cos}$ y $\operatorname{cosh}$ solo consideran potencias pares de $z$.

Observación 31.3.
De acuerdo con las definiciones en series de las funciones hiperbólicas seno y coseno es claro que si restringimos el dominio de estas funciones al conjunto de los números reales positivos, entonces estas funciones serán positivas y estrictamente crecientes.

Más aún, por la observación 22.5, sabemos que para todo $z=x+iy\in\mathbb{C}$ se cumplen las identidades:
\begin{align*}
|\operatorname{sen}(z)|^2 = \operatorname{sen}^2(x) + \operatorname{senh}^2(y),\\
|\operatorname{cos}(z)|^2 = \operatorname{cos}^2(x) + \operatorname{senh}^2(y),
\end{align*}de donde es claro que los únicos ceros de las series (31.8) y (31.9), que definen al seno y coseno complejos, son reales ya que $\operatorname{senh}(y) = 0$ si y solo si $y=0$.

Considerando las propiedades que hemos probado para las series de números complejos a lo largo de esta unidad, podemos probar fácilmente algunas de las identidades con las que estamos familiarizados para el caso real, mediante la manipulación algebraica de las series de potencias que definen a las funciones trigonométricas e hiperbólicas.

Ejemplo 31.1.
Verifiquemos que para todo $z\in\mathbb{C}$ se cumple que:
a) \begin{equation*}
\operatorname{cos}^2(z) = \frac{1+\operatorname{cos}(2z)}{2}.
\end{equation*}
b) \begin{equation*}
\operatorname{sen}(2z) = 2 \operatorname{sen}(z)\operatorname{cos}(z).
\end{equation*}

Solución.

a) Notemos que:
\begin{align*}
\frac{1+\operatorname{cos}(2z)}{2} & = \frac{1}{2} + \frac{\operatorname{cos}(2z)}{2}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{(-1)^n (2z)^{2n}}{2 (2n)!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!}.
\end{align*}

Por otra parte:
\begin{align*}
\operatorname{cos}^2(z) & = \left(\frac{\operatorname{exp}(iz) + \operatorname{exp}(-iz)}{2}\right)^2\\
& = \frac{1}{4} \left[\operatorname{exp}(2iz) + 2 +\operatorname{exp}(-2iz)\right]\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{(2iz)^n}{4 \cdot n!} + \sum_{n=0}^\infty \frac{(-2iz)^n}{4 \cdot n!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{2^{n-2} \, i^n \, z^n}{n!} + \sum_{n=0}^\infty \frac{(-1)^n \, 2^{n-2} \, i^n \, z^n}{n!}\\
& = \frac{1}{2} + \sum_{n=0}^\infty \frac{2^{n-2} \, i^n \, z^n \left[1 + (-1)^n\right]}{n!}.
\end{align*}

Sea $c_n = \dfrac{2^{n-2} \, i^n \left[1 + (-1)^n\right]}{n!}$, para todo $n\in\mathbb{N}$. Notemos que:
\begin{equation*}
c_n = \left\{ \begin{array}{lcc}
0 & \text{si} & n = 2k+1, \\
\\ \dfrac{2^{2k-1} i^{2k}}{(2k)!} & \text{si} & n=2k,
\end{array}
\right.
\end{equation*}donde $k\in\mathbb{N}$.

Entonces:
\begin{equation*}
\frac{1+\operatorname{cos}(2z)}{2} = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!} = \operatorname{cos}^2(z).
\end{equation*}b) De acuerdo con el inciso anterior tenemos que:
\begin{equation*}
\operatorname{cos}^2(z) = \frac{1}{2} + \sum_{n=0}^\infty \frac{i^{2n} \, 2^{2n-1} \, z^{2n}}{(2n)!},
\end{equation*}la cual es una serie con radio de convergencia infinito.

Derivando ambos lados de ésta última igualdad, por la proposición 30.2 tenemos que:
\begin{align*}
-2 \operatorname{sen}(z) \operatorname{cos}(z) & = \sum_{n=1}^\infty \frac{i^{2n} \, 2^{2n-1} \, 2n \, z^{2n-1}}{2n \, (2n-1)!}\\
& = \sum_{n=1}^\infty \frac{(-1)^{n} \, (2z)^{2n-1}}{(2n-1)!}\\
& = \sum_{n=0}^\infty \frac{(-1)^{n+1} \, (2z)^{2n+1}}{(2n+1)!}\\
& = – \operatorname{sen}(2z),
\end{align*}de donde:
\begin{equation*}
\operatorname{sen}(2z) = 2 \operatorname{sen}(z)\operatorname{cos}(z).
\end{equation*}

Ejemplo 31.2.
Las funciones complejas exponencial, seno y coseno son analíticas, definición 30.1, en $\mathbb{C}$.

Solución. Sea $z_0\in\mathbb{C}$ fijo. Tenemos que:
\begin{align*}
e^z = e^{z_0 + z-z_0} & = e^{z_0} e^{z-z_0}\\
&= e^{z_0} \sum_{n=0}^\infty \frac{(z-z_0)^n}{n!}\\
& = \sum_{n=0}^\infty e^{z_0} \frac{(z-z_0)^n}{n!}, \quad \forall z\in\mathbb{C}.
\end{align*}

Por otra parte, por la proposición 22.1 sabemos que para todo $z\in\mathbb{C}$ se cumple que:
\begin{align*}
\operatorname{sen}(z) = \operatorname{sen}(z_0+z-z_0) = \operatorname{sen}(z_0) \operatorname{cos}(z-z_0) + \operatorname{sen}(z-z_0) \operatorname{cos}(z_0),\\
\operatorname{cos}(z) = \operatorname{cos}(z_0+z-z_0)= \operatorname{cos}(z_0) \operatorname{cos}(z-z_0) – \operatorname{sen}(z_0) \operatorname{sen}(z-z_0).
\end{align*}

Entonces:
\begin{equation*}
\operatorname{sen}(z) = \operatorname{sen}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n}}{(2n)!} + \operatorname{cos}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n+1}}{(2n+1)!}, \quad \forall z\in\mathbb{C},
\end{equation*}
\begin{equation*}
\operatorname{cos}(z) = \operatorname{cos}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n}}{(2n)!} – \operatorname{sen}(z_0) \sum_{n=0}^\infty \frac{(-1)^n(z-z_0)^{2n+1}}{(2n+1)!}, \quad \forall z\in\mathbb{C}.
\end{equation*}

Ejemplo 31.3.
Determinemos el radio de convergencia y la suma de la serie:
\begin{equation*}
\sum_{n=2}^\infty \frac{n}{(n-2)!} z^n.
\end{equation*}

Solución. Por la forma de la serie, al tener un factorial en el denominador, inferimos que la función suma que describe la serie dada debe estar en términos de la exponencial compleja.

Sabemos que la serie de potencias, centrada en $z_0 = 0$, de la exponencial es:
\begin{equation*}
f(z) = e^z = \sum_{n=0}^\infty \frac{z^n}{n!}, \quad \forall z\in\mathbb{C},
\end{equation*}entonces, al derivar dos veces de ambos lados de la igualdad, por el corolario 30.1 tenemos que:
\begin{equation*}
f»(z) = e^z = \sum_{n=2}^\infty \frac{n(n-1) z^{n-2}}{n!}= \sum_{n=2}^\infty \frac{z^{n-2}}{(n-2)!}, \quad \forall z\in\mathbb{C}.
\end{equation*}

Multiplicando ambos lados por $z^2$ tenemos:
\begin{equation*}
z^2 e^z = \sum_{n=2}^\infty \frac{z^{n}}{(n-2)!} = \sum_{k=0}^\infty c_k z^k, \quad \forall z\in\mathbb{C},
\end{equation*}de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{1}{(n-2)!}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que $c_0 = c_1 =0$ y para todo $k\geq 2$:
\begin{equation*}
c_k = \dfrac{1}{(k-2)!}.
\end{equation*}

Considerando lo anterior no es difícil verificar que esta última serie tiene radio de convergencia infinito, por lo que podemos volver a aplicar la proposición 30.2 y derivar de ambos lados de la igualdad, de donde se sigue que:
\begin{align*}
\frac{d}{dz} z^2 e^z = 2ze^z + z^2 e^z & = \sum_{k=1}^\infty k c_k z^{k-1}\\
& = \sum_{n=2}^\infty \frac{n z^{n-1}}{(n-2)!}, \quad \forall z\in\mathbb{C}.
\end{align*}

Por último, si multiplicamos por $z$ ésta última igualdad tenemos que:
\begin{equation*}
e^z(2z^2 + z^3) = \sum_{n=2}^\infty \frac{n z^{n}}{(n-2)!}, \quad \forall z\in\mathbb{C},
\end{equation*}la cual es la función suma correspondiente a la serie dada y tiene también radio de convergencia infinito.

Para cerrar esta entrada analicemos ahora a la función multivaluada logaritmo complejo, para ello consideremos el siguiente:

Ejemplo 31.4.
Veamos que la serie de potencias para la función $\operatorname{Log}(1+z)$ es:
\begin{equation*}
\sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1},
\end{equation*}y determinemos su dominio de convergencia.

Solución. De acuerdo con el ejercicio 10 de la entrada 21, sabemos que la función $\operatorname{Log}(1+z)$ es analítica en $\mathbb{C}\setminus(-\infty, -1]$ y para todo punto en dicho dominio su derivada es:
\begin{equation*}
\frac{d}{dz} \operatorname{Log}(1+z) = \frac{1}{1+z}. \tag{31.12}
\end{equation*}

En particular, dicha función es analítica en $B(0,1)$ y para $|z|<1$ se cumple (31.12).

Por otra parte, considerando la serie geométrica, tenemos que:
\begin{equation*}
\sum_{n=0}^\infty (-z)^n = \sum_{n=0}^\infty (-1)^n z^n = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Entonces:
\begin{equation*}
\frac{d}{dz} \operatorname{Log}(1+z) = \sum_{n=0}^\infty (-1)^n z^n = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Notemos que si definimos a una función $f$ considerando la serie de potencias dada, tenemos que:
\begin{equation*}
f(z) = \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1} = \sum_{k=0}^\infty c_k z^k,
\end{equation*}de donde:
\begin{equation*}
c_k = \left\{ \begin{array}{lc}
\dfrac{(-1)^{n}}{n+1}, & \text{si existe} \,\, n\in\mathbb{N} \,\, \text{tal que} \,\, k = n+1,\\
\\ 0, & \text{en otro caso.}\\
\end{array}
\right.
\end{equation*}

Por lo que, $c_0 = 0$ y para $k\geq 1$ se tiene que:
\begin{equation*}
c_k = \frac{(-1)^{k-1}}{k}.
\end{equation*}

Es claro que para $k\geq 1$ se tiene que $c_k \neq 0$ y como:
\begin{equation*}
\lambda = \lim_{k\to\infty} \frac{|c_{k+1}|}{|c_{k}|} = \lim_{k\to\infty} \left|\frac{k (-1)^{k}}{(k+1) (-1)^{k-1}}\right| = \lim_{k\to\infty} \frac{k}{k+1} = 1,
\end{equation*}entonces, del corolario 29.3 se sigue que $R = 1/ \lambda = 1$, es decir, la serie que define a $f$ tiene radio de convergencia 1, por lo que su dominio de convergencia es el disco $B(0,1)$.

Lo anterior nos garantiza que tanto $f(z)$ como $\operatorname{Log}(1+z)$ están bien definidas en el disco abierto $B(0,1)$.

De acuerdo con la proposición 30.2 y la definición 30.1, tenemos que $f$ es analítica en $B(0,1)$ y su derivada es:
\begin{align*}
f'(z) & = \sum_{k=1}^\infty k c_k z^{k-1}\\
& = \sum_{k=1}^\infty k \left(\frac{(-1)^{k-1}}{k}\right) z^{k-1}\\
& = \sum_{n=0}^\infty (-1)^n z^{n}\\
& = \frac{1}{1+z}, \quad \text{si} \,\, |z|<1.
\end{align*}

Sea $g(z) = f(z) – \operatorname{Log}(1+z)$. Claramente $g$ es analítica en $B(0,1)$ y su derivada es:
\begin{equation*}
g'(z) = \dfrac{d}{dz} \left [f(z) – \operatorname{Log}(1+z)\right] = 0, \quad \forall z\in B(0,1),
\end{equation*}por lo que $g$ es una función constante en $B(0,1)$, proposición 19.2. Para $z=0$ tenemos que:
\begin{equation*}
g(0) = f(0) – \operatorname{Log}(1+0) = 0,
\end{equation*}entonces:
\begin{equation*}
f(z) – \operatorname{Log}(1+z) = 0 \quad \Longrightarrow \quad f(z) = \operatorname{Log}(1+z).
\end{equation*}

Por lo tanto:
\begin{equation*}
\operatorname{Log}(1+z) = \sum_{n=0}^\infty \frac{(-1)^n z^{n+1}}{n+1}, \quad \text{si} \,\, |z|<1.
\end{equation*}

Observación 31.4.
Notemos que si sustituimos a $z$ por $z-1$ en el resultado anterior, entonces:
\begin{equation*}
\operatorname{Log}(z) = \sum_{n=0}^\infty \frac{(-1)^n (z-1)^{n+1}}{n+1}, \quad \text{si} \,\, |z-1|<1.
\end{equation*}

Tarea moral

  1. Prueba los lemas 31.1, 31.2 y 31.3.
  2. Completa la demostración de la proposición 31.1.
  3. Completa la demostración de la proposición 31.2.
  4. Utilizando las definiciones en series de potencias de las funciones seno y coseno prueba la identidad Pitagórica $\operatorname{sen}^2(z) + \operatorname{cos}^2(z) = 1$ para todo $z\in\mathbb{C}$.
  5. Determina la serie de potencias de la función $\operatorname{Log}\left(\dfrac{1}{1-z}\right)$ y determina su región de convergencia.

    Hint: Recuerda que para la rama principal del logaritmo se cumple que $\operatorname{Log}\left(w^{-1}\right) = -\operatorname{Log}(w)$ si $w\in\mathbb{C}\setminus(-\infty,0]$.
  6. a) Considera el desarrollo en serie de potencias para la función $f(z) = \operatorname{Log}(z)$ dado en la observación 31.4 y muestra que $f'(z) = 1/z$.

    b) Sea $z_0 \neq 0$. Para $z \in B(z_0, 1)$ define a la función:
    \begin{equation*}
    f(z) = \displaystyle\sum_{n=0}^\infty \dfrac{(-1)^{n-1}}{n} \left(\dfrac{z-z_0}{z_0}\right)^n.
    \end{equation*} Muestra que $f'(z) = 1/z$.
  7. Determina la función suma y el dominio de convergencia de las siguientes series de potencias.
    a) $\displaystyle \sum_{n=0}^\infty \frac{(-1)^{n+1}}{n!} z^{3n}$.
    b) $\displaystyle \sum_{n=1}^\infty \frac{z^{2n+1}}{(2n-1)!}$.
    c) $\displaystyle \sum_{n=0}^\infty \frac{2^{n+1}(z-i)^{n+2}}{(n+1)!}$.
  8. Se definen a los números de Bernoulli $B_n$ a través de la serie de potencias:
    \begin{equation*}
    \frac{z}{e^z -1} = \displaystyle \sum_{n=0}^\infty \frac{B_n}{n!} z^n.
    \end{equation*}a) Prueba la fórmula recursiva:
    \begin{equation*}
    \frac{B_0}{n! \, 0!} + \frac{B_1}{(n-1)! \, 1!} + \cdots + \frac{B_{n-1}}{1! \, (n-1)!} = \left\{ \begin{array}{lcc}
    1 & \text{si} & n=1, \\
    \\ 0 & \text{si} & n>1.
    \end{array}
    \right.
    \end{equation*}Entonces $B_0=1$.

    b) Calcula $B_1$, $B_2$, $B_3$, $B_4$.

    c) Muestra que $B_n=0$ si $n$ es un número impar distinto de $1$.
  9. Define a la función $f:\mathbb{R} \to \mathbb{R}$ como:
    \begin{equation*}
    f(x) = \left\{ \begin{array}{lcc}
    0 & \text{si} & x\leq 0, \\
    \\ e^{-1/x} & \text{si} & x>0.
    \end{array}
    \right.
    \end{equation*}Muestra que $f$ es infinitamente diferenciable y que $f^{(n)}=0$ para todo $n\in\mathbb{N}$.

Más adelante…

Esta entrada es la última de la tercera unidad, correspondiente al tema de series de números complejos. En ella hemos abordado de manera general algunas de las funciones complejas elementales vistas como series de potencias, cabe mencionar que muchas de las propiedades referentes a estas funciones las hemos estudiado a detalle en la segunda unidad. Es importante notar que muchas de las definiciones dadas en esta entrada coinciden con las definiciones de estas funciones como series para el caso real, por lo que resulta natural la extensión de estas funciones al caso complejo.

En la siguiente entrada iniciamos con la cuarta unidad, correspondiente con el tema de integración compleja, en la cual veremos algunos de los resultados más importantes para las funciones complejas que sin duda son fundamentales en la teoría de la variable compleja en sí, mismos que nos permitirán caracterizar de manera clara a las funciones complejas y distinguirlas de las funciones reales.

Entradas relacionadas

Variable Compleja I: Series de potencias y funciones

Por Pedro Rivera Herrera

Introducción

Las funciones vistas como series de potencias tienen un comportamiento bueno, en el sentido de que son funciones continuas y diferenciables, aunque aquí es donde radica una propiedad importante y es que la derivada de una serie de potencias es también una serie de potencias, por lo que resultará que las funciones dadas como series de potencias son infinitamente diferenciables.

Por el corolario 16.1 tenemos que la derivada de un polinomio complejo, digamos:
\begin{equation*}
p(z) = c_0 + c_1 z + \cdots + c_n z^n,
\end{equation*}está dada por el polinomio complejo:
\begin{equation*}
p'(z) = c_1 + 2c_2 z + \cdots + n c_n z^{n-1}.
\end{equation*}Intuitivamente, esto nos dice que la función suma $f$, definición 28.6, dada por una serie de potencias, es decir:
\begin{equation*}
f(z) = \sum_{n=0}^\infty c_n z^n, \tag{30.1}
\end{equation*}debería tener como derivada:
\begin{equation*}
f'(z) = \sum_{n=0}^\infty n c_n z^{n-1}.
\end{equation*}Si esto se cumple, entonces tendríamos que $f$ sería una función diferenciable término a término, pero ¿cuándo es posible esto? Para responder esta pregunta recurriremos a los conceptos de la entrada anterior sobre lo que es una serie de potencias así como los conceptos de convergencia de series de números complejos y de series de funciones vistos en las entradas anteriores, pues como veremos a continuación, para que la función suma $f$ propuesta en (30.1) satisfaga lo anterior, bastará con que la serie de potencias que la define sea convergente en algún dominio.

Proposición 30.1. (Continuidad de una serie de potencias.)
Sea $\displaystyle\sum_{n=0}^\infty c_n (z-z_0)^n$ una serie de potencias con radio de convergencia $R>0$ y disco de convergencia $B(z_0,R)$. Definimos:
\begin{equation*}
f(z) := \sum_{n=0}^\infty c_n (z-z_0)^n, \quad \forall z\in B(z_0, R).
\end{equation*}Entonces $f$ es continua en $B(z_0,R)$.

Demostración. Dadas las hipótesis, sea $a \in B(z_0,R)$. Definimos:
\begin{equation*}
r := \frac{R – |z_0 – a|}{2} > 0,
\end{equation*}entonces $\overline{B}(a, r) \subset B(z_0, R)$.

Dado que la serie converge uniformemente en $\overline{B}(a, r)$, proposición 29.2, y para cada $n\in\mathbb{N}$ la función $f_n(z) = c_n(z-z_0)^n$ es continua en $\mathbb{C}$, entonces se sigue del corolario 28.2 que $f$ es continua en $\overline{B}(a, r)$.

Como $a$ es un punto interior de $\overline{B}(a, r)$, entonces $f$ es continua en $a \in B(z_0, R)$. Dado que $a$ era aribitrario, entonces $f$ es continua en $B(z_0, R)$.

$\blacksquare$

Lema 30.1.
Sea $\displaystyle\sum_{n=0}^\infty c_n (z-z_0)^n$ una serie de potencias con radio de convergencia $R>0$. Entonces la serie de potencias:
\begin{equation*}
\displaystyle\sum_{n=1}^\infty n c_n z^{n-1},
\end{equation*}tiene el mismo radio de convergencia $R>0$.

En general, para cada $k\geq 1$ la serie de potencias:
\begin{equation*}
\sum_{n=k}^\infty n(n-1)\cdots (n-k+1) c_n z^{n-k} = \sum_{n=k}^\infty \frac{n!}{(n-k)!} c_n z^{n-k},
\end{equation*}también tiene el mismo radio de convergencia $R>0$.

Demostración. Sin pérdida de generalidad probaremos el resultado para $z_0 = 0$.

El resultado general se sigue fácilmente al aplicar inducción sobre $k$, por ejemplo, el caso cuando $k=2$ se obtiene al aplicar el resultado para $k=1$ a la serie $\displaystyle\sum_{n=1}^\infty n c_n z^{n-1}$, por lo que esta última parte del resultado se deja como ejercicio al lector.

Dadas las hipótesis, procedemos entonces a probar el caso cuando $k=1$. Para $z\in B(0,R)$, tomamos $r = \dfrac{|\,z\,|+R}{2}>0$, tal que $|\,z\,|<r<R$, entonces del lema de Abel se sigue que la serie $\displaystyle \sum_{n=0}^\infty c_n r^n$ converge absolutamente, por lo que existe $K>0$ tal que $|\,c_n r^n\,|\leq K$ para todo $n\in\mathbb{N}$. Sea:
\begin{equation*}
q := \frac{|\,z\,|}{r} < 1,
\end{equation*}entonces:
\begin{equation*}
|\,n c_n z^{n-1}\,| = n \, |\,c_n \,| \left|\, \frac{z}{r}\,\right|^{n-1} r^{n-1} \leq \frac{nK}{r} q^{n-1}, \quad \forall n\geq 1.
\end{equation*}Dado que $0\leq q < 1$, tenemos que:
\begin{equation*}
\lim_{n\to\infty} \dfrac{\dfrac{(n+1)Kq^n}{r}}{\dfrac{nK q^{n-1}}{r}} = q \lim_{n\to\infty} \left(1+\dfrac{1}{n}\right) = q < 1,
\end{equation*}por lo que la serie $\displaystyle\sum_{n=1}^\infty n K q^{n-1} r^{-1}$ converge, entonces la serie $\displaystyle\sum_{n=0}^\infty |\,n c_n z^{n-1} \, |$ converge, proposición 27.4(1), y por tanto, proposición 27.3, la serie $\displaystyle\sum_{n=1}^\infty n c_n z^{n-1}$ converge.

Por último, notemos que si $|\,z\,|>R$, entonces la serie $\displaystyle \sum_{n=0}^\infty |c_n z^n|$ diverge ya que la serie $\displaystyle \sum_{n=0}^\infty c_n z^n$ diverge y dado que:
\begin{equation*}
\left|\,n c_n z^{n-1}\,\right| \geq \frac{|c_n z^n|}{|\,z\,|}, \quad \forall n\geq 1,
\end{equation*}entonces, proposición 27.4(2), la serie $\displaystyle \sum_{n=1}^\infty n c_n z^{n-1}$ diverge.

Por lo tanto, dichas series tienen el mismo radio de convergencia.

$\blacksquare$

Observación 30.1.
Sean $z, z_0 \in\mathbb{C}$ distintos. Notemos que para todo $n\geq 2$ se cumple que:\begin{equation*}
\frac{z^n – z_0^n}{z – z_0} – n z_0^{n-1} = (z-z_0)\sum_{m=1}^{n-1} m z_0^{m-1} z^{n-m-1}.
\end{equation*}

Proposición 30.2.
Sean $z_0\in\mathbb{C}$ fijo y $f:B(z_0, R) \to \mathbb{C}$ una función dada por la serie de potencias:
\begin{equation*}
f(z) = \displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n,
\end{equation*}con radio de convergencia $R>0$. Entonces $f$ puede diferenciarse término a término dentro de su dominio de convergencia, es decir:
\begin{equation*}
f'(z) = \sum_{n=1}^\infty n c_n (z-z_0)^{n-1}.
\end{equation*}

Demostración. Sin pérdida de generalidad probaremos el resultado para $z_0 = 0$, ya que en otro caso basta con que consideremos a la función:
\begin{equation*}
F(z) = \sum_{n=0}^\infty c_n z^{n},
\end{equation*}la cual cumple que $f(z) = F(z-z_0)$, entonces $f$ es diferenciable si y solo si lo es la función $F$ y las derivadas de $f$ en $z_0$ son las derivadas de $F$ en $0$.

Dadas las hipótesis, por el lema anterior tenemos que la serie $g(z) = \displaystyle\sum_{n=1}^\infty n c_n z^{n-1}$ es absolutamente convergente para $|\,z\,| < R$.

Veamos que para $z_0\in B(0,R)$ se cumple que:
\begin{equation*}
f'(z_0) = \lim_{z \to z_0} \frac{f(z) – f(z_0)}{z – z_0} = g(z_0),
\end{equation*}o equivalentemente que:
\begin{equation*}
\lim_{z \to z_0} \left[ \frac{f(z) – f(z_0)}{z – z_0} – g(z_0)\right] = 0.
\end{equation*}Una vez fijo $z_0\in B(0,R)$, tomemos $r=\dfrac{|\,z_0\,|+R}{2}$, entonces $|\,z_0\,|<r<R$ y sea $z\in B(0,r)\setminus\{z_0\}$. Dado que las series que definen a las funciones $f$ y $g$ son convergentes, entonces de la proposición 27.2 y la observación 30.1 tenemos que:
\begin{align*}
\frac{f(z) – f(z_0)}{z – z_0} – g(z_0) & = \dfrac{\displaystyle \sum_{n=0}^\infty c_n z^n – \displaystyle\sum_{n=0}^\infty c_n z_0^n}{z – z_0} – \sum_{n=1}^\infty n c_n z_0^{n-1}\\
& = \sum_{n=0}^\infty c_n \left(\frac{z^n – z_0^n}{z – z_0}\right) – \sum_{n=1}^\infty n c_n z_0^{n-1}\\
& = \sum_{n=1}^\infty c_n \left( \frac{z^n – z_0^n}{z – z_0} – n z_0^{n-1} \right)\\
& = \sum_{n=2}^\infty c_n \left( \frac{z^n – z_0^n}{z – z_0} – n z_0^{n-1} \right)\\
& = \sum_{n=2}^\infty c_n (z-z_0)\sum_{m=1}^{n-1} m z_0^{m-1} z^{n-m-1}.
\end{align*}Dado que $z, z_0 \in B(0,r)$, entonces se cumple que:
\begin{align*}
\left| (z-z_0)\sum_{m=1}^{n-1} m z_0^{m-1} z^{n-m-1} \right| & \leq |\,z-z_0\,| \sum_{m=1}^{n-1} m |z_0|^{m-1} |z|^{n-m-1}\\
& < |z-z_0| \, r^{n-2} \sum_{m=1}^{n-1} m\\
& = |z-z_0| \, r^{n-2} \left( \frac{n(n-1)}{2}\right).
\end{align*}Por lo que:
\begin{equation*}
\left|\frac{f(z) – f(z_0)}{z – z_0} – g(z_0)\right| < \frac{|\,z-z_0\,|}{2} \sum_{n=2}^\infty n(n-1)|c_n| r^{n-2}, \quad \forall z\in B^*(0,r).
\end{equation*}Por el lema 30.1 tenemos que la series:
\begin{equation*}
\sum_{n=0}^\infty c_n z^n \quad \text{y} \quad \sum_{n=2}^\infty n(n-1) c_n z^{n-2},
\end{equation*}tienen el mismo radio de convergencia, es decir, $R>0$, y en particular ambas son absolutamente convergentes. Puesto que $r<R$, entonces la serie $\displaystyle \sum_{n=2}^\infty n(n-1)|c_n| r^{n-2}$ converge. Por lo tanto, dado que $z\in B(0,r)\setminus\{z_0\}$ al tomar el límite tenemos:
\begin{equation*}
\lim_{z\to z_0} \left|\frac{f(z) – f(z_0)}{z – z_0} – g(z_0)\right| < \lim_{z\to z_0} \frac{|\,z-z_0\,|}{2} \sum_{n=2}^\infty n(n-1)|c_n| r^{n-2} = 0,
\end{equation*}de donde se sigue el resultado.

$\blacksquare$

Ejemplo 30.2.
Estudiemos la convergencia de la serie:
\begin{equation*}
\sum_{n=1}^\infty \frac{n}{5^n}(z-i)^{n-1}.
\end{equation*}Solución. Notemos que dicha serie resulta de derivar a la serie:
\begin{equation*}
\sum_{n=0}^\infty \frac{1}{5^n}(z-i)^{n},
\end{equation*} la cual es una serie geométrica convergente si:
\begin{equation*}
\left| \frac{z-i}{5}\right|<1 \quad \Longleftrightarrow \quad |z-i|<5,
\end{equation*} es decir, su dominio de convergencia es el disco $B(i,5)$. Entonces, de la proposición 30.2, al ser una serie geométrica, se sigue que ambas series tienen el mismo dominio de convergencia.

Por último, para obtener la suma de la serie dada tenemos que:
\begin{align*}
f(z) & = \sum_{n=0}^\infty \frac{1}{5^n}(z-i)^{n}\\
& = \dfrac{1}{1- \dfrac{z-i}{5}}\\
& = \dfrac{5}{5+i-z}, \quad \forall z \in B(i,5),
\end{align*}por lo que:\begin{align*}
f'(z) &= \sum_{n=1}^\infty \frac{n}{5^n}(z-i)^{n-1}\\
& = \dfrac{5}{(5+i-z)^2}, \quad \forall z \in B(i,5).
\end{align*}

Observación 30.2.
Aunque una serie de potencias y su derivada tienen el mismo radio de convergencia, es importante hacer énfasis en que su dominio de convergencia no necesariamente es el mismo.

Ejemplo 30.3.
Consideremos a las series:
\begin{equation*}
\displaystyle\sum_{n=1}^\infty\dfrac{z^n}{n} \quad \text{y} \quad \displaystyle\sum_{n=1}^\infty z^{n-1}.
\end{equation*}De acuerdo con el ejercicio 7(a) de la entrada anterior, sabemos que la primera serie de potencias tiene radio de convergencia $R=1$ y su dominio de convergencia es el conjunto:
\begin{equation*}
\overline{B}(0,1) \setminus\{1\} = \left\{z\in\mathbb{C} : |\,z\,|\leq 1 \,\, \text{y} \,\, z\neq 1 \right\}.
\end{equation*}Mientras que la segunda serie, que es su derivada, también tiene radio de convergencia $R=1$, pero al ser una serie geométrica su dominio de convergencia es el disco abierto $B(0,1)$, que es distinto al dominio de la primera serie.

Corolario 30.1 (Existencia de las derivadas de todos los órdenes de una serie de potencias.)
Sean $z_0\in\mathbb{C}$ fijo y $f:B(z_0, R) \to \mathbb{C}$ una función dada por la serie de potencias:
\begin{equation*}
f(z) = \displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n,
\end{equation*}con radio de convergencia $R>0$. Entonces todas las derivadas de orden superior de $f$, es decir:
\begin{equation*}
f’, f^{(2)}, f^{(3)}, \ldots, f^{(k)}, \ldots
\end{equation*}existen para todo $z$ en su dominio de convergencia y dichas derivadas están dadas por:
\begin{align*}
f^{(k)}(z) & = \sum_{n=k}^\infty n(n-1)\cdots (n-k+1) c_n (z-z_0)^{n-k}\\
& = \sum_{n=k}^\infty \frac{n!}{(n-k)!} c_n (z-z_0)^{n-k}.
\end{align*}En particular:
\begin{equation*}
c_k = \frac{f^{(k)}(z_0)}{k!}, \quad k\in\mathbb{N}.
\end{equation*}

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Corolario 30.2. (Unicidad del desarrollo en series de potencias.)
Sean $R>0$ y $z_0 \in \mathbb{C}$ fijo. Si para todo $z\in\mathbb{C}$ tal que $|z-z_0|<R$ se cumple que:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty a_n (z-z_0)^n = \displaystyle \sum_{n=0}^\infty b_n (z-z_0)^n,
\end{equation*}entonces $a_n = b_n$ para todo $n\in\mathbb{N}$. En particular, si $\displaystyle \sum_{n=0}^\infty c_n (z-z_0)^n = 0$, entonces $c_n = 0$ para todo $n\in\mathbb{N}$.

Demostración. Se deja como ejercicio al lector.

$\blacksquare$

Ejemplo 30.4.
Para todo $|\,z\,|<1$ definimos a la función:
\begin{equation*}
f(z) = \displaystyle \sum_{n=0}^\infty z^n = \frac{1}{1-z}.
\end{equation*}De acuerdo con el corolario 30.1, derivando repetidamente y cambiando los índices de las sumas, es fácil verificar que para todo $k\in\mathbb{N}$ y todo $|\,z\,|<1$ se cumple que:
\begin{equation*}
f^{(k)}(z) = \displaystyle \sum_{n=0}^\infty (n+k)(n+k-1) \cdots (n+1) z^n = \frac{k!}{(1-z)^{k+1}}.
\end{equation*}Entonces, para todo $|\,z\,|<1$:
\begin{align*}
f'(z) &= \frac{1}{(1-z)^2} = \displaystyle \sum_{n=0}^\infty (n+1) z^n,\\
f»(z) &= \frac{2}{(1-z)^3} = \displaystyle \sum_{n=0}^\infty (n+2)(n+1) z^n,\\
f^{(3)} &= \frac{6}{(1-z)^4} = \displaystyle \sum_{n=0}^\infty (n+3)(n+2)(n+1) z^n.
\end{align*}Además:
\begin{equation*}
f^{(k)}(0) = k! \quad \Longrightarrow \quad c_k = 1, \quad \forall k\in\mathbb{N}.
\end{equation*}

Ejemplo 30.5.
Determinemos la función suma y el dominio de convergencia de la siguiente serie:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty n^2 z^n.
\end{equation*}

Solución. Notemos que para todo $n\in\mathbb{N}$ se cumple que:
\begin{equation*}
n^2 = (n+2)(n+1)-3(n+1)+1.
\end{equation*}De acuerdo con el ejemplo anterior, tenemos que para $|\,z\,|<1$ las series:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty z^n, \quad \displaystyle \sum_{n=0}^\infty (n+1) z^n \quad \text{y} \quad \displaystyle \sum_{n=0}^\infty (n+2)(n+1) z^n,
\end{equation*}son convergentes, entonces, de la proposición 27.2(2) se sigue:
\begin{align*}
\displaystyle \sum_{n=0}^\infty n^2 z^n & = \displaystyle \sum_{n=0}^\infty \left[(n+2)(n+1)-3(n+1)+1\right] z^n\\
& = \displaystyle \sum_{n=0}^\infty (n+2)(n+1) z^n – 3 \displaystyle \sum_{n=0}^\infty (n+1) z^n + \displaystyle \sum_{n=0}^\infty z^n\\
& = \frac{2}{(1-z)^3} – \frac{3}{(1-z)^2} + \frac{1}{1-z}\\
& = \frac{z^2 + z}{(1-z)^3}.
\end{align*}Por lo tanto, para todo $z\in B(0,1)$ la función suma de la serie dada es:
\begin{equation*}
f(z) = \frac{z^2 + z}{(1-z)^3}.
\end{equation*}

Definición 30.1. (Funciones par e impar.)
Sea $f(z) = \displaystyle \sum_{n=0}^\infty c_n z^n$ una serie con radio de convergencia $R>0$. Se define a la serie:
\begin{equation*}
f(-z) = \displaystyle \sum_{n=0}^\infty c_n (-z)^n = \displaystyle \sum_{n=0}^\infty (-1)^n c_n z^n.
\end{equation*}Se dice que $f$ es par si $c_n=0$ para todo $n$ impar y que $f$ es impar si $c_n=0$ para todo $n$ par.

Ejemplo 30.6.
De acuerdo con la definición 30.1, veamos que $f$ es par si y solo si $f(-z) = f(z)$.

Solución. Dadas las hipótesis tenemos lo siguiente.

$\Rightarrow)$ Si $f$ es par, tenemos que $c_n = 0$ para todo $n$ impar. Además $(-1)^n = 1$ si $n$ es par, entonces:
\begin{equation*}
f(-z) = \displaystyle \sum_{n=0}^\infty (-1)^n c_n z^n = \displaystyle \sum_{n \, \, \text{par}} (-1)^n c_n z^n = \displaystyle \sum_{n \, \, \text{par}} c_n z^n = f(z).
\end{equation*}

$(\Leftarrow$ Si $f(-z) = f(z)$ entonces:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty (-1)^n c_n z^n = \displaystyle \sum_{n=0}^\infty c_n z^n.
\end{equation*}De acuerdo con el ejercicio 8(d) de la entrada anterior, tenemos que ambas series tienen el mismo radio de convergencia, por lo que ambas son series convergentes, entonces:
\begin{equation*}
\displaystyle \sum_{n=0}^\infty \left[ 1- (-1)^n\right] c_n z^n = 0.
\end{equation*}Como $1 – (-1)^n = 2$ si $n$ es impar tenemos que:
\begin{equation*}
\displaystyle \sum_{n \, \, \text{impar}} 2 c_n z^n = 0,
\end{equation*}entonces, corolario 30.2, $c_n = 0$ para todo $n$ impar.

$\blacksquare$

Ejemplo 30.7.
Determinemos la serie de potencias y el dominio de convergencia de la función:
\begin{equation*}
f(z) = \frac{1}{(1-z)(2-z)}.
\end{equation*}

Solución. Aplicando fracciones parciales tenemos que:
\begin{align*}
f(z) & = \frac{1}{(1-z)(2-z)}\\
& = \frac{1}{1-z} – \frac{1}{2-z}\\
& = \frac{1}{1-z} – \dfrac{1}{2}\frac{1}{1-\dfrac{z}{2}}.
\end{align*}Notemos que si $|\,z\,|<1$ entonces:
\begin{align*}
f(z) & = \sum_{n=0}^\infty z^n – \frac{1}{2} \sum_{n=0}^\infty \left(\frac{z}{2}\right)^n\\
& = \sum_{n=0}^\infty \left[1-\left(\frac{1}{2}\right)^{n+1}\right]z^n.
\end{align*}

En este punto es crucial que recordemos la observación 16.4 en la cual mencionamos que es posible definir de manera equivalente el concepto de función analítica a través del desarrollo en serie de potencias, ya que de acuerdo con el corolario 30.1 tenemos que una función dada a través de una serie de potencias es infinitamente diferenciable

Definición 30.2. (Función analítica.)
Sea $U \subset \mathbb{C}$ un conjunto abierto. Una función $f: U \to \mathbb{C}$ es analítica en $U$ si y solo si para cada $z_0\in U$ existe una sucesión de números complejos $\{c_n\}_{n\geq 0} \subset U$ y un número real $r>0$ tal que:
\begin{equation*}
f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n, \quad \forall z\in B(z_0, r).
\end{equation*}

Observación 30.3.
Notemos que en la definición 30.2 no hemos asumido que $B(z_0, r)$ es necesariamente el mayor disco de convergencia en $U$ con centro en $z_0$. Además, los números $c_0, c_1, \ldots,$ en $U$ dependen de $z_0$.

Observación 30.4.
Debe ser claro que una consecuencia inmediata de la definición 30.2 es que una función analítica $f$ hereda todas las propiedades locales de una serie de potencias como las operaciones entre series, entre otras propiedades importantes estudiadas en la unidad anterior.

Corolario 30.3.
Sean $f$ y $g$ dos funciones analíticas en algún dominio $D$ y $c\in\mathbb{C}$ una constante. Entonces $c f$, $f + g$ y $f g$ son funciones analíticas en $D$. Más aún, la suma finita, el producto finito y las combinaciones lineales finitas de funciones analíticas son también analíticas.

Demostración. Se sigue de la definición anterior y de las propiedades de las series vistas en la entrada 27.

$\blacksquare$

Ejemplo 30.7.
Si $p:\mathbb{C}\to\mathbb{C}$ es un polinomio complejo, entonces $p$ una función analítica en $\mathbb{C}$.

Verificar este hecho es sencillo si consideramos que para todo $n\in\mathbb{N}$ se cumple que $z^n=(z-z_0+z_0)^n$, con $z_0\in\mathbb{C}$ fijo y utilizamos la fórmula binomial:
\begin{equation*}
(z+z_0)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} z^k z_0^{n-k},
\end{equation*}por lo que se deja como ejercicio al lector.

Asimismo cada función racional, digamos $r=p/q$, donde $p$ y $q$ son dos polinomios complejos, es analítica en $\mathbb{C}\setminus Q$, con $Q$ el conjunto de los ceros del polinomio $q$.

Ejemplo 30.8.
Sea $U = \mathbb{C} \setminus\{1\}$. Definimos a la función $f:U \to \mathbb{C}$ como:
\begin{equation*}
f(z) = \frac{1}{1-z}.
\end{equation*}Veamos que $f$ es analítica de acuerdo con la definición 30.2.

Solución. Sabemos que para todo $z \in B(0,1)$ y $z_0 = 0$ podemos ver a $f$ como la serie geométrica:
\begin{equation*}
f(z) = \frac{1}{1-z} = \sum_{n=0}^\infty z^n.
\end{equation*}Sea $z_0 \in U$, entonces tenemos que:
\begin{align*}
f(z) = \dfrac{1}{1-z} & = \dfrac{1}{1-z_0} \left(\dfrac{1}{1-\dfrac{z-z_0}{1-z_0}}\right)\\
&= \dfrac{1}{1-z_0} \, \displaystyle \sum_{n=0}^\infty \left(\frac{z-z_0}{1-z_0}\right)^n\\
& = \sum_{n=0}^\infty \frac{(z-z_0)^n}{(1-z_0)^{n+1}},
\end{align*}para todo $z\in B(z_0, r) \subset U$, donde $r=|1-z_0|$.

Por lo tanto, $f$ es analítica en $U$.

Tarea moral

  1. Demuestra los corolarios 30.1 y 30.2.
  2. Completa la demostración del lema 30.1.
  3. Verifica la observación 30.1.
  4. Sea $f$ una función analítica en un dominio $D$ y supón que:
    \begin{equation*}
    f(z_1) = f(z_2) = \cdots = f(z_n) = w,
    \end{equation*}para distintos puntos $z_1, z_2, \ldots, z_n \in D$. Muestra que:
    \begin{equation*}
    F(z) = \frac{f(z) – w}{(z-z_1) \cdots (z-z_n)},
    \end{equation*}es una función analítica en $D$ con una definición adecuada de $F$ en $z_1, z_2, \ldots, z_n \in D$.
  5. Sea $f$ una función analítica y distinta de cero en un dominio $D$. Prueba que $1/f$ es analítica en $D$.
    Hint: Procede de la siguiente forma.

    Toma a $z_0\in D$ fijo y define:
    \begin{equation*}
    f(z) = \sum_{n=0}^\infty c_n(z-z_0)^n,
    \end{equation*}para todo $z\in B(z_0,\rho) \subset D$, con $\rho>0$.

    Define la sucesión de coeficientes $\{b_n\}_{n\geq 0} \subset D$ recursivamente como $b_0 = 1/c_0$ y para $n\geq 1$:
    \begin{equation*}
    c_0 b_n + c_1 b_{n-1} + \cdots + c_n b_0 = 0.
    \end{equation*}

    Define a la función:
    \begin{equation*}
    g(z) = \sum_{n=0}^\infty b_n(z-z_0)^n.
    \end{equation*}Elige a $r$, con $0<r<\rho$, tal que:
    \begin{equation*}
    \sum_{n=1}^\infty |a_n| r^n \leq |a_0|.
    \end{equation*}a) Prueba por inducción que $|b_n|r^n \leq |b_0|$.
    b) Muestra que $g$ converge en $B(z_0, r)$.
    c) Prueba que $f(z)g(z)=1$ en $B(z_0, r)$, de donde:
    \begin{equation*}
    \left(\frac{1}{f}\right)(z) = \sum_{n=0}^\infty b_n(z-z_0)^n.
    \end{equation*}
  6. Supón que la serie de potencias $f(z) = \displaystyle \sum_{n=0}^\infty c_n z^n$ tiene radio de convergencia $R>0$ y $f'(0)=c_1 \neq 0$. Demuestra que para algún $0 < r \leq R$ la función $f$ es inyectiva en $B(0,r)$.

    Hint: Procede como en la prueba de la proposición 30.2, observa que si $0<r<R$ y $z,w\in B(0,r)$, entonces:
    \begin{equation*}
    f(z) – f(w) = c_1(z-w) + (z-w) \sum_{n=2}^\infty c_n \sum_{m=1}^n w^{m-1} z^{n-m},
    \end{equation*}de donde:
    \begin{equation*}
    |\,f(z) – f(w)\,| > \frac{|c_1|}{2} |\,z-w\,|.
    \end{equation*}
  7. Determina la función suma y el dominio de convergencia de las siguientes series de potencias.
    a)$\displaystyle \sum_{n=0}^\infty (3+4i)^n \, z^n$.
    b) $\displaystyle \sum_{n=1}^\infty n(n+1) \, z^n$.
    c) $\displaystyle \sum_{n=0}^\infty (n^3 -1) \, z^n$.
    Hint: Considera el ejemplo 30.4, el inciso anterior y observa que para todo $n\in\mathbb{N}$ se cumple que:\begin{equation*}
    n^3 = (n+3)(n+2)(n+1) – 6n(n+1)-5(n+1)-1.
    \end{equation*}d) $\displaystyle \sum_{n=1}^\infty (-1)^n(n+1) \, z^n$.
  8. Considera las siguientes series y en cada caso prueba lo que se te pide.
    a) \begin{equation*}
    f(z) = \sum_{n=0}^\infty \frac{z^{2n}}{(2n)!}.
    \end{equation*}Muestra que su radio de convergencia es $R=\infty$ y prueba que $f(z) = f»(z)$.
    b) \begin{equation*}
    f(z) = \sum_{n=0}^\infty \frac{z^{2n}}{(n!)^2}.
    \end{equation*}Muestra que su radio de convergencia es $R=\infty$ y prueba que $z^2 f»(z) + z f'(z) = 4z^2 f(z)$.
    c) \begin{equation*}
    f(z) = z – \frac{z^3}{3} + \frac{z^5}{5} – \frac{z^7}{7} + \cdots .
    \end{equation*}Muestra que su radio de convergencia es $R=1$ y prueba que $f'(z) = 1/(z^2+1)$.
  9. Considera la definición 30.1 y prueba que una función $f(z) = \displaystyle \sum_{n=0}^\infty c_n z^n$ es impar si y solo si $f(-z) = -f(z)$.
  10. Determina la serie de potencias y su dominio de convergencia de la función:
    \begin{equation*}
    f(z) = \frac{1}{(1+z)(2+z)}.
    \end{equation*}

Más adelante…

En esta entrada hemos probado uno de los resultados más importantes referentes a las funciones analíticas y es que dichas funciones tienen un desarrollo como serie de potencias. Este hecho es crucial pues nos garantiza que una función analítica es de clase $C^\infty$, lo cual nos será de gran utilidad en la última unidad de este curso al hablar de series de Taylor y series de Laurent que serán claves en la teoría de las funciones complejas pues nos permitirán dar de manera explícita un desarrollo en series de potencias para toda función compleja analítica.

La siguiente entrada corresponde con la última de esta tercera unidad y en ella abordaremos algunas de las funciones complejas elementales vistas como series de potencias, en particular de la función exponencial compleja que como hemos visto en la unidad anterior resulta fundamental para la definición de las demás funciones complejas elementales, por lo que a través de su desarrollo en series de potencias justificaremos su definición así como el uso de la notación $e^z$ y $\operatorname{exp}(z)$ de manera indistinta al hacer una extensión de la función real para el caso complejo.

Entradas relacionadas

Cálculo Diferencial e Integral III: Multiplicadores de Lagrange

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior buscábamos optimizar un campo escalar $f$. Retomaremos este problema, pero ahora agregando restricciones al dominio de $f$. Para ello hablaremos del método de los multiplicadores de Lagrange, el cual nos permitirá dar una solución bajo ciertas condiciones de diferenciabilidad.

Esto en general es lo mejor que podremos hacer. En realidad, los problemas de este estilo son muy difíciles y no tienen una solución absoluta. Si no tenemos las condiciones del teorema de Lagrange, es posible que se tengan que hacer cosas mucho más compliadas para obtener óptimos exactos, o bien que se tengan que hacer aproximaciones numéricas.

En la demostración del teorema de los multiplicadores de Lagrange usaremos el teorema de la función implícita, lo cual es evidencia adicional de lo importante y versátil que es este resultado.

Un ejemplo para motivar la teoría

Imagina que tenemos la función $f(x,y)=x^2+y^2$ y queremos encontrar su mínimo. Esto es muy fácil. El mínimo se da cuando $x=y=0$, pues en cualquier otro valor tenemos un número positivo. Pero, ¿Qué pasaría si además queremos que los pares $(x,y)$ que usamos satisfagan también otra condición?, por ejemplo, que cumplan $$2x^2+3y^2=10$$

En este caso, la respuesta ya no es obvia. Podríamos intentar encontrar el mínimo por inspección, pero suena que será difícil. Podríamos intentar usar la teoría de la entrada anterior, pero esa teoría no nos dice nada de qué hacer con nuestra condición.

La teoría que desarrollaremos a continuación nos permitirá respondernos preguntas de este estilo. En este ejemplo en concreto, puedes pensar que la solución se obtendrá de la siguiente manera: La ecuación $2x^2+3y^2=10$ nos dibuja una elipse en el plano, como se ve en la figura 1 imagen 3. Las curvas de nivel de la superficie dibujada por la gráfica de la función $f$ corresponden a circunferencias concéntricas, cuyo centro es el origen. Al ir tomando circunferencias cada vez mas grandes en el plano comenzando con el punto $(0,0)$ nos quedaremos con la primera que toque a la elipse, de hecho la tocará en dos puntos, digamos $(x_1 ,y_1)$ y $(x_2 ,y_2)$, donde $f(x_1 ,y_1)=f(x_2 ,y_2)$ sería el mínimo buscado, es decir el mínimo que sobre la superficie $f(x,y)$ cumple con la ecuación $2x^2+3y^2=10$.

Pero como ahí se da una tangencia, entonces suena que justo en ese punto $(x,y)$ hay una recta simultáneamente tangente a la curva de nivel y a la elipse. Esto nos da una relación entre gradientes. El teorema de multiplicadores de Lagrange detecta y enuncia esta relación entre gradientes con precisión y formalidad, incluso cuando tenemos más de una condición. A estas condiciones también las llamamos restricciones, y están dadas por ecuaciones.

Enunciado del teorema de multiplicadores de Lagrange

A continuación enunciamos el teorema.

Teorema (multiplicadores de Lagrange). Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ es un campo escalar de clase $C^{1}$. Para $m<n$, tomamos $g_{1},\dots ,g_{m}:S\in \subset \mathbb{R}^{n}\rightarrow \mathbb{R}$ campos escalares de clase $C^{1}$ en $S$. Consideremos el conjunto $S^\ast$ donde todos los $g_i$ se anulan, es decir:

$$S^\ast=\{ \bar{x}\in S|g_{1}(\bar{x})=g_2(\bar{x})=\ldots=g_m(\bar{x})=0\}.$$

Tomemos un $\bar{x}_0$ en $S^\ast$ para el cual

  1. $f$ tiene un extremo local en $\bar{x}_0$ para los puntos de $S^\ast$ y
  2. $\triangledown g_{1}(\bar{x}_{0}),\dots ,\triangledown g_{m}(\bar{x}_{0})$ son linealmente independientes.

Entonces existen $\lambda _{1},\dots ,\lambda _{m}\in \mathbb{R}$, a los que llamamos multiplicadores de Lagrange tales que:

\[ \triangledown f(\bar{x}_{0})=\lambda _{1}\triangledown g_{1}(\bar{x}_{0})+\dots +\lambda _{m}\triangledown g_{m}(\bar{x}_{0}).\]

Si lo meditas un poco, al tomar $m=1$ obtenemos una situación como la del ejemplo motivador. En este caso, la conclusión es que $\triangledown f(\bar{x}_0)=\lambda \triangledown g(\bar{x}_0)$, que justo nos dice que en $\bar{x}_0$, las gráficas de los campos escalares $f$ y $g$ tienen una tangente en común.

Demostración del teorema de multiplicadores de Lagrange

Demostración. La demostración del teorema de multiplicadores de Lagrange usa varios argumentos de álgebra lineal. Esto tiene sentido, pues a final de cuentas, lo que queremos hacer es poner un gradiente ($\triangledown f(\bar{x}_0)$) como combinación lineal de otros gradientes ($\triangledown g_1(\bar{x}_0),\ldots, \triangledown g_m(\bar{x}_0)$). A grandes rasgos, lo que haremos es:

  • Definir un espacio $W$.
  • Mostrar que $\triangledown g_1(\bar{x}_0),\ldots, \triangledown g_m(\bar{x}_0)$ generan al espacio ortogonal $W^\bot$.
  • Mostrar que $\triangledown f(\bar{x}_0)$ es ortogonal a todo vector de $W$, por lo cual estará en $W^\bot$ y así por el inciso anterior será combinación lineal de $\triangledown g_1(\bar{x}_0),\ldots, \triangledown g_m(\bar{x}_0)$.

Para construir el espacio $W$ del que hablamos, usaremos el teorema de la función implícita y la regla de la cadena. Empecemos este argumento. Consideremos la siguiente matriz:

\[ \begin{equation} \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{1}}{\partial x_{m}}(\bar{x}_{0}) & \frac{\partial g_{1}}{\partial x_{m+1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{1}}{\partial x_{n}}(\bar{x}_{0}) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{m}}{\partial x_{m}}(\bar{x}_{0}) & \frac{\partial g_{m}}{\partial x_{m+1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{1}}{\partial x_{n}}(\bar{x}_{0}) \end{pmatrix}. \end{equation}\]

Dado que los vectores $\triangledown g_1(\bar{x}_0),\ldots, \triangledown g_m(\bar{x}_0)$ son linealmente independientes, el rango por renglones de esta matriz es $m$, de modo que su rango por columnas también es $m$ (tarea moral). Sin perder generalidad (quizás tras hacer una permutación de columnas, que permuta las entradas), tenemos que las primeras $m$ columnas son linealmente independientes. Así, la matriz

\[ \begin{pmatrix} \frac{\partial g_{1}}{\partial x_{1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{1}}{\partial x_{m}}(\bar{x}_{0}) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}}(\bar{x}_{0}) & \dots & \frac{\partial g_{m}}{\partial x_{m}}(\bar{x}_{0}) \end{pmatrix}\]

es invertible. Hagamos $l=n-m$ y reetiquetemos las variables coordenadas $x_1,\ldots,x_m$ como $v_1,\ldots,v_m$, y las variables coordenadas $x_{m+1},\ldots,x_n$ como $u_1,\ldots, u_l$. Escribiremos $\bar{x}_0=(\bar{v}_0,\bar{u}_0)$ para referirnos al punto al que hacen referencia las hipótesis. Esto nos permite pensar $\mathbb{R}^{n}=\mathbb{R}^{m}\times \mathbb{R}^{l}$ y nos deja en el contexto del teorema de la función implícita. Como la matriz anterior es invertible, existen $U\subseteq \mathbb{R}^l$ y $V\subseteq \mathbb{R}^m$ para los cuales $\bar{u}_0\in U$, $\bar{v}_0\in V$ y hay una única función $h=(h_1,\ldots,h_m):U\to V$ de clase $C^1$ tal que para $\bar{u}\in U$ y $\bar{v}\in V$ se cumple que $g(\bar{v},\bar{u})=0$ si y sólo si $\bar{v}=h(\bar{u})$.

Definamos ahora la función $H:U\subseteq \mathbb{R}^{l}\rightarrow \mathbb{R}^{m}\times \mathbb{R}^{l}$ como $H(\bar{u})=(h(\bar{u}),\bar{u})$, la cual es de clase $C^{1}$ en $U$.

Por cómo construimos $h$, sucede que $(h(\bar{u}),\bar{u})\in S^{*}$ para toda $\bar{u}\in U$. Por definición, esto quiere decir que para toda $i=1,\ldots,m$ tenemos que $$(g_{i}\circ H)(\bar{u})=0$$ para toda $\bar{u}\in U$. Esto quiere decir que $g_i\circ H$ es una función constante y por lo tanto su derivada en $\bar{u}_0$ es la transformación $0$. Pero otra forma de obtener la derivada es mediante la regla de la cadena como sigue:

\begin{align*} D(g_{i}\circ H)(\bar{u}_{0})&=Dg_{i}(H(\bar{u}_{0}))DH(\bar{u}_{0})\\ &=Dg_{i}(\bar{v}_{0},\bar{u}_{0})DH(\bar{u}_{0}).\end{align*}

En términos matriciales, tenemos entonces que el siguiente producto matricial es igual al vector $(0,\ldots,0)$ de $l$ entradas (evitamos poner $(\bar{v}_0,\bar{u}_0)$ para simplificar la notación):

\[ \begin{equation}\begin{pmatrix} \frac{\partial g_{i}}{\partial v_{1}}& \dots & \frac{\partial g_{i}}{\partial v_{m}} & \frac{\partial g_{i}}{\partial u_{1}} & \dots & \frac{\partial g_{i}}{\partial u_{l}} \end{pmatrix}\begin{pmatrix} \frac{\partial h_{1}}{\partial u_{1}} & \dots & \frac{\partial h_{1}}{\partial u_{l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_{m}}{\partial u_{1}} & \dots & \frac{\partial h_{m}}{\partial u_{l}} \\ 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}\end{equation},\]

para cada $i=1,\ldots, m$. Nos gustaría escribir esta conclusión de manera un poco más sencilla, para lo cual introducimos los siguientes vectores para cada $j=1,\ldots, l$:

\[ \bar{w}_{j}=\left( \left( \frac{\partial h_{1}}{\partial u_{j}}(\bar{u}_{0}),\dots ,\frac{\partial h_{m}}{\partial u_{j}}(\bar{u}_{0}) \right), \hat{e}_{j}\right).\]

Cada uno de estos lo pensamos como vector en $\mathbb{R}^m\times \mathbb{R}^l$. Además, son $l$ vectores linealmente independientes, pues sus entradas $\hat{e}_j$ son linealmente independientes. El espacio vectorial $W$ que generan es entonces un subespacio de $\mathbb{R}^m\times \mathbb{R}^l$, con $\dim(W)=l$.

De la ecuación $(2)$ tenemos que $\triangledown g_{i}(\bar{v}_{0},\bar{u}_{0})\cdot \bar{w}_{j}=0$ para todo $i=1,\dots ,m$, y $j=1,\dots ,l$. Se sigue que $\triangledown g_{i}(\bar{v}_{0},\bar{u}_{0})\in W^{\perp}$, donde $W^{\perp}$ es el complemento ortogonal de $W$ en $\mathbb{R}^{m}\times \mathbb{R}^{l}$. Pero además, por propiedades de espacios ortogonales tenemos que

\begin{align*}
\dim(W^{\perp})&=\dim(\mathbb{R}^{m}\times \mathbb{R}^{l})-dim(W)\\
&=m+l-l\\
&=m.
\end{align*}

Así $\dim(W^{\perp})=m$, además el conjunto $\left\{ \triangledown g_{i}(\bar{v}_{0},\bar{u}_{0}) \right\}_{i=1}^{m}$ es linealmente independiente con $m$ elementos, por tanto este conjunto es una base para $W^{\perp}$. Nuestra demostración estará terminada si logramos demostrar que $\triangledown f(\bar{v}_0,\bar{u}_0)$ también está en $W^\perp$, es decir, que es ortogonal a todo elemento de $W$.

Pensemos qué pasa al componer $f$ con $H$ en el punto $\bar{u}_0$. Afirmamos que $\bar{u}_0$ es un extremo local de $f\circ H$. En efecto, $(f\circ H)(\bar{u}_0)=f(g(\bar{u}_0),\bar{u}_0)=(\bar{v}_0,\bar{u}_0)$. Si, por ejemplo $(\bar{v}_0,\bar{u}_0)$ diera un máximo, entonces los valores $f(\bar{v},\bar{u})$ para $(\bar{v},\bar{u})$ dentro de cierta bola $B_\delta(\bar{v}_0,\bar{u}_0)$ serían menores a $f(\bar{v}_0,\bar{u}_0)$. Pero entonces los valores cercanos $\bar{u}$ a $\bar{u}_0$ cumplen $(f\circ H)(\bar{u})=f(h(\bar{u}),\bar{u})$, con $(\bar{u},h(\bar{u}))$ en $S^\ast$ y por lo tanto menor a $f(\bar{v}_0,\bar{u}_0)$ (para mínimos es análogo).

Resumiendo lo anterior, $\bar{u}_{0}$ es extremo local de $f\circ H$. Aplicando lo que aprendimos en la entrada anterior, la derivada de $f\circ H$ debe anularse en $\bar{u}_0$. Pero por regla de la cadena, dicha derivada es

\begin{align*}\triangledown (f\circ H)(\bar{u}_{0})&=D(f\circ H)(\bar{u}_{0})\\ &=Df(H(\bar{u}_{0}))DH(\bar{u}_{0})\\ &=Df(h(\bar{u}_{0}),\bar{u}_{0})DH(\bar{u}_{0})\\
&=Df(\bar{v}_0,\bar{u}_{0})DH(\bar{u}_{0})
\end{align*}

Viéndolo como multiplicación de matrices, el siguiente producto es el vector $(0,0,\ldots,0)$ de $l$ entradas:

\[ \begin{pmatrix} \frac{\partial f}{\partial v_{1}} & \dots & \frac{\partial f}{\partial v_{m}} & \frac{\partial f}{\partial u_{1}} & \dots & \frac{\partial f}{\partial u_{l}} \end{pmatrix}\begin{pmatrix} \frac{\partial h_{1}}{\partial u_{1}} & \dots & \frac{\partial h_{1}}{\partial u_{l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_{m}}{\partial u_{1}} & \dots & \frac{\partial h_{m}}{\partial u_{l}} \\ 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}=0 \]

De donde concluimos $\triangledown f(\bar{v}_{0},\bar{u}_{0})\cdot \bar{w}_{j}=0$ para cada $j=1,\dots l$. Esto precisamente nos dice que $\triangledown f(\bar{v}_{0},\bar{u}_{0})\in W^{\perp}$. Esto es justo lo que queríamos, pues habíamos demostrado que $\left\{ \triangledown g_{i}(\bar{v}_{0},\bar{u}_{0}) \right\}_{i=1}^{m}$ es una base de $W^{\perp}$. Por ello podemos expresar a $\triangledown f(\bar{v}_{0},\bar{u}_{0})$ como combinación lineal de esta base, es decir, existen $\lambda _{1},\dots ,\lambda _{m}$ escalares tales que:

\[ \triangledown f(\bar{v}_{0},\bar{u}_{0})=\lambda _{1}\triangledown g_{1}(\bar{v}_{0},\bar{u}_{0})+\dots +\lambda _{m}\triangledown g_{m}(\bar{v}_{0},\bar{u}_{0}). \]

$\square$

¡Qué bonita demostración! Usamos el teorema de la función implícita, la regla de la cadena (dos veces), nuestros resultados para valores extremos de la entrada anterior, y un análisis cuidadoso de ciertos espacios vectoriales.

Ejemplos del método de multiplicadores de Lagrange

Veamos algunos problemas que podemos resolver con esta nueva herramienta.

Ejemplo. Determinaremos los puntos extremos de $f(x,y)=x+2y$ bajo la condición $x^{2}+y^{2}=5$. Para poner todo en términos de nuestro teorema, definimos $g(x,y)=x^{2}+y^{2}-5$. Por el teorema de multiplicadores de Lagrange, en los puntos extremos debe existir una $\lambda$ tal que $\triangledown f(x,y)=\lambda \triangledown g(x,y)$. Calculando las parciales correspondientes, debemos tener entonces

\[ \left( 1,2 \right)=\lambda \left( 2x,2y \right).\]

Adicionalmente, recordemos que se debe satisfaces $g(x,y)=0$. Llegamos entonces al sistema de ecuaciones

\[ \left \{\begin{matrix} 1-2x\lambda=0 \\ 2-2y\lambda =0 \\ x^{2}+y^{2}-5=0 \end{matrix}\right. \]

Al despejar $x$ y $y$ en ambas ecuaciones tenemos:

\[ \begin{matrix} x=\frac{1}{2\lambda} \\ y=\frac{1}{\lambda} \\ x^{2}+y^{2}-5=0 \end{matrix}.\]

Poniendo los valores de $x$ y $y$ en la tercera ecuación, llegamos a $\left( \frac{1}{2\lambda}\right)^{2}+\left( \frac{1}{\lambda}\right)^{2}-5=0$, de donde al resolver tenemos las soluciones $\lambda _{1}=\frac{1}{2}$ y $\lambda _{2}=-\frac{1}{2}$.

Al sustituir en las ecuaciones de nuestro sistema, obtenemos como puntos críticos a $(x,y)=(-1,-2)$ y $(x,y)=(1,2)$.

Si intentamos calcular el hessiano de $f$, esto no nos dirá nada (no tendremos eigenvalores sólo positivos, ni sólo negativos). Pero esto ignora las restricciones que nos dieron. Podemos hacer una figura para entender si estos puntos son máximos o mínimos. En la Figura $1$ tenemos la gráfica de $f$, intersectada con la superfice dada por $g$. Nos damos cuenta que hay un punto máximo y uno mínimo. Al evaluar, obtenemos $f(1,2)=5$ y $f(-1,-2)=-5$. Esto nos dice que el máximo en la superficie se alcanza en $(1,2)$ y el mínimo en $(-1,-2)$.

Figura 2: Ilustración del Ejemplo 1 la función $g(x,y)=x^{2}+y^{2}-5$ esta dibujada en azul esta impone restricción a la función $f$ que dibuja un plano en el espacio.

$\triangle$

Ejemplo. Veamos cómo minimizar la expresión $$f(x,y,z)=x^{2}+y^{2}+z^{2}$$ sujetos a la condición $x+y+z=1$. Una vez más, proponemos $g(x,y,z)=x+y+z-1$ para tener la situación del teorema de multiplicadores de Lagrange. Debe pasar que $\lambda$ $\triangledown f(x,y,z)=\lambda \triangledown g(x,y,z)$. El gradiente de $g(x,y,z)$ es de puros ceros unos, así que tenemos el sistema de ecuaciones:

\[ \left \{\begin{matrix} 2x=\lambda \\ 2y=\lambda \\ 2z=\lambda \\ x+y+z-1=0 \end{matrix}\right.\]

De las primeras tres ecuaciones tenemos $2x=2y=2z$ de donde $x=y=z$. Sustituyendo en la tercera ecuación, $3x-1=0$, es decir $x=y=z=\frac{1}{3}$. Ya que sólo tenemos una solución, ésta es el mínimo del conjunto de soluciones. En la figura 3 tenemos la ilustración de la solución de este problema, la esfera centrada en el origen de radio $\frac{1}{3}$ toca al plano $x+y+z=1$ en el punto $\left( \frac{1}{3},\frac{1}{3},\frac{1}{3}\right)$

$\triangle$

Figura 3: En azul claro el plano $x+y+z=1$, inflamos esferas centradas en el origen; desde la de radio cero vamos aumentando el radio hasta tener el radio correspondiente para el cual la esfera toque tangentemente al plano.

Más adelante…

Con esta entrada cerramos el curso de Cálculo Diferencial e Integral III. ¡¡Felicidades!! Esperamos que todas estas notas te hayan sido de ayuda para estudiar, repasar o impartir la materia. Quedamos al pendiente de cualquier duda, observación o sugerencia en la sección de comentarios de las entradas.

Tarea moral

  1. Determina los extremos de la función $f(x,y)=xy+14$ bajo la restricción $x^{2}+y^{2}=18$
  2. El plano $x+y+2z=2$ interseca al paraboloide $z=x^{2}+y^{2}$ en una elipse $\mathbb{E}$. Determina el punto de la elipse con el valor mayor en el eje $z$, y el punto con el valor mínimo en el mismo eje. Sugerencia: $f(x,y,z)=x+y+2z-2$, y $g(x,y,z)=x^{2}+y^{2}-z$
  3. Determinar el máximo valor de $f(x,y,z)=x^{2}+36xy-4y^{2}-18x+8y$ bajo la restricción $3x+4y=32$
  4. Determinar los puntos extremos de la función $f(x,y,z)=x^{2}+y^{2}+z^{2}$ bajo la restricción $xyz=4$
  5. Demuestra que en una matriz $M$ su rango por columnas es igual a su rango por renglones. Sugerencia. Usa el teorema de reducción gaussiana. También, puedes revisar la entrada que tenemos sobre rango de matrices.

Entradas relacionadas

Cálculo Diferencial e Integral III: Puntos críticos de campos escalares

Por Alejandro Antonio Estrada Franco

Introducción

En las unidades anteriores hemos desarrollado varias herramientas de la teoría de diferenciabilidad que nos permiten estudiar tanto a los campos escalares, como a los campos vectoriales. Hemos platicado un poco de las aplicaciones que esta teoría puede tener. En esta última unidad, profundizamos un poco más en cómo dichas herramientas nos permitirán hacer un análisis geométrico y cuantitativo de las funciones. Es decir, a partir de ciertas propiedades analíticas, hallaremos algunas cualidades de su comportamiento geométrico. En esta entrada estudiaremos una pregunta muy natural: ¿cuándo una función diferenciable alcanza su máximo o su mínimo? Para ello, necesitaremos definir qué quiere decir que algo sea un punto crítico de una función. Esto incluirá a los puntos más altos, los más bajos, local y globalmente y ciertos «puntos de quiebre» que llamamos puntos silla.

Introducción al estudio de los puntos críticos

Si tenemos un campo escalar $f:\mathbb{R}^n\to \mathbb{R}$, en muchas aplicaciones nos interesa poder decir cuándo alcanza sus valores máximos o mínimos. Y a veces eso sólo nos importa en una vecindad pequeña. La siguiente definición hace ciertas precisiones.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ un campo escalar, y $\bar{a}\in S$.

  • Decimos que $f$ tiene un máximo absoluto (o máximo global) en $\bar{a}$ si $f(\bar{x})\leq f(\bar{a})$ para todo $\bar{x}\in S$. A $f(\bar{a})$ le llamamos el máximo absoluto (o máximo global) de $f$ en $S$.
  • Decimos que $f$ tiene un máximo relativo (o máximo local) en $\bar{a}$ si existe una bola abierta $B_{r}(\bar{a})$ tal que para todo $\bar{x}\in B_{r}(\bar{a})$ $f(\bar{x})\leq f(\bar{a})$.
  • Decimos que $f$ tiene un mínimo absoluto (o mínimo global) en $\bar{a}$ si $f(\bar{x})\geq f(\bar{a})$ para todo $\bar{x}\in S$. A $f(\bar{a})$ le llamamos el mínimo absoluto (o mínimo global) de $f$ en $S$.
  • Decimos que $f$ tiene un mínimo relativo (o mínimo local) en $\bar{a}$ si existe una bola abierta $B_{r}(\bar{a})$ tal que para todo $\bar{x}\in B_{r}(\bar{a})$ $f(\bar{x})\geq f(\bar{a})$.

En cualquiera de las situaciones anteriores, decimos que $f$ tiene un valor extremo (ya sea relativo o absoluto) en $\bar{a}$. Notemos que todo extremo absoluto en $S$ será extremo relativo al tomar una bola $B_{r}(\bar{a})$ que se quede contenida en $S$. Y de manera similar, todo extremo relativo se vuelve un extremo absoluto para la función restringida a la bola $B_{r}(\bar{a})$ que da la definición.

Usualmente, cuando no sabemos nada de una función $f$, puede ser muy difícil, si no imposible estudiar sus valores extremos. Sin embargo, la intuición que tenemos a partir de las funciones de una variable real es que deberíamos poder decir algo cuando la función que tenemos tiene cierta regularidad, por ejemplo, cuando es diferenciable. Por ejemplo, para funciones diferenciables $f:S\subseteq \mathbb{R}\to\mathbb{R}$ quizás recuerdes que si $f$ tiene un valor extremo en $\bar{a}\in S$, entonces $f'(\bar{a})=0$.

El siguiente teorema es el análogo en altas dimensiones de este resultado.

Teorema. Sea $f:S\subseteq \mathbb{R}^n\to \mathbb{R}$ un campo escalar. Supongamos que $f$ tiene un valor extremo en un punto interior $\bar{a}$ de $S$, y que $f$ es diferenciable en $\bar{a}$. Entonces el gradiente de $f$ se anula en $\bar{a}$, es decir, $$\triangledown f(\bar{a})=0.$$

Demostración. Demostraremos el resultado para cuando hay un máximo relativo en $\bar{a}$. El resto de los casos quedan como tarea moral. De la suposición, obtenemos que existe un $r>0$ tal que $f(\bar{x})\leq f(\bar{a})$ para todo $\bar{x}\in B_r(\bar{a})$. Escribamos $\bar{a}=(a_{1},\dots ,a_{n})$.

Para cada $i=1,\dots ,n$ tenemos:

\[ \frac{\partial f}{\partial x_{i}}(\bar{a})=\lim\limits_{\xi \to a_{i}}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}. \]

Además, ya que $f$ es diferenciable en $\bar{a}$ también se cumple

\[\lim\limits_{\xi \to a_{i}-}\frac{f(\xi e_{i})-f(a)}{\xi -a_{i}}=\lim\limits_{\xi \to a_{i}+}\frac{f(\xi e_i)-f(a)}{\xi -a_{i}}. \]

Dado que $f$ alcanza máximo en $\bar{a}$ tenemos que $f(\xi \hat{e}_{i})-f(\bar{a})\leq 0$. Para el límite por la izquierda tenemos $\xi-a_{i}\leq 0$, por lo tanto, en este caso

\[ \lim\limits_{\xi \to a_{i}-}\frac{f(\xi e_{i})-f(\bar{a})}{\xi -a_{i}}\geq 0.\]

Para el límite por la derecha tenemos $\xi-a_{i}\geq 0$, por lo cual

\[ \lim\limits_{\xi \to a_{i}+}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}\leq 0.\]

Pero la igualdad entre ambos límites dos dice entonces que

\[\frac{\partial f}{\partial x_{i}}(\bar{a}) =\lim\limits_{\xi \to a_{i}-}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}=0. \]

Por lo cual cada derivada parcial del campo vectorial es cero, y así el gradiente también lo es.

$\square$

Parece ser que es muy importante saber si para un campo vectorial su gradiente se anula, o no, en un punto. Por ello, introducimos dos nuevas definiciones.

Definición. Sea $f:S\subseteq \mathbb{R}^n \to \mathbb{R}$ un campo escalar diferenciable en un punto $\bar{a}$ en $S$. Diremos que $f$ tiene un punto estacionario en $\bar{a}$ si $\triangledown f(\bar{a})=0$.

Definición. Sea $f:S\subseteq \mathbb{R}^n \to \mathbb{R}$ un campo escalar y tomemos $\bar{a}$ en $S$. Diremos que $f$ tiene un punto crítico en $\bar{a}$ si o bien $f$ no es diferenciable en $\bar{a}$, o bien $f$ tiene un punto estacionario en $\bar{a}$.

Si $f$ tiene un valor extremo en $\bar{a}$ y no es diferenciable en $\bar{a}$, entonces tiene un punto crítico en $\bar{a}$. Si sí es diferenciable en $\bar{a}$ y $\bar{a}$ es un punto interior del dominio, por el teorema de arriba su gradiente se anula, así que tiene un punto estacionario y por lo tanto también un punto crítico en $\bar{a}$. La otra opción es que sea diferenciable en $\bar{a}$, pero que $\bar{a}$ no sea un punto interior del dominio.

Observación. Los valores extremos de $f$ se dan en los puntos críticos de $f$, o en puntos del dominio que no sean puntos interiores.

Esto nos da una receta para buscar valores extremos para un campo escalar. Los puntos candidatos a dar valores extremos son:

  1. Todos los puntos del dominio que no sean interiores.
  2. Aquellos puntos donde la función no sea diferenciable.
  3. Los puntos la función es diferenciable y el gradiente se anule.

Ya teniendo a estos candidatos, hay que tener cuidado, pues desafortunadamente no todos ellos serán puntos extremos. En la teoría que desarrollaremos a continuación, profundizaremos en el entendimiento de los puntos estacionarios y de los distintos comportamientos que las funciones de varias variables pueden tener.

Intuición geométrica

Para entender mejor qué quiere decir que el gradiente de un campo escalar se anuele, pensemos qué pasa en términos geomértricos en un caso particular, que podamos dibujar. Tomemos un campo escalar $f:\mathbb{R}^2\to \mathbb{R}$. La gráfica de la función $f$ es la superficie en $\mathbb{R}^{3}$ que se obtiene al variar los valores de $x,y$ en la expresión $(x,y,f(x,y))$.

Otra manera de pensar a esta gráfica es como un conjunto de nivel. Si definimos $F(x,y,z)=z-f(x,y)$, entonces la gráfica es precisamente el conjunto de nivel para $F$ en el valor $0$, pues precisamente $F(x,y,z)=0$ si y sólo si $z=f(x,y)$.

Si $f$ alcanza un extremo en $(a,b)$, entonces $\triangledown f(a,b)=0$ por lo cual $\triangledown F (a,b,f(a,b))=(0,0,1)$. Así, el gradiente es paralelo al eje $z$ y por lo tanto es un vector normal a la superficie $F(x,y,z)=0$. Esto lo podemos reinterpretar como que el plano tangente a la superficie citada en el punto $(a,b,f(a,b))$ es horizontal.

Puntos silla

Cuando la función es diferenciable y el gradiente se anula, en realida tenemos pocas situaciones que pueden ocurrir. Sin embargo, falta hablar de una de ellas. Vamos a introducirla mediante un ejemplo.

Ejemplo. Consideremos $f(x,y)=xy$. En este caso

$$\frac{\partial f}{\partial x}=y\hspace{0.5cm}\textup{y}\hspace{0.5cm}\frac{\partial f}{\partial y}=x.$$

Si $(x,y)=(0,0)$, entonces las parciales se anulan, así que el gradiente también. Por ello, $(0,0)$ es un punto estacionario (y por lo tanto también crítico). Pero veremos a continuación que $f(0,0)=0$ no es máximo relativo ni mínimo relativo.

Tomemos $r>0$ abitrario y $\varepsilon= r/\sqrt{8}$. El punto $(\varepsilon ,\varepsilon)\in B_{r}(0)$ pues $\sqrt{\varepsilon ^{2}+\varepsilon ^{2}}$ es igual a $\sqrt{r^{2}/8\hspace{0.1cm}+\hspace{0.1cm}r^{2}/8}=r/2<r$. Análogamente, tenemos que el punto $(\varepsilon,-\varepsilon)\in B_{r}(0)$. Sin embargo $f(\varepsilon,-\varepsilon)=-r^{2}/8<0$, por lo que $0$ no es un mínimo local, también $f(\varepsilon,\varepsilon)=r^{2}/8>0$, por lo que $0$ tampoco es máximo local. En la Figura 1 tenemos un bosquejo de esta gráfica.

Figura 1

$\triangle$

Los puntos como los de este ejemplo tienen un nombre especial que definimos a continuación.

Definición. Sea $f:S\subseteq \mathbb{R}^n\to\mathbb{R}$ un campo escalar y $\bar{a}$ un punto estacionario de $f$. Diremos que $\bar{a}$ es un punto silla si para todo $r>0$ existen $\bar{u},\bar{v}\in B_{r}(\bar{a})$ tales que $f(\bar{u})<f(\bar{a})$ y $f(\bar{v})>f(\bar{a})$.

Determinar la naturaleza de un punto estacionario

Cuando tenemos un punto estacionario $\bar{a}$ de una función $f:\mathbb{R}^n\to \mathbb{R}$, tenemos diferenciabilidad de $f$ en $\bar{a}$. Si tenemos que la función es de clase $C^2$ en ese punto, entonces tenemos todavía más. La intuición nos dice que probablemente podamos decir mucho mejor cómo se comporta $f$ cerca de $\bar{a}$ y con un poco de suerte entender si tiene algún valor extremo o punto silla ahí, y bajo qué circunstancias.

En efecto, podemos enunciar resultados de este estilo. Por la fórmula de Taylor tenemos que

$$f(\bar{a}+\bar{y})=f(\bar{a})+\triangledown f (\bar{a}) \cdot y + \frac{1}{2}[\bar{y}]^tH(\bar{a})[\bar{y}]+||\bar{y}||^{2}E_{2}(\bar{a},\bar{y}),$$

en donde el error $||\bar{y}||^{2}E_{2}(\bar{a},\bar{y})$ se va a cero conforme $||\bar{y}||\to 0$. Recuerda que aquí $H(\bar{a})$ es la matriz hessiana de $f$ en $\bar{a}$. Como $f:\mathbb{R}^n\to \mathbb{R}$, se tiene que $H(\bar{a})\in M_n(\mathbb{R})$.

Para un punto estacionario $\bar{a}$ se cumple que $\triangledown f(\bar{a})=0$, así que de lo anterior tenemos

\[ f(\bar{a}+\bar{y})-f(\bar{a})=\frac{1}{2}[\bar{y}]^tH(\bar{a})[\bar{y}]+||\bar{y}||^{2}E_{2}(\bar{a},\bar{y}).\]

De manera heurística, dado que $\lim\limits_{||\bar{y}||\to 0}||\bar{y}||^{2}E_{2}(\bar{a},\bar{y})=0$, estamos invitados a pensar que el signo de $f(\bar{a}+\bar{y})-f(\bar{a})$ es el mismo que el la expresión $[\bar{y}]^tH(\bar{a})[\bar{y}]$. Pero como hemos platicado anteriormente, esto es una forma cuadrática en la variable $\bar{y}$, y podemos saber si es siempre positiva, siempre negativa o una mezcla de ambas, estudiando a la matriz hessiana $H(\bar{a})$.

Esta matriz es simétrica y de entradas reales, así que por el teorema espectral es diagonalizable mediante una matriz ortogonal $P$. Tenemos entonces que $P^tAP$ es una matriz diagonal $D$. Sabemos también que las entradas de la diagonal de $D$ son los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$ contados con la multiplicidad que aparecen en el polinomio característico.

Teorema. Sea $X$ una matriz simétrica en $M_n(\mathbb{R})$. Consideremos la forma bilineal $\mathfrak{B}(\bar{v})=[\bar{v}]^tX[\bar{v}]$. Se cumple:

  1. $\mathfrak{B}(\bar{v})>0$ para todo $\bar{v}\neq \bar{0}$ si y sólo si todos los eigenvalores de $X$ son positivos.
  2. $\mathfrak{B}(\bar{v})<0$ para todo $\bar{v}\neq \bar{0}$ si y sólo si todos los eigenvalores de $X$ son negativos.

Demostración. Veamos la demostración del inciso 1.

$\Rightarrow )$ Por la discusión anterior, existe una matriz ortogonal $P$ tal que $P^tXP$ es diagonal, con entradas $\lambda_1,\ldots,\lambda_n$ que son los eigenvalores de $X$. Así, en alguna base ortonormal $\beta$ tenemos $$\mathfrak{B}(\bar{v})=\sum_{i=1}^{n}\lambda _{i}a_{i}^{2}$$ donde $\bar{a}=(a_{1},\dots ,a_{n})$ es el vector $\bar{v}$ en la base $\beta$. Si todos los eigenvalores son positivos, claramente $\mathfrak{B}(\bar{v})>0$, para todo $\bar{v}\neq \bar{0}$.

$\Leftarrow )$ Si $\mathfrak{B}(\bar{v})>0$ para todo $\bar{v}\neq \bar{0}$ podemos elegir $\bar{v}$ como el vector $e_k$ de la base $\beta$. Para esta elección de $\bar{v}$ tenemos $\mathfrak{B}(\hat{e_{k}})=\lambda _{k}$, de modo que para toda $k$, $\lambda _{k}>0$.

El inciso $2$ es análogo y deja como tarea moral su demostración.

$\square$

A las formas cuadráticas que cumplen el primer inciso ya las habíamos llamado positivas definidas. A las que cumplen el segundo inciso las llamaremos negativas definidas.

Combinando las ideas anteriores, podemos formalmente enunciar el teorema que nos habla de cómo son los puntos estacionarios en términos de los eigenvalores de la matriz hessiana.

Teorema. Consideremos un campo escalar $f:S\subseteq \mathbb{R}^n\to \mathbb{R}$ de clase $C^2$ en un cierto punto interior $\bar{a}\in S$. Supongamos que $\bar{a}$ es un punto estacionario.

  1. Si todos los eigenvalores de $H(\bar{a})$ son positivos, $f$ tiene un mínimo relativo en $\bar{a}$.
  2. Si todos los eigenvalores de $H(\bar{a})$ son negativos, $f$ tiene un máximo relativo en $\bar{a}$.
  3. Si $H(\bar{a})$ tiene por lo menos un eigenvalor positivo, y por lo menos un eigenvalor negativo, $f$ tiene punto silla en $\bar{a}$.

Antes de continuar, verifica que los tres puntos anteriores no cubren todos los casos posibles para los eigenvalores. ¿Qué casos nos faltan?

Demostración: Definamos la forma bilineal $\mathfrak{B}(\bar{v})=[\bar{v}]^tH(\bar{a})[\bar{v}]$ y usemos el teorema de Taylor para escribir

\[ \begin{equation}\label{eq:taylor}f(\bar{a}+\bar{v})-f(\bar{a})=\frac{1}{2}\mathfrak{B}(\bar{v})+||\bar{v}||^{2}E(\bar{a},\bar{v}) \end{equation} \]

con

\[ \begin{equation}\label{eq:error}\lim\limits_{\bar{v}\to \bar{0}}E(\bar{a},\bar{v})=0. \end{equation} \]

En primer lugar haremos el caso para los eigenvalores positivos. Sean $\lambda _{1},\dots ,\lambda_{n}$ los eigenvalores de $H(\bar{a})$. Sea $\lambda _{*}=\min\{ \lambda _{1},\dots ,\lambda _{n}\}$. Si $\varepsilon <\lambda_{*}$, para cada $i=1,\dots , n$ tenemos $\lambda _{i}-\varepsilon>0$. Además, los números $\lambda _{i}-\varepsilon$ son los eigenvalores de la matriz $H(\bar{a})-\varepsilon I$, la cual es simétrica porque $H(\bar{a})$ lo es. De acuerdo con nuestro teorema anterior la forma cuadrática $[\bar{v}]^t(H(\bar{a})-\varepsilon I)[\bar{v}]$ es definida positiva, y por lo tanto

$$[\bar{v}]^tH(\bar{a})[\bar{v}]>[\bar{v}]^t\varepsilon I [\bar{v}] = \varepsilon ||\bar{v}||^2.$$

Esto funciona para todo $\varepsilon <\lambda _{*}$. Tomando $\varepsilon =\frac{1}{2}\lambda _{*}$ obtenemos $\mathfrak{B}(\bar{v})>\frac{1}{2}||\bar{v}||^2$ para todo $\bar{v}\neq \bar{0}$. Por el límite de \eqref{eq:error} tenemos que existe $r>0$ tal que $|E(\bar{a},\bar{v})|<\frac{1}{4}\lambda _{*}$ para $0<||\bar{v}||<r$. En este caso se cumple

\begin{align*}0&\leq ||\bar{v}||^{2}|E(\bar{a},\bar{v})|\\ &<\frac{1}{4}\lambda _{*}||\bar{v}||^{2}\\ &<\frac{1}{2}\mathfrak{B}(\bar{v}),\end{align*}

Luego por la ecuación \eqref{eq:taylor} tenemos
\begin{align*}
f(\bar{a}+\bar{v})-f(\bar{a})&=\frac{1}{2}\mathfrak{B}(\bar{v})+||\bar{v}||^{2}E(\bar{a},\bar{v})\\
&\geq \frac{1}{2}\mathfrak{B}(\bar{v})-||\bar{v}||^{2}|E(\bar{a},\bar{v})|\\
&>0.
\end{align*}

Esto muestra que $f$ tiene un mínimo relativo en $\bar{a}$ para la vecindad $B_{r}(\bar{a})$.

Para probar la parte $2$ se usa exactamente el mismo proceder sólo que hay que considerar la función $-f$, lo cual quedará hacer como tarea moral.

Revisemos pues la parte del punto silla, la parte $3$. Consideremos $\lambda _{1}$ y $\lambda _{2}$ dos eigenvalores de $H(\bar{a})$ tales que $\lambda _1 <0$ y $\lambda _2 >0$. Pongamos $\lambda _{*}=\min\{ |\lambda _{1}|,|\lambda _{2}|\}$. Notemos que para todo $\varepsilon \in (-\lambda _{*},\lambda _{*})$ se tiene que $\lambda _{1}-\varepsilon$ y $\lambda _{2}-\varepsilon$ son números de signos opuestos y además eigenvalores de la matriz $H(\bar{a})-\varepsilon I$. Tomando vectores en dirección de los eigenvectores $\bar{v}_1$ y $\bar{v}_2$ correspondientes a $\lambda_1$ y $\lambda_2$ notamos que $[\bar{v}](H(\bar{a})-\varepsilon I)[\bar{v}]^{t}$ toma valores positivos y negativos en toda vecindad de $\bar{0}$. Finalmente escojamos $r>0$ de tal manera que $|E(\bar{a},\bar{v})|<\frac{1}{4}\varepsilon$ cuando $0<||\bar{v}||<r$. Usando las mismas desigualdades del la parte $1$, vemos que para $\bar{v}$ en la dirección de $\bar{v}_1$ la diferencia $f(\bar{a}+\bar{v})-f(\bar{a})$ es negativa y para $\bar{v}$ en la dirección de $\bar{v}_2$ es positiva. Así, $f$ tiene un punto silla en $\bar{a}$.

$\square$

Hay algunas situaciones en las que el teorema anterior no puede ser usado. Por ejemplo, cuando los eigenvalores de $H(\bar{a})$ son todos iguales a cero. En dicho caso, el teorema no funciona y no nos dice nada de si tenemos máximo, mínimo o punto silla, y de hecho cualquiera de esas cosas puede pasar.

Ejemplos de análisis de puntos críticos

Ejemplo. Tomemos el campo escalar $f(x,y)=x^{2}+(y-1)^{2}$ y veamos cómo identificar y clasificar sus puntos estacionarios. Lo primero por hacer es encontrar el gradiente, que está dado por $$\triangledown f(x,y)=(2x,2(y-1)).$$ El gradiente se anula cuando $2x=0$ y $2(y-1)=0$, lo cual pasa si y sólo si $x=0$ y $y=1$. Esto dice que sólo hay un punto estacionario. Para determinar su naturaleza, encontraremos la matriz hessiana en este punto, así como los eigenvalores que tiene. La matriz hessiana es

\[ H(\bar{v})=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x^{2}}(\bar{v}) & \frac{\partial ^{2}f}{\partial y \partial x}(\bar{v}) \\ \frac{\partial ^{2}f}{\partial x \partial y}(\bar{v}) & \frac{\partial ^{2}f}{\partial y^{2}}(\bar{v}) \end{pmatrix}=\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.\]

Notemos que la matriz hessiana ya está diagonalizada y es la misma para todo $\bar{v}$. En particular, en $(0,1)$ sus valores propios son $2$ y $2$, que son positivos. Así, la matriz hessiana es positiva definida y por lo tanto tenemos un mínimo local en el punto $(0,1)$. Esto lo confirma visualmente la gráfica de la Figura 2.

$\triangle$

Figura 2

Ejemplo. Veamos cómo identificar y clasificar los puntos estacionarios del campo escalar $f(x,y)=x^{3}+y^{3}-3xy.$ Localicemos primero los puntos estacionarios. Para ello calculemos el gradiente $\triangledown f(x,y)=(3x^{2}-3y,3y^{2}-3x)$. Esto nos dice que los puntos estacionarios cumplen el sistema de ecuaciones

\[\left\{ \begin{matrix} 3x^2-3y=0\\ 3y^2-3x=0.\end{matrix} \right.\]

Puedes verificar que las únicas soluciones están dadas son los puntos $(0,0)$ y $(1,1)$ (Sugerencia. Multiplica la segunda ecuación por $x$ y suma ambas). La matriz hessiana es la siguiente:

\[ H(x,y)=\begin{pmatrix} 6x & -3 \\ -3 & 6y \end{pmatrix}.\]

En $(x,y)=(0,0)$ la matriz hessiana es $\begin{pmatrix} 0 & -3 \\ -3 & 0 \end{pmatrix}$. Para encontar sus eigenvalores calculamos el polinomio característico

\begin{align*} \det(H(0,0)-\lambda I)&=\begin{vmatrix} -\lambda & -3 \\ -3 & -\lambda \end{vmatrix} \\ &= \lambda ^{2}-9.\end{align*}

Las raíces del polinomio característico (y por lo tanto los eigenvalores) son $\lambda _{1}=3$ y $\lambda _{2}=-3$. Ya que tenemos valores propios de signos distintos tenemos un punto silla en $(0,0)$.

Para $(x,y)=(1,1)$ la cuenta correspondiente de polinomio característico es

\begin{align*} \det(H(1,1)-\lambda I)&=\begin{vmatrix} 6-\lambda & -3 \\ -3 & 6-\lambda\end{vmatrix}\\ &=(6-\lambda )^{2}-9.\end{align*}

Tras manipulaciones algebraicas, las raíces son $\lambda _{1}=9$, $\lambda _{2}=3$. Como ambas son positivas, en $(1,1)$ tenemos un mínimo.

Puedes confirmar visualmente todo lo que encontramos en la gráfica de esta función, la cual está en la Figura 3.

$\triangle$

Figura 3

A continuación se muestra otro problema que se puede resolver con lo que hemos platicado. Imaginemos que queremos aproximar a la función $x^2$ mediante una función lineal $ax+b$. ¿Cuál es la mejor forma de elegir $a,b$ para que las funciones queden «cerquita» en el intervalo $[0,1]$? Esa cercanía se puede medir de muchas formas, pero una es pidiendo que una integral se haga chiquita.

Ejemplo. Determinemos qué valores de las constantes $a,b\in \mathbb{R}$ minimizan la siguiente integral

\[ \int_{0}^{1}[ax+b-x^2]^2 dx.\]

Trabajemos sobre la integral.

\begin{align*} \int_{0}^{1}[ax+b-x^{2}]^{2}dx&=\int_{0}^{1}(2abx+(a^{2}-2b)x^{2}-2ax^{3}+x^{4}+b^{2})dx\\ &=\int_{0}^{1}2abx\hspace{0.1cm}dx+\int_{0}^{1}(a^{2}-2b)x^{2}dx-\int_{0}^{1}2ax^{3}dx+\int_{0}^{1}x^{4}dx+\int_{0}^{1}b^{2}dx\\ &=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}. \end{align*}

Es decir, tenemos

\[ \int_{0}^{1}[ax+b-x^{2}]^{2}dx=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}.\]

Ahora definamos $f(a,b)=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}$; basándonos en la forma general de la ecuación cuadrática de dos variables podemos comprobar rápidamente que $f$ nos dibuja una elipse en cada una de sus curvas de nivel. Continuando con nuestra misión, tenemos que $\triangledown f(a,b)=(\frac{2}{3}a+b-\frac{1}{2},2b+a-\frac{2}{3})$. Al resolver el sistema
\[\left\{\begin{matrix}\frac{2}{3}a+b-\frac{1}{2}=0\\2b+a-\frac{2}{3}=0,\end{matrix}\right.\]

hay una única solución $a=1$ y $b=-\frac{1}{6}$. Puedes verificar que la matriz hessiana es la siguiente en todo punto.

\[ H(\bar{v})=\begin{pmatrix} \frac{2}{3} & 1 \\ 1 & 2 \end{pmatrix}.\]

Para determinar si tenemos un mínimo, calculamos el polinomio característico como sigue

\begin{align*} \det(H(\bar{v})-\lambda I)&=\begin{vmatrix} \frac{2}{3}-\lambda & 1 \\ 1 & 2-\lambda \end{vmatrix}\\ &=\left( \frac{2}{3}-\lambda \right)\left( 2-\lambda\right)-1\\ &=\lambda ^{2}-\frac{8}{3}\lambda + \frac{1}{3}.\end{align*}

Esta expresión se anula para $\lambda _{1}=\frac{4+\sqrt{13}}{3}$ y $\lambda_{2}=\frac{4-\sqrt{13}}{3}$. Ambos son números positivos, por lo que en el único punto estacionario de $f$ tenemos un mínimo. Así el punto en el cual la integral se minimiza es $(a,b)=(1,-\frac{1}{6})$. Concluimos que la mejor función lineal $ax+b$ que aproxima a la función $x^2$ en el intervalo $[0,1]$ con la distancia inducida por la integral dada es la función $x-\frac{1}{6}$.

En la Figura 3 puedes ver un fragmento de la gráfica de la función $f(a,b)$ que nos interesa.

Figura 3. Gráfica de la función $f(a,b)$.

$\triangle$

Mas adelante…

La siguiente será nuestra última entrada del curso y nos permitirá resolver problemas de optimización en los que las variables que nos dan tengan ciertas restricciones. Esto debe recordarnos al teorema de la función implícita. En efecto, para demostrar los resultados de la siguiente entrada se necesitará este importante teorema, así que es recomendable que lo repases y recuerdes cómo se usa.

Tarea moral

  1. Identifica y clasifica los puntos estacionarios de los siguientes campos escalares:
    • $f(x,y)=(x-y+1)^{2}$
    • $f(x,y)=(x^{2}+y^{2})e^{-(x^{2}+y^{2})}$
    • $f(x,y)=\sin(x)\cos(x)$.
  2. Determina si hay constantes $a,b\in \mathbb{R}$ tales que el valor de la integral \[\int_{0}^{1}[ax+b-f(x)]^{2}dx \] sea mínima para $f(x)=(x^{2}+1)^{-1}$. Esto en cierto sentido nos dice «cuál es la mejor aproximación lineal para $\frac{1}{x^2+1}$».
  3. Este problema habla de lo que se conoce como el método de los mínimos cuadrados. Consideremos $n$ puntos $(x_{i},y_{i})$ en $\mathbb{R}^2$, todos distintos. En general es imposible hallar una recta que pase por todos y cada uno de estos puntos; es decir, hallar una función $f(x)=ax+b$ tal que $f(x_{i})=y_{i}$ para cada $i$. Sin embargo, sí es posible encontrar una función lineal $f(x)=ax+b$ que minimice el error cuadrático total que está dado por \[ E(a,b)=\sum_{i=1}^{n}[f(x_{i})-y_{i}]^{2}.\] Determina los valores de $a$ y $b$ para que esto ocurra. Sugerencia. Trabaja con el campo escalar $E(a,b)$ recuerda que los puntos $(x_{i},y_{i})$ son constantes.
  4. Completa la demostración de que si una matriz $X$ tiene puros eigenvalores negativos, entonces es negativa definida.
  5. En el teorema de clasificación de puntos estacionarios, muestra que en efecto si la matriz hessiana es negativa definida, entonces el punto estacionario es un punto en donde la función tiene máximo local.

Entradas relacionadas

Cálculo Diferencial e Integral III: Divergencia, laplaciano y rotacional

Por Alejandro Antonio Estrada Franco

Introducción

Después de algunas entradas muy técnicas, en las que hemos demostrado dos resultados sumamente importantes (el teorema de la función inversa y el teorema de la función implícita), pasaremos brevemente a una entrada un poco más ligera en términos de teoría, pero también relevante. En esta entrada nos volcaremos a una cara más práctica del cálculo diferencial e integral.

Recordemos que un campo vectorial es una función $F:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$. El nombre de campo vectorial está justificado con que a cada punto de un espacio base $\mathbb{R}^n$, estamos asignando otro vector, en $\mathbb{R}^m$. Si pegamos a cada vector del dominio el vector que le corresponde en a partir de $F$, podemos tener otra intuición geométrica de lo que hacen estas funciones. En la figura 1 apreciamos un ejemplo de esto, donde tenemos un campo vectorial $F$ de $\mathbb{R}^{3}$ en $\mathbb{R}^{3}$ y entonces a cada vector de $\mathbb{R}^3$ le estamos «pegando una flecha».

Figura 1

Esta manera de pensar a los campos vectoriales se presta mucho para entender propiedades físicas de los objetos: flujo eléctrico, flujo de calor, fuerza, trabajo, etc. Si pensamos en esto, otros conceptos que hemos estudiado también comienzan a tener significado. Por ejemplo, el gradiente de un campo escalar está íntimamente relacionado a otras propiedades físicas descritas por el campo escalar. Un ejemplo que hemos discutido es que el gradiente, por ejemplo, nos da la dirección de cambio máximo.

Un ejemplo más concreto sería el siguiente. Pensemos en $\mathbb{R}^{3}$ en un sólido $S$ y un campo escalar $T:S\rightarrow \mathbb{R}$ que da la temperatura de cada punto del sólido. Si consideramos la expresión $\textbf{J}=-k\triangledown T$, obtenemos lo que se conoce como el flujo de calor. Tiene sentido. Por lo que aprendemos en educación elemental, el calor va de los puntos de mayor temperatura a los de menor temperatura. El gradiente $\triangledown T$ da la dirección de máximo crecimiento. Pero entonces $-\triangledown T$ da la dirección de máximo descenso (así como su magnitud). La $k$ que aparece tiene que ver con qué tan bien el material del que hablamos transmite el calor.

Notación tradicional de los campos vectoriales

En el ámbito de las aplicaciones generalmente se usa la notación con gorros. Veamos un ejemplo de cómo escribir con esta notación. En vez de escribir para $\bar{v}\in \mathbb{R}^{3}$ la expresión $\bar{v}=(x,y,z)$, escribimos $$\bar{v}=x\hat{\imath}+y\hat{\jmath}+z\hat{k},$$ es decir, podemos pensar que $\hat{\imath}=(1,0,0)$, $\hat{\jmath}=(0,1,0)$, $\hat{k}=(0,0,1)$.

Si $F:\mathbb{R}^3\to \mathbb{R}^3$ es un campo vectorial, escribimos $$F=P\hat{\imath}+Q\hat{\jmath}+R\hat{k},$$ donde $P$, $Q$ y $R$ son los campos escalares componente, que cada uno de ellos va de $\mathbb{R}^3$ a $\mathbb{R}$.

Generalmente escribimos también $$F(x,y,z)=P(x,y,z)\hat{\imath}+Q(x,y,z)\hat{\jmath}+R(x,y,z)\hat{k}$$ tras evaluar.

Con esta notación también podemos escribir al gradiente y pensarlo como un «operador» que manda campos escalares a campos vectoriales. A este operador se le llama operador nabla. Lo escribimos de la siguiente manera:

\[ \triangledown =\frac{\partial}{\partial x}\hat{\imath}+\frac{\partial}{\partial y}\hat{\jmath}+\frac{\partial}{\partial z}\hat{k}. \]

Si tenemos un campo escalar $\phi:\mathbb{R}^3\to \mathbb{R}$, entonces el operador hace lo siguiente

\[ \triangledown \phi (x,y,z)=\frac{\partial \phi (x,y,z)}{\partial x}\hat{\imath}+\frac{\partial \phi (x,y,z)}{\partial y}\hat{\jmath}+\frac{\partial \phi (x,y,z)}{\partial z}\hat{k}.\]

Es decir, a partir de $\phi$ obtenemos su gradiente.

Líneas de flujo

Ahora introducimos el concepto de línea de flujo el cual es muy usado para campos vectoriales en el modelado fenómenos físicos.

Definición. Si $F:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ es un campo vectorial, una línea de flujo para $F$ es una función $\alpha :U\subseteq \mathbb{R}\rightarrow \mathbb{R}^{n}$ tal que $\alpha^{\prime}(t)=F(\alpha(t))$ para todo $t\in U$.

Es decir una línea de flujo es una trayectoria sobre la cual $F$ asigna en cada punto de ella su correspondiente vector tangente. En la Figura 2 tenemos una ilustración de una línea de flujo en un campo vectorial.

Figura 2

Divergencia

Supongamos que tenemos en el plano (o el espacio) una región $S$. Para cada punto $\bar{x}$ de $S$ sea $\textbf{x}(t)$ una línea de flujo que parte de $\bar{x}$ bajo el campo vectorial $F$. El conjunto de líneas $\textbf{x}(t)$ describe cómo cambia el conjunto $S$ bajo la acción de $F$ a través del tiempo. Formalizando esto un poco, en el caso del plano tomemos $F:S\subseteq \mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$. Para cada $\bar{x}\in S$ podemos considerar $\gamma_x:I_{x}\subset \mathbb{R}\rightarrow \mathbb{R}^{2}$, como la trayectoria $\textbf{x}(t)$ y que es línea de flujo bajo $F$. Estas trayectorias van mostrando «cómo se va deformando $S$ a causa del campo vectorial $F$». También, consideremos al conjunto $S’=\{\bar{x}+F(\bar{x})|\bar{x}\in S \}$, al cual pensaremos como el conjunto resultante de aplicar a $S$ el campo vectorial $F$.

Estas nociones se pueden analizar a través de una herramienta llamada divergencia. La definimos a continuación, pero una demostración formal de que el operador divergencia mide la expansión del efecto de un campo vectorial es un tema que se estudia en un cuarto curso de cálculo diferencial e integral.

Figura 3. Aquí se ilustra el efecto de un campo vectorial sobre una sección $S$ del plano.

Damos la definición en $\mathbb{R}^3$, pero podrías dar una versión análoga para $\mathbb{R}^2$.

Definición. Si $F=P\hat{\imath}+Q\hat{\jmath}+R\hat{k}$ es un campo vectorial definimos la divergencia de $F$ como:

\[ \triangledown \cdot F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}.\]

En dimensiones más altas, si $F=(F_{1},\dots ,F_{n})$, entonces $\triangledown \cdot F=\sum_{i=1}^{n}\frac{\partial F_{i}}{\partial x_{i}}$.

Rotacional

Figura 4

Pensemos en un fluido que se mueve de acuerdo con el flujo marcado por el campo vectorial $F$. Tenemos una forma de determinar la rotación que el fluido imprimiría sobre un sólido llevado por él. Imaginemos un remolino y una pequeña esfera solida llevada por el remolino. Lo que llamaremos el rotacional del vector nos proporcionará la información sobre las rotaciones sobre su eje que el fluido imprime a la pequeña esfera (Figura 4).

Definición. Sea $$F(x,y,z)=F_{1}(x,y,z)\hat{\imath}+F_{2}(x,y,z)\hat{\jmath}+F_{3}(x,y,z)\hat{k}.$$ Entonces definimos al rotacional de $F$ como el siguiente campo vectorial:

\[ \triangledown \times F(x,y,z)=\left( \frac{\partial F_{3}}{\partial y} – \frac{\partial F_{2}}{\partial z} \right)\hat{\imath}+\left( \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x} \right)\hat{\jmath}+\left( \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y} \right)\hat{k}.\]

También suele representarse por el siguiente determinante:

\[ \triangledown \times F=\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ {\large \frac{\partial}{\partial x}} & {\large \frac{\partial}{\partial y}} & {\large \frac{\partial}{\partial z}} \\ F_{1} & F_{2} & F_{3} \end{vmatrix}. \]

Una visión mas clara de por qué esta expresión calcula lo que queremos se puede aprender en un cuarto curso de cálculo diferencial e integral, o bien en algún curso de aplicaciones del cálculo a la física. Por ahora veremos en los ejemplos solamente la parte operativa.

Laplaciano

Hay un operador más que surge naturalmente en las ecuaciones que involucran al gradiente y a la divergencia.

Definición. Sea $f:\mathbb{R}^3\to \mathbb{R}$ un campo escalar. El operador laplaciano se establece de la siguiente manera:

\[ \triangledown ^{2}f=\frac{\partial ^{2}f}{\partial x^{2}}\hat{\imath}+\frac{ \partial^{2}f}{\partial y^{2}}\hat{\jmath}+\frac{\partial ^{2}f}{\partial z^{2}}\hat{k}. \]

Es decir, el laplaciano consiste en aplicar el operador divergencia al gradiente de un campo escalar.

Ejemplos de problemas de los conceptos anteriores

Revisemos algunos problemas que tienen que ver con estos operadores. Esto nos permitirá ampliar nuestra visión en cuanto a la practicidad de esta herramienta matemática.

Consideremos el siguiente campo vectorial en el plano $F(x,y)=x\hat{\imath}$. Pensaremos el signo de la divergencia de $F$ como la razón del cambio de áreas bajo este campo. Interpretaremos a $F$ como aquel que asigna a cada punto del plano un vector velocidad de un fluido en el plano.

Para $x>0$ el campo apunta hacia la derecha con vectores paralelos al eje $x$ con tamaño $|x|$, para $x<0$ los vectores apuntan a la izquierda paralelamente al eje $x$ con tamaño $|x|$ (Figura 5). Por ello las longitudes de las flechas de $F$ son mas cortas en torno al origen; así cuando el fluido se mueve, se expande. Y esto coincide con el hecho de que $\triangledown \cdot F=1$.

Figura 5

En el siguiente ejemplo consideremos el campo vectorial $F(x,y)=-y\hat{\imath}+x\hat{\jmath}$. Las líneas de flujo de $F$ siguen circunferencias concéntricas centradas al origen en dirección contrarias a las manecillas del reloj. Al calcular la divergencia tenemos lo siguiente:

\[ \triangledown \cdot F=\frac{\partial }{\partial x}(-y)+\frac{\partial}{\partial y}(x)=0. \]

En la figura 6 tenemos la ilustración de cómo se ve el campo de este ejemplo. Suena razonable. En este caso el fluido no se está expandiendo, sino que más bien está rotando.

Figura 6

En el laplaciano aplicamos la divergencia a un gradiente. Pero, ¿qué pasa cuando aplicamos el rotacional a un gradiente? Consideremos una función $f$ con derivadas parciales diferenciables continuas es decir, de clase $C^{2}$. Para una función así tenemos

\[ \triangledown f(x,y,z)=(\partial f/\partial x,\partial f/ \partial y,\partial f/\partial z). \]

De acuerdo con la definición de rotacional, tenemos:

\begin{align*} \triangledown \times (\triangledown f)&= \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix}\\ &= \left( \frac{\partial ^{2}f}{\partial y\partial z}-\frac{\partial ^{2}f}{\partial z\partial y} \right)\hat{\imath}+\left( \frac{\partial ^{2}f}{\partial z\partial x}-\frac{\partial ^{2}f}{\partial x \partial z} \right)\hat{\jmath}+\left( \frac{\partial ^{2}f}{\partial x\partial y}-\frac{\partial ^{2}f}{\partial y\partial x} \right)\hat{k}\\ &=\bar{0} \end{align*}

por la igualdad de las parciales mixtas. Es decir; si $f$ es un campo escalar cuyas derivadas parciales son diferenciables con derivada continua tenemos $\triangledown \times \triangledown f=0$.

Esto nos puede ayudar a saber si una cierta función puede obtenerse como gradiente de otra. Tomemos $G(x,y,z)= y\hat{\imath}-x\hat{\jmath}$. Notemos que las funciones en $\hat{\imath}$ y en $\hat{\jmath}$ son diferenciables con derivada continua. Entonces nos preguntaremos ¿$G$ es gradiente de un campo escalar? Para ello calculemos $\triangledown \times G$ cuyo resultado en caso afirmativo debería ser igual a cero. Sin embargo,

\[ \triangledown \times G=\begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & -x & 0 \end{vmatrix}=-2\hat{k}\neq 0,\]

por lo tanto $G$ no es un gradiente.

También tenemos que la divergencia de un rotacional es igual a cero, es decir si $F$ es un campo vectorial $\triangledown \cdot (\triangledown \times F)=0$. Queda como tarea moral demostrar este hecho.

Mas adelante

Con esta entrada terminamos nuestro estudio de conceptos relacionados con campos vectoriales. Sin embargo, aún no los descartaremos por completo. Retomaremos a los campos vectoriales en la última unidad del curso. En ella, retomaremos varias partes de la teoría para establecer resultados de optimización de campos escalares, y de funciones bajo restricciones.

Tarea moral

  1. Para los siguientes campos vectoriales, halla su divergencia
    • $F(x,y)=x^{3}\hat{\imath}+x\hspace{0.1cm}sen\hspace{0.1cm}(xy)\hat{\jmath}$
    • $G(x,y,z)=e^{xy}\hat{\imath}+e^{xy}\hat{\jmath}+e^{yz}\hat{k}$.
  2. Obtén el rotacional de los siguientes campos vectoriales:
    • $F(x,y,z)=(x^{2}+y^{2}+z^{2})(3\hat{\imath}+4\hat{\jmath}+5\hat{k})$
    • $G(x,y,z)=yz\hat{\imath}+xz\hat{\jmath}+xy\hat{k}$.
  3. Dibuja algunas líneas de flujo del campo $F(x,y)=-3x\hat{\imath}-y\hat{\jmath}$. Calcula $\triangledown \cdot F$ y explica el significado del resultado de la divergencia en su relación con las líneas de flujo.
  4. Demuestra que $\triangledown \cdot (\triangledown \times F)=0$
  5. Sean $f$ y $g$ dos campos escalares diferenciables, y $F$, y $G$ dos campos vectoriales diferenciables. Demuestra las siguientes identidades (solo usa la parte operativa, piensa que todos los campos tanto los vectoriales como los escalares tienen el mismo dominio):
    1. $\triangledown \cdot gG =g(\triangledown \cdot G) + G\cdot (\triangledown g)$
    2. $\triangledown (fg)=f(\triangledown g) +g (\triangledown f)$
    3. $\triangledown \cdot (F\times G)= G\cdot (\triangledown \times F)-F\cdot (\triangledown \times G)$

Entradas relacionadas