Archivo del Autor: Omar González Franco

Ecuaciones Diferenciales I: Demostración del Teorema de Existencia y Unicidad de Picard – Lindelöf

Por Omar González Franco

Si la gente no cree que las matemáticas son simples, es solo
porque no se dan cuenta de lo complicado que es la vida.
– John Louis von Neumann

Introducción

¡Hemos llegado al final de la primera unidad de este curso!.

Concluiremos con la demostración de uno de los teoremas más importantes dentro del campo de las ecuaciones diferenciales; el teorema de existencia y unicidad de Picard – Lindelöf. Pero antes, un poco de contexto histórico.

Este resultado fue estudiado y desarrollado entre los años 1820 y 1900 por Cauchy, Liouville, Lipschitz, Picard y Lindelöf. Entre 1820 y 1830 Cauchy probó que si $f = f(x, y)$ es una función continua y existe su derivada parcial $\dfrac{df}{dy}$ continua en cierta región $U \subset \mathbb{R}^{2}$ que contiene el punto $(x_{0}, y_{0})$, entonces existe un intervalo $\delta$ en el que un problema de valor inicial posee una única solución definida en $\delta$.

En 1838, Liouville simplificó la prueba de Cauchy introduciendo el método de las aproximaciones sucesivas, que más tarde continuarían siendo desarrolladas por Picard y que se conocerían como iterantes de Picard.

En 1876, Lipschitz mejoraría el resultado de Cauchy, sustituyendo la condición de que exista la derivada continua de $f$ por una menos fuerte, conocida como condición de Lipschitz.

Posteriormente, todo lo anterior fue ligeramente mejorado y generalizado por Picard (1890) y Lindelöf (1893), siguiendo las mismas ideas dadas por Liouville y Lipschitz.

Actualmente el método y los resultados se les atribuyen a Picard conociéndose como método de las iterantes de Picard y teorema de Picard (o más generalmente, teorema de Picard – Lindelöf).

En las dos últimas entradas hemos presentado una teoría preliminar con todas las herramientas necesarias para demostrar el teorema de Picard – Lindelöf, sin más, demostremos el teorema.

Teorema de existencia y unicidad de Picard – Lindelöf

El resultado global del teorema de existencia y unicidad de Picard – Lindelöf es el siguiente.

Demostración del teorema de Picard – Lindelöf

Sea $\delta = [a, b]$. Como cualquier función $y: \delta \rightarrow \mathbb{R}$ tiene su gráfica en $U$ y por hipótesis $f$ es continua en $U$, tenemos, como consecuencia del teorema sobre la ecuación integral, que $y: \delta \rightarrow \mathbb{R}$ es solución del PVI si y solo si $y(x)$ es una función continua en $\delta$ y para cada $x \in \delta$ verifica la ecuación integral

$$y(x) = y_{0} + \int_{x_{0}}^{x} f(t, y(t))dt \label{2} \tag{2}$$

Necesitamos probar que esta ecuación integral sólo posee una solución continua. Para ello, al ser $U$ una banda vertical, podemos definir sin problema alguno las iterantes de Picard $y_{n}: \delta \rightarrow \mathbb{R}$, las cuales son funciones continuas que verifican $y_{n}(x_{0}) = y_{0}$.

La demostración la dividiremos en tres secciones:

  • Primero probaremos que la sucesión de iterantes $\{y_{n}\}$ converge uniformemente en el intervalo $\delta$ hacia una función continua $y: \delta \rightarrow \mathbb{R}$.
  • Posteriormente comprobaremos que esta función $y: \delta \rightarrow \mathbb{R}$ verifica la ecuación integral (\ref{2}) y, por tanto, es solución del PVI.
  • Finalmente probaremos que el PVI no posee otra solución distinta de $y: \delta \rightarrow \mathbb{R}$.

Con los primeros dos puntos estaremos demostrando la existencia de una solución al problema de valor inicial y con el tercer punto estaremos demostrando la unicidad. Es importante mencionar que en cada uno de los tres puntos anteriores, aparte de la continuidad de $f$, haremos uso de manera esencial de la condición de Lipschitz de $f$ respecto de la segunda variable.

$$|f(x, y_{1}) -f(x, y_{2})| \leq L|y_{1} -y_{2}| \label{3} \tag{3}$$

para cada par de puntos $(x, y_{1}), (x, y_{2}) \in U$. Con $L$ la constante de Lipschitz para $f$ en $U$.

Así mismo, en el primer punto utilizaremos de forma esencial que la convergencia de las iterantes es uniforme, pues no basta con la convergencia puntual.

Demostremos el primer punto.

  • Convergencia uniforme de las iterantes de Picard.

Para probar que la sucesión de iterantes $\{y_{n}\}$ converge uniformemente en el intervalo $\delta$ es conveniente expresarlas de la siguiente forma.

$$y_{n}(x) = y_{0}(x) + \sum_{m = 1}^{n}(y_{m}(x) -y_{m -1}(x)) \label{4} \tag{4}$$

Desglosa la serie anterior para que verifiques la equivalencia.

Fijado $x \in \delta$ es evidente que la sucesión numérica $\{y_{n}(x)\}$ es convergente en $\mathbb{R}$ si y sólo si la serie numérica $\sum_{m = 1}^{\infty}(y_{m}(x) -y_{m -1}(x))$ es convergente, para lo cual es suficiente con la convergencia absoluta de la serie para cada $x \in \delta$, es decir

$$\sum_{m = 1}^{\infty }|y_{m}(x) -y_{m -1}(x)|< \infty \label{5} \tag{5}$$

Si la serie (\ref{5}) fuese convergente para cada $x \in \delta$, entonces se tendría que la sucesión de iterantes converge puntualmente en $\delta$, sin embargo no es suficiente con la convergencia puntual; necesitamos algo más fuerte, como lo es la convergencia uniforme.

Para probar que la serie funcional $\sum_{m = 1}^{\infty}(y_{m}(x) -y_{m -1}(x))$ converge uniformemente en $\delta$ y, por tanto, la sucesión de iterantes, vamos a usar el criterio mayorante de Weierstrass para lo cual necesitamos probar que existen unas constantes $M_{m} \in \mathbb{R}^{+}$, tales que

$$|y_{m}(x) -y_{m -1}(x)|\leq M_{m} \label{6} \tag{6}$$

para cada $x \in \delta$, cada $m = 1, 2, 3 \cdots$, y $\sum_{m = 1}^{\infty } M_{m} < \infty$.

Vamos a comenzar con los casos $m = 1$ y $m = 2$, es decir, vamos a hallar las constantes $M_{1}$ y $M_{2}$, tales que

$$|y_{1}(x) -y_{0}(x)| \leq M_{1} \hspace{1cm} y \hspace{1cm} |y_{2}(x) -y_{1}(x)| \leq M_{2}$$

y con estos resultados intentaremos encontrar una relación de recurrencia para las constantes $M_{m}$ para luego corroborar que $\sum_{m = 1}^{\infty } M_{m} < \infty$ y de esta manera probar la convergencia (\ref{5}).

Partiendo de la ecuación de las iterantes de Picard

$$y_{m}(x) = y_{0} + \int_{x_{0}}^{x} f(t, y_{m -1}(t)) dt; \hspace{1cm} y_{0} = y_{0}(x) \label{7} \tag{7}$$

las primeras iterantes son

$$y_{1}(x) = y_{0}(x) + \int_{x_{0}}^{x} f(t, y_{0}(t)) dt \hspace{1cm} y \hspace{1cm} y_{2}(x) = y_{0}(x) + \int_{x_{0}}^{x} f(t, y_{1}(t)) dt$$

de donde,

$$|y_{1}(x) -y_{0}(x)| = \left| \int_{x_{0}}^{x} f(t, y_{0}) dt \right |$$

y

$$|y_{2}(x) -y_{1}(x)| = \left| \int_{x_{0}}^{x} f(t, y_{1}(t)) -f(t, y_{0}(t))dt \right|$$

Al momento de estimar $|y_{1}(x) -y_{0}(x)|$ necesitamos hacer la siguiente consideración. La función $f$ es continua en $U$ y, por tanto, la función

$$g: \delta \rightarrow \mathbb{R}; \hspace{1cm} x \rightarrow g(x) = f(x, y_{0}(x))$$

es continua en $\delta$. Como $\delta$ es compacto, la función $g(x)$ está acotada en $\delta$, es decir, existe una constante $H > 0$, tal que

$$|g(x)| = |f(x, y_{0}(x))| \leq H$$

para cada $x \in \delta$ y, por tanto, se verifica lo siguiente.

\begin{align*}
|y_{1}(x) -y_{0}(x)| &= \left| \int_{x_{0}}^{x} f(t, y_{0}(t)) dt \right | \\
&\leq \int_{x_{0}}^{x}|f(t, y_{0}(t))| dt \\
&\leq \int_{x_{0}}^{x} H dt \\
&= H|x -x_{0}|
\end{align*}

esto es,

$$|y_{1}(x) -y_{0}(x)| \leq H|x -x_{0}| \label{8} \tag{8}$$

Si consideramos todo el intervalo $\delta = [a, b]$ podríamos obtener finalmente la estimación

$$|y_{1}(x) -y_{0}(x)| \leq H (b -a) = M_{1} \label{9} \tag{9}$$

Para poder estimar adecuadamente $|y_{2}(x) -y_{1}(x)|$ consideremos el resultado (\ref{8}), además de las siguientes dos desigualdades.

\begin{align*}
|y_{2}(x) -y_{1}(x)| &= \left| \int_{x_{0}}^{x} f(t, y_{1}(t)) -f(t, y_{0}(t))dt \right| \\
&\leq \int_{x_{0}}^{x}| f(t, y_{1}(t)) -f(t, y_{0}(t))|dt \label{10} \tag{10}
\end{align*}

y la condición de Lipschitz

$$|f(t, y_{1}(t)) -f(t, y_{0})| \leq L |y_{1}(t) -y_{0}(t)| \label{11} \tag{11}$$

Supongamos que $x > x_{0}$. Usando (\ref{10}) y (\ref{11}), además del resultado (\ref{8}), se tiene

\begin{align*}
|y_{2}(x) -y_{1}(x)| &\leq \int_{x_{0}}^{x}|f(t, y_{1}(t)) -f(t ,y_{0}(t))| dt \\
&\leq \int_{x_{0}}^{x} L |y_{1}(t) -y_{0}(t)|dt \\
&\leq LH \int_{x_{0}}^{x}|t- x_{0}|dt \\
&= LH \int_{x_{0}}^{x}(t -x_{0})dt \\
&= LH \dfrac{(x -x_{0})^{2}}{2}
\end{align*}


Por otro lado, para $x < x_{0}$, se tiene

\begin{align*}
|y_{2}(x) -y_{1}(x)| &\leq \int_{x}^{x_{0}}|f(t, y_{1}(t)) -f(t ,y_{0}(t))| dt \\
&\leq L \int_{x}^{x_{0}}|y_{1}(t) -y_{0}(t)|dt \\
&\leq LH \int_{x}^{x_{0}}|t -x_{0}|dt \\
&= LH \int_{x}^{x_{0}}(x_{0} -t)dt \\
&= LH \dfrac{(x_{0} -x)^{2}}{2}
\end{align*}

De ambos resultados, podemos afirmar que para cada $x \in \delta$

$$|y_{2}(x) -y_{1}(x)| \leq HL \dfrac{|x -x_{0}|^{2}}{2!} \label{12} \tag{12}$$

La desigualdad (\ref{8}) la podemos escribir de forma similar a (\ref{12}) de la siguiente forma.

$$|y_{1}(x) -y_{0}(x)| \leq HL^{0} \dfrac{|x -x_{0}|^{1}}{1!}$$

De estas dos relaciones establecemos una relación de recurrencia que vamos a probar por inducción sobre $m$. Proponemos que para cada $m = 1, 2, 3, \cdots$, y para cada $x \in \delta$, se cumple

$$|y_{m}(x) -y_{m -1}(x)| \leq HL^{m -1} \dfrac{|x -x_{0}|^{m}}{m!} \label{13} \tag{13}$$

La desigualdad ha sido probada anteriormente para $m = 1$ y $m = 2$. Supongamos que es cierta para $m$ y vamos a probar que es válida para $m + 1$ siguiendo el mismo razonamiento que en la obtención del caso $m = 2$. Vamos a mostrar el caso $x > x_{0}$, pero la prueba es similar para el caso $x < x_{0}$.

Si $x > x_{0}$, se tiene

\begin{align*}
|y_{m+1}(x) -y_{m}(x)| &\leq \int_{x_{0}}^{x}|f(t, y_{m}(t)) -f(t, y_{m -1}(t))|dt \\
&\leq L \int_{x_{0}}^{x}|y_{m}(t) -y_{m -1}(t)|dt \\
&\leq \dfrac{HL^{m}}{m!} \int_{x_{0}}^{x}(t -x_{0})^{m} dt \\
&= HL^{m} \dfrac{(x -x_{0})^{m + 1}}{(m+1)!}
\end{align*}

De forma similar, si $x < x_{0}$, se tiene

$$|y_{m+1}(x) -y_{m}(x)| \leq HL^{m} \dfrac{(x_{0} -x)^{m + 1}}{(m+1)!}$$

De ambos resultados concluimos que

$$|y_{m+1}(x) -y_{m}(x)| \leq HL^{m} \dfrac{|x -x_{0}|^{m + 1}}{(m+1)!}$$

Es Importante hacer énfasis que en este desarrollo ha sido fundamental que las iterantes $\{y_{n}\}$ tengan sus gráficas en una región $U$ donde $f$ es lipschitziana.

De lo obtenido anteriormente, y considerando el intervalo completo $\delta = [a, b]$, obtenemos finalmente la siguiente desigualdad.

$$|y_{m}(x) -y_{m -1}(x)| \leq \dfrac{H}{L} \dfrac{(L(b -a))^{m}}{m!} = M_{m} \label{14} \tag{14}$$

para cada $x \in \delta$ y cada $m = 1, 2, 3, \cdots$. Como el intervalo $\delta$ es acotado, entonces $M_{m} \in \mathbb{R}^{+}$ y sabemos que

$$\sum_{m = 1}^{\infty} \dfrac{(L(b -a))^{m}}{m!} = e^{L(b -a)} -1< \infty \label{15} \tag{15}$$

En definitiva,

$$\sum_{m=1}^{\infty } M_{m} < \infty$$

es decir la serie es convergente. Con esto queda probada la condición (\ref{5}) y debido a que la prueba se hizo utilizando el criterio mayorante de Weierstrass concluimos que se trata de una convergencia uniforme de las iterantes de Picard en el intervalo $\delta$ hacia una función $y: \delta \rightarrow \mathbb{R}$.

Es bien conocido que si una sucesión $y_{n}: \delta \rightarrow \mathbb{R}$, $n = 1, 2, 3, \cdots$, de funciones continuas sobre $\delta$ que convergen uniformemente en $\delta$ hacia una función $y: \delta \rightarrow \mathbb{R}$, la función límite uniforme $y$ también es continua en $\delta$.

Queda así demostrado el primer punto de la prueba. Ahora verifiquemos que la función límite uniforme $y: \delta \rightarrow \mathbb{R}$ verifica la ecuación integral (\ref{2}) siendo la solución al problema de valor inicial.

  • La existencia de la solución.

Sea $y: \delta \rightarrow \mathbb{R}$ la función obtenida anteriormente como límite uniforme de las iterantes de Picard $\{y_{n}\}$. La convergencia uniforme de $\{y_{n}\}$ hacia $y(x)$ en el intervalo $\delta$ significa que dado cualquier $\hat{\varepsilon} > 0$ existe un natural $N = N(\hat{\varepsilon})$, tal que para cada $n > N$ y cada $x \in \delta$

$$|y_{n}(x) -y(x)| < \hat{\varepsilon} \label{16} \tag{16}$$

Sabemos que la convergencia uniforme implica la convergencia puntual (pero no al revés), de manera que para cada $x \in \delta$ se cumple que

$$\lim_{n \to \infty}y_{n}(x) = y(x) \label{17} \tag{17}$$

Fijemos un $x \in \delta$. De acuerdo a (\ref{17}) y usando (\ref{7}), se tiene

$$y(x) = \lim_{n \to \infty} y_{n+1}(x) = y_{0} + \lim_{n \to \infty } \int_{x_{0}}^{x}f(t, y_{n}(t))dt$$

Por otro lado, sabemos que la función solución que satisface el PVI satisface también la ecuación integral (\ref{2}),

$$y(x) = y_{0} + \int_{x_{0}}^{x} f(t, y(t))dt$$

Nuestro objetivo es probar que

$$\lim_{n\rightarrow \infty }\int_{x_{0}}^{x} f(t, y_{n}(t)) dt = \int_{x_{0}}^{x}f(t, y(t))dt \label{18} \tag{18}$$

Pues de esta forma la función límite uniforme $y$ verificaría la ecuación integral y, por tanto sería solución del PVI en el intervalo $\delta$, quedando así probada la existencia de la solución.

Demostrar la relación (\ref{18}) es equivalente a probar que $\forall \varepsilon > 0$ existe $N = N(\varepsilon) \in \mathbb{N}$, tal que para cada $n > N$ y cada $x \in \delta$

$$\left|\int_{x_{0}}^{x}f(t, y_{n}(t))dt -\int_{x_{0}}^{x} f(t, y(t))dt \right| < \varepsilon \label{19} \tag{19}$$

Para probar la relación (\ref{19}) de nuevo haremos uso de la condición de Lipschitz (\ref{3}) y de la convergencia uniforme de las iterantes hacia $y$ en $\delta$ (\ref{16}).

\begin{align*}
\left|\int_{x_{0}}^{x}f(t, y_{n}(t))dt -\int_{x_{0}}^{x} f(t, y(t))dt\right| &\leq \int_{x_{0}}^{x}|f(t, y_{n}(t)) -f(t, y(t))|dt \\
&\leq \int_{a}^{b}|f(t, y_{n}(t)) -f(t, y(t))|dt \\
&\leq L \int_{a}^{b}|y_{n}(t) -y(t)|dt
\end{align*}

Dado $\varepsilon > 0$, definimos

$$\hat{\varepsilon} = \dfrac{\varepsilon }{L(b -a)} \label{20} \tag{20}$$

Con esto, la desigualdad (\ref{16}) se puede escribir como

$$|y_{n}(t) -y(t)|< \dfrac{\varepsilon }{L(b -a)} \label{21} \tag{21}$$

Usando esta desigualdad notamos que, para cada $n > N$ y cada $x \in \delta$

\begin{align*}
\left|\int_{x_{0}}^{x}f(t, y_{n}(t))dt -\int_{x_{0}}^{x} f(t, y(t))dt\right| &\leq L \int_{a}^{b}|y_{n}(t) -y(t)|dt \\
&\leq \dfrac{L}{L(b -a)} \int_{a}^{b} \varepsilon dt \\
&= \dfrac{L}{L(b -a)} \varepsilon (b -a) \\
&= \varepsilon
\end{align*}

Por lo tanto, $ \forall \varepsilon > 0$ existe $N = N(\varepsilon) \in \mathbb{N}$, tal que para cada $n > N$ y cada $x \in \delta$

$$\left|\int_{x_{0}}^{x}f(t, y_{n}(t))dt -\int_{x_{0}}^{x} f(t, y(t))dt \right| < \varepsilon$$

lo que confirma la relación (\ref{18}) que es lo que queríamos demostrar. De esta forma queda demostrada la existencia de la solución $y: \delta \rightarrow \mathbb{R}$ para el problema de valor inicial. Finalmente demostremos la unicidad de esta solución.

  • Demostración de la unicidad.

Con los dos puntos anteriores estamos convencidos de la existencia de una solución $y: \delta \rightarrow \mathbb{R}$ que satisface el problema de valor inicial (\ref{1}), así como la ecuación integral (\ref{2}). La prueba de la unicidad se basa en la suposición de la existencia de otra solución $\hat{y}: \delta \rightarrow \mathbb{R}$ que igualmente cumple con los dos puntos anteriores y el objetivo será demostrar que $\hat{y}(x) = y(x)$.

De tarea moral demostrarás que la solución $\hat{y}(x)$ es también una función límite uniforme de las mismas iterantes de Picard para cada $x \in \delta$, esto es

$$\lim_{n \to \infty}y_{n}(x) = \hat{y}(x) \label{22} \tag{22}$$

o, lo que es equivalente, mostrar que

$$\lim_{n \to \infty} |\hat{y}(x) -y_{n}(x)| = 0 \label{23} \tag{23}$$

y por la ecuación (\ref{17}) concluir que $\hat{y}(x) = y(x)$.

En esta situación se procede de manera muy similar a la prueba del primer punto en el que debemos encontrar una relación de recurrencia que acote a la cantidad $|\hat{y}(x) -y_{n}(x)|$ para cada $x \in \delta$ de la siguiente manera

$$0 \leq |\hat{y}(x) -y_{n}(x)| \leq B_{n} \label{24} \tag{24}$$

y si se prueba que

$$\lim_{n \to \infty}B_{n} = 0$$

entonces quedará probada la relación (\ref{23}).

A continuación te damos algunos hints y resultados que deberás obtener a lo largo de tu demostración.

Estudia lo que sucede con $n = 1$ y $n = 2$ y con los resultados encuentra la relación de recurrencia general para cada $n \in \mathbb{N}$, para ello considera la máxima distancia entre $\hat{y}$ y $y_{0}$, esto es

$$A = \max_{x \in \delta} |\hat{y} -y_{0}|$$

El máximo $A \in \mathbb{R}^{+}$ esta asegurado gracias a la continuidad de la función $\hat{y}$ en el intervalo compacto $\delta$. Como la gráfica de la función $\hat{y}(x)$ está contenida en $U$ y $f = f(x, \hat{y})$ es una función lipschitziana, demuestra que para cada $x \in \delta$

$$|\hat{y}(x) -y_{1}(x)| \leq L \int_{x_{0}}^{x}|\hat{y}(t) -y_{0}(t)|dt \leq AL|x -x_{0}| \label{25} \tag{25}$$

Usando este resultado demuestra que

$$|\hat{y}(x) -y_{2}(x)| \leq AL^{2} \int_{x_{0}}^{x}|t -x_{0}|dt \leq AL^{2} \dfrac{|x -x_{0}|^{2}}{2!} \label{26} \tag{26}$$

Demuestra por inducción que en general, para cada $n = 1, 2, 3, \cdots,$ y $x \in \delta$

$$|\hat{y}(x) -y_{n}(x)| \leq AL^{n} \dfrac{|x -x_{0}|}{n!} \label{27} \tag{27}$$

Este resultado te permite concluir que para cada $x \in \delta = [a, b]$

$$|\hat{y}(x) -y_{n}(x)| \leq A \dfrac{(L(b -a))^{n}}{n!} = B_{n} \label{28} \tag{28}$$

Prueba que

$$\lim_{n \to \infty} B_{n} = \lim_{n \to \infty} \dfrac{(L(b -a))^{n}}{n!} = 0 \label{29} \tag{29}$$

Así finalmente queda demostrada la relación (\ref{23}) y por lo tanto $\hat{y}(x) = y(x)$ para cada $x \in \delta$.

Realizar este ejercicio te servirá para consolidar mucho mejor lo que hemos realizado a lo largo de la demostración. Sin embargo, la demostración de la unicidad puede ser mucho más simple si aplicamos el lema de Gronwall. Demostremos la unicidad por esta opción.

Sean $y: \delta \rightarrow \mathbb{R}$ y $\hat{y}: \delta \rightarrow \mathbb{R}$ soluciones al PVI (\ref{1}) y la ecuación integral (\ref{2}).

$$y(x) = y_{0} + \int_{x_{0}}^{x}f(t, y(t)) dt \hspace{1cm} y \hspace{1cm} \hat{y}(x) = y_{0} + \int_{x_{0}}^{x}f(t, \hat{y}(t)) dt$$

Restemos las dos ecuaciones anteriores y consideramos su valor absoluto.

\begin{align*}
|y(x) -\hat{y}(x)| &= \left|\int_{x_{0}}^{x}f(t, y(t))dt -\int_{x_{0}}^{x}f(t, \hat{y}(t))dt \right|\\
&= \left|\int_{x_{0}}^{x}f(t, y(t)) -f(t, \hat{y}(t))dt \right| \\
&\leq \int_{x_{0}}^{x}|f(t, y(t)) -f(t,\hat{y}(t))|dt
\end{align*}

Como $f$ es una función lipschitziana respecto de la segunda variable, entonces

$$\int_{x_{0}}^{x}|f(t, y(t)) -f(t, \hat{y}(t))|dt \leq \int_{x_{0}}^{x} L|y(t) -\hat{y}(t)|dt = L \int_{x_{0}}^{x}|y(t) -\hat{y}(t)|dt$$

es decir,

$$|y(x) -\hat{y}(x)| \leq L \int_{x_{0}}^{x}|y(t) -\hat{y}(t)|dt \label{30} \tag{30}$$

Para que este resultado nos sea más familiar definamos lo siguiente.

$$h(x) = |y(x) -\hat{y}(x)| \hspace{1cm} y \hspace{1cm} \alpha = 0, \hspace{0.2cm} \beta = L$$

Usando esto reescribimos a la ecuación (\ref{30}) como

$$0 \leq h(x) \leq \alpha + \beta \int_{x_{0}}^{x} h(t) dt \label{31} \tag{31}$$

Estamos en las condiciones del lema de Gronwall, pero en el caso especial en el que $\alpha = 0$, así que aplicando el corolario del lema de Gronwall podemos concluir que para cada $x \in \delta$

$$h(x) = |y(x) -\hat{y}(x)| = 0$$

lo que significa que $\forall x \in \delta$, $y(x) = \hat{y}(x)$, es decir, la solución al problema de valor inicial es única.

Con esto quedan demostrados los tres puntos de la prueba, por lo tanto concluimos que el problema de valor inicial (\ref{1}) posee una única solución en $\delta = [a, b]$ y además, las iterantes de Picard asociadas al PVI convergen uniformemente en $\delta$ hacia la solución $y: \delta \rightarrow \mathbb{R}$ del PVI.

$\square$

¡Listo!. Hemos demostrado el teorema de existencia y unicidad de Picard – Lindelöf.

Apliquemos este resultado al caso de las ecuaciones diferenciales lineales.

Existencia y unicidad en ecuaciones lineales

Apliquemos el teorema de Picard – Lindelöf al caso de las ecuaciones diferenciales lineales de primer orden.

$$\dfrac{dy}{dx} = P(x) y + Q(x); \hspace{1cm} y(x_{0}) = y_{0} \label{32} \tag{32}$$

Donde las funciones $P(x)$ y $Q(x)$ son continuas en un intervalo compacto $\delta = [a, b]$, $x_{0} \in \delta$ y $y_{0} \in \mathbb{R}$.

En este caso $U = \delta \times \mathbb{R}$ y

$$f(x, y) = P(x) y + Q(x)$$

Notemos que se verifica lo siguiente:

  • $U$ es una banda vertical de base compacta, pues $\delta$ es un intervalo compacto.
  • Como $P(x)$ y $Q(x)$ son continuas en $\delta$, entonces $f$ es continua en $U$.
  • Como $P(x)$ es continua en el intervalo $\delta$ y éste es compacto, entonces la función $P(x)$ es acotada, así que podemos fijar $L > 0$, tal que $|P(x)|< L$ para todo $x \in \delta$. Considerando esto tenemos que

\begin{align*}
|f(x, y_{1}) -f(x, y_{2})| &= |(P(x) y_{1} + Q(x)) -(P(x) y_{2} + Q(x))| \\
&= |P(x) y_{1} -P(x) y_{2}| \\
&= |P(x) ||y_{1} -y_{2}| \\
&\leq L|y_{1} -y_{2}|
\end{align*}

esto es

$$|f(x, y_{1}) -f(x, y_{2})| \leq L|y_{1} -y_{2}| \label{33} \tag{33}$$

para cada par de puntos $(x, y_{1}), (x, y_{2}) \in U$ es decir, $f$ es una función lipschitziana.

Por tanto, se cumplen las condiciones del teorema de existencia y unicidad global. En consecuencia ratificamos el resultado visto anteriormente en el que se asegura que cualquier problema de valor inicial asociado a una ecuación lineal posee solución única en el intervalo $\delta$. Además, ahora podemos afirmar que las iterantes de Picard asociadas convergen uniformemente hacia la solución del PVI.

$\square$

Un resultado importante que debemos revisar es que si dos problemas de valor inicial tienen valores iniciales muy cercanos entre sí, entonces las soluciones a cada PVI serán funciones muy próximas. A esto le llamamos dependencia continua de las soluciones respecto a condiciones iniciales. Revisemos este resultado. En la demostración será de uso esencial el lema de Gronwall.

Dependencia continua de la condición inicial

Demostración: Como $y(x)$ y $\hat{y}(x)$ son solución de sus respectivos PVI, entonces cada solución verifica una ecuación integral.

$$y(x) = y_{0} + \int_{x_{0}}^{x}f(t, y(t)) dt \hspace{1cm} y \hspace{1cm} \hat{y}(x) = \hat{y}_{0} + \int_{x_{0}}^{x}f(t, \hat{y}(t)) dt$$

Vemos que

\begin{align*}
|y(x) -\hat{y}(x)| &= \left| y_{0} -\hat{y}_{0} + \int_{x_{0}}^{x} f(t, y(t)) dt -\int_{x_{0}}^{x}f(t, \hat{y}(t)) dt \right| \\
&\leq |y_{0} -\hat{y}_{0}| + \left| \int_{x_{0}}^{x} f(t, y(t)) -f(t, \hat{y}(t)) dt \right | \\
&\leq |y_{0} -\hat{y}_{0}| + \int_{x_{0}}^{x}\left| f(t, y(t)) -f(t, \hat{y}(t)) \right| dt
\end{align*}

Sabemos que $f$ es una función lipschitziana respecto de la segunda variable en $R$ de manera que

$$|f(x, y(x)) -f(x, \hat{y}(x)) | \leq L | y(x) -\hat{y}(x)| \label{35} \tag{35}$$

con $L$ la constante de Lipschitz para $f$ en $R$. Entonces,

$$|y(x) -\hat{y}(x)| \leq |y_{0} -\hat{y}_{0} | + L \int_{x_{0}}^{x} |y(t) -\hat{y}(t)|dt \label{36} \tag{36}$$

Definamos

$$0 < g(x) = |y(x) -\hat{y}(x)|, \hspace{1cm} \alpha = |y_{0} -\hat{y}_{0}| \hspace{1cm} y \hspace{1cm} \beta = L$$

Con esto la desigualdad (\ref{36}) la podemos reescribir como

$$0 < g(x) \leq \alpha +\beta \int_{x_{0}}^{x}g(t) dt$$

Ahora podemos aplicar el lema de Gronwall.

$$g(x) \leq \alpha e^{\beta (x -x_{0})}$$

es decir,

$$|y(x) -\hat{y}(x)| \leq |y_{0} -\hat{y}_{0}| e^{L(x -x_{0})}$$

Que es lo que queríamos demostrar.

$\square$

De este resultado observamos que si

$$y_{0} \rightarrow \hat{y}_{0} \hspace{1cm} \Rightarrow \hspace{1cm} |y_{0} -\hat{y}_{0}| \rightarrow 0$$

Entonces las soluciones de los PVI serán funciones muy próximas

$$|y(x) -\hat{y}(x)| \rightarrow 0 \hspace{1cm} \Rightarrow \hspace{1cm} y(x) \rightarrow \hat{y}(x)$$

Para concluir la entrada hagamos un breve comentario sobre el resultado local del teorema de Picard y realicemos unos ejemplos al respecto.

Teorema de existencia y unicidad local

Recordemos que el resultado local del teorema de existencia y unicidad de Picard – Lindelöf establece lo siguiente.

La demostración a este teorema corresponde a una adaptación de la demostración vista para el caso global, teniendo en cuenta que las gráficas de las iterantes de Picard, así como la de cualquier posible solución, definidas en el intervalo $\delta = [x_{0} -h, x_{0} + h]$, están dentro del rectángulo $R$ donde la función $f$ es continua y lipschitziana respecto de la segunda variable. Los pasos claves a seguir y las técnicas son prácticamente una repetición de lo visto anteriormente cambiando la banda vertical $U = [a, b] \times \mathbb{R}$ por el rectángulo

$$R = \{(x, y) \in \mathbb{R} \mid |x -x_{0}| \leq a, |y -y_{0}| \leq b, \hspace{0.2cm} a, b \in \mathbb{R} \}$$

Para conocer sobre los detalles puedes revisar la demostración del teorema local en los videos de este mismo curso.

Finalmente, resolvamos algunos ejemplos.

Ejemplo: Mostrar que el problema de valor inicial

$$\dfrac{dy}{dx} = \sin^{2}{(x -y)}; \hspace{1cm} y(0) = 0$$

posee una única solución definida en $\mathbb{R}$.

Solución: En este caso tenemos la función $f: U = \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ definida como

$$f(x, y) = \sin^{2}{(x -y)}$$

Es claro que $f$ es continua en la región $U = \mathbb{R} \times \mathbb{R}$. La función derivada parcial $\dfrac{\partial f}{\partial y}: U \rightarrow \mathbb{R}$ está dada como

$$\dfrac{\partial f}{\partial y} = -2 \sin{(x -y) \cos{(x -y)}}$$

Como

$$|\sin{(x -y)}| \leq 1 \hspace{1cm} y \hspace{1cm} |\cos{(x -y)}| \leq 1$$

para todo $(x, y) \in U$, entonces

$$\left| \dfrac{\partial f}{\partial y} (x, y) \right| \leq 2$$

para todo $(x, y) \in U$. En consecuencia $f$ es una función lipschitziana en $U$ respecto de la segunda variable. Con esto hemos probado que se satisfacen las hipótesis del teorema de existencia y unicidad global por lo que podemos asegurar que el PVI posee una única solución definida en $\mathbb{R}$.

$\square$

Calcular las iterantes no siempre será sencillo. En el ejemplo anterior las iterantes pueden no ser fácil de desarrollar, pero debido a que satisface el teorema de Picard – Lindelöf podemos asegurar que dichas iterantes van a converger a la solución del PVI.

Ejemplo: Mostrar que aplicando el resultado global del teorema de Picard – Lindelöf al problema de valor inicial

$$\dfrac{dy}{dx} = y^{2}; \hspace{1cm} y(0) = 1$$

no es posible asegurar la existencia y unicidad de la solución.

Solución: La función $f: U = \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ definida como

$$f(x, y) = y^{2}$$

es continua en $U = \mathbb{R} \times \mathbb{R}$, sin embargo su derivada parcial

$$\dfrac{\partial f}{\partial y} = 2y$$

no está acotada en $U$ por lo que $f$ no es una función lipschitziana en $U$.

Una observación más es que la solución al PVI dada por

$$y(x) = \dfrac{1}{1 -x}$$

no está definida en $\mathbb{R}$ si no en el intervalo $(-\infty, 1)$.

En definitiva, como no se cumple la tercera condición del teorema global, entonces no podemos asegurar nada sobre la existencia y unicidad de la solución del PVI.

$\square$

Veamos ahora la importancia del resultado local del teorema de existencia y unicidad de Picard – Lindelöf . Resolvamos de nuevo el ejemplo anterior, pero ahora considerando una región $R$ alrededor del punto dado por la condición inicial.

Ejemplo: Mostrar que aplicando el resultado local del teorema de Picard – Lindelöf, el problema de valor inicial

$$\dfrac{dy}{dx} = y^{2}; \hspace{1cm} y(0) = 1$$

posee una única solución. Encontrar el intervalo de existencia y unicidad.

Solución: Es claro que la función

$$f(x, y) = y^{2}$$

es continua en $\mathbb{R}^{2}$ por lo que $f$ será una función lipschitziana en cualquier conjunto $R$ convexo y compacto. Consideremos el rectángulo centrado en el valor inicial $(0, 1)$ de dimensiones $a = 2$ y $b = 1$, es decir

$$R = \{(x, y) \in \mathbb{R} \mid |x| \leq 2, |y -1| \leq 1\} = [-2, 2] \times [0, 2]$$

En la región $R$ la función $f$ si es lipschitziana y continua por lo que se satisfacen las condiciones del teorema local de existencia y unicidad de Picard. Este teorema nos dice que existe una única solución definida en el intervalo $\delta = [x_{0} -h, x_{0} + h]$ donde

$$ h = \min \left\{a,\dfrac{b}{M} \right\} \hspace{1cm} y \hspace{1cm} M \geq \max_{(x, y) \in R}|f(x, y)|$$

En este caso, como el máximo valor que puede tomar $y$ en el rectángulo $R$ es $y = 2$, entonces

$$M = \max_{(x, y) \in R}|f(x, y)| = \max_{(x, y) \in R}|y^{2}| = 4$$

Usando este resultado, se tiene

$$h = \min \left\{a,\dfrac{b}{M} \right\} = \min \left\{2,\dfrac{1}{4} \right\} = \dfrac{1}{4}$$

Por lo tanto, podemos asegurar la existencia y unicidad de la solución del PVI en el intervalo

$$\delta = [x_{0} -h, x_{0} + h] = \left[ -\dfrac{1}{4}, \dfrac{1}{4} \right]$$

Además podemos asegurar que las iterantes de Picard convergen uniformemente en el intervalo $\delta$ hacia la solución única del PVI. A saber, convergen a

$$y(x) = \dfrac{1}{1 -x}$$

$\square$

Con esto concluimos la primera unidad del curso.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Completar la demostración de la unicidad de la solución a un problema de valor inicial que cumple con las hipótesis del teorema global de existencia y unicidad. Recuerda que el objetivo es demostrar que $$\lim_{n \to \infty} |\hat{y}(x) -y_{n}(x)| = 0$$
  1. Comprobar que el problema de valor inicial $$\dfrac{dy}{dx} = \dfrac{y}{x}; \hspace{1cm} y(0) = 0$$ posee infinitas soluciones en cualquier intervalo $\delta$ en el que $0 \in \delta$.
    ¿Porqué no contradice esto al teorema de existencia y unicidad local?.
  1. Determinar, por el método de iterantes de Picard, la solución del siguiente problema de valor inicial: $$\dfrac{dy}{dx} = 2y(1 + x); \hspace{1cm} y(-1) = 1$$
  1. Comprobar que el mayor intervalo que proporciona el teorema local de existencia y unicidad de Picard para el problema de valor inicial $$\dfrac{dy}{dx} = 1 + x^{2}; \hspace{1cm} y(0) = 0$$ donde se asegura la existencia y unicidad de la solución, es $\delta = \left[-\dfrac{1}{2}, \dfrac{1}{2} \right]$.

Más adelante…

Con la demostración del teorema de existencia y unicidad de Picard – Lindelöf justificamos la teoría realizada a lo largo de esta primera unidad.

En la siguiente entrada comenzaremos la unidad 2 del curso. En dicha unidad estudiaremos las ecuaciones diferenciales de orden mayor a uno, en particular estudiaremos con mayor detalle las ecuaciones diferenciales de segundo orden.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Teorema de Existencia y Unicidad – Iterantes de Picard y Convergencia

Por Omar González Franco

No te preocupes por tus dificultades en matemáticas.
Te puedo asegurar que las mías son aún mayores.
– Albert Einstein

Introducción

En la entrada anterior iniciamos con el desarrollo de una teoría preliminar para demostrar el teorema de existencia y unicidad de Picard – Lindelöf. Hasta ahora hemos visto que un problema de valor inicial, en el caso de ecuaciones diferenciales ordinarias de primer orden, se puede escribir de forma equivalente como una ecuación integral. Aprendimos lo que es una función lipschitziana respecto de la segunda variable, demostramos algunos resultados importantes al respecto y concluimos con la demostración del lema de Gronwall.

Continuando con esta teoría preliminar, en esta entrada definiremos las iterantes de Picard, pero antes de ello es importante hacer un breve recordatorio sobre series y sucesiones de funciones.

También enunciaremos el teorema de Picard – Lindelöf para el caso local y resolveremos un ejercicio en el que apliquemos este resultado.

Recordemos el teorema de Picard – Lindelöf para que lo tengamos presente.

Bien, comencemos con el repaso de series y sucesiones de funciones.

Series y sucesiones de funciones

En cursos anteriores ya se han estudiado series y sucesiones de funciones. Aquí presentaremos, a manera de repaso, el concepto de convergencia puntual, convergencia uniforme y convergencia absoluta, además del criterio mayorante de Weierstrass.

Recordemos que una sucesión $\{f_{n}\}$ de funciones de $D$ a $\mathbb{R}$ converge en un punto $x \in D$ cuando la sucesión de números reales $\{f_{n}(x)\}$ es convergente. Cuando esto ocurre en todos los puntos de un conjunto no vacío $I \subset D$ se dice que $\{f_{n}\}$ converge puntualmente en $I$. En tal caso podemos definir una función $f: I \rightarrow \mathbb{R}$ escribiendo

$$f(x) = \lim_{n \to \infty} f_{n}(x) \label{3} \tag{3}$$

para todo $x \in I$, y decimos que $f$ es el límite puntual de $\{f_{n}\}$ en $I$.

Por otro lado, se dice que la sucesión $\{f_{n}(x)\}$ converge uniformemente a la función $f(x)$ en $I$ si

$$\lim_{n \to \infty} \left( \sup_{x \in I} |f_{n}(x) -f(x)|\right) = 0 \label{4} \tag{4}$$

En la práctica las ecuaciones (\ref{3}) y (\ref{4}) nos serán de mucha utilidad, sin embargo es conveniente tener presente las definiciones formales de convergencia puntual y convergencia uniforme para sucesiones de funciones.

El concepto de convergencia uniforme es un concepto más fuerte que el de convergencia puntual. En el caso de convergencia puntual $N$ puede depender de $\varepsilon$ y de $x$, mientras que en la convergencia uniforme sólo puede depender de $\varepsilon$. Así, toda sucesión que converge uniformemente, converge puntualmente. El enunciado recíproco es falso, realicemos un ejemplo para mostrar esto.

Ejemplo: Mostrar que la sucesión $f_{n}: [0, 1] \rightarrow \mathbb{R}$ definida por $f_{n}(x) = x^{n}$ converge puntualmente pero no uniformemente.

Solución: Para $x \in [0, 1)$ la sucesión $f_{n}(x) = x^{n}$ converge puntualmente a $f(x) = 0$ ya que

$$|f_{n}(x) -f(x)|=|x^{n} -0| = |x^{n}| = x^{n}$$

y

$$\lim_{n \to \infty} x^{n} = 0$$

esto para $x \in [0, 1)$, pero cuando $x = 1$ ocurre que $f_{n}(1) = 1^{n} = 1$, es decir, converge puntualmente a $f(x) = 1$ y así

$$|f_{n}(x) -f(x)|=|x^{n} -1| = |1 -1| = 0$$

Geométricamente podemos observar que, en efecto, todas las gráficas convergen a $f(x) = 0$ para $x \in [0, 1)$ y sólo cuando $x = 1$ es cuando la sucesión converge a $f(x) = 1$.

Gráficas de $f_{n}(x) = x^{n}$ para distintas $n$´s.

Sin embargo, la sucesión $f_{n}(x) = x^{n}$ no converge uniformemente, es sencillo darse cuenta que no existe $N \in \mathbb{N}$ para cumplir con (\ref{5}). Por muy pequeña que tomemos a $\varepsilon$ siempre va a haber alguna $n$ para $x \in [0, 1]$ que haga que

$$|f_{n}(x) -f(x)|> \varepsilon$$

Dicho de otra forma,

$$\lim_{n \to \infty} \left( \sup_{x \in I} |f_{n}(x) -f(x)|\right) \neq 0$$

$\square$

Será necesario extender el concepto de convergencia uniforme al caso de series de funciones.

Un resultado importante que utilizaremos más adelante es el criterio de comparación directa. No lo demostraremos.

Para decir que la serie $\sum_{n = 1}^{\infty} a_{n}$ converge es común usar la notación

$$\sum_{n = 1}^{\infty} a_{n} < \infty \label{8} \tag{8}$$

Ahora definamos lo que significa que una serie sea absolutamente convergente.

La convergencia absoluta implica convergencia, pero la afirmación recíproca no es verdadera.

Una propiedad que nos será de mucha utilidad es la siguiente.

$$ \left| \sum_{n=1}^{\infty }a_{n} \right| \leq \sum_{n = 1}^{\infty}|a_{n}| \label{9} \tag{9}$$

Una herramienta más que nos será útil a la hora de demostrar el teorema de Picard – Lindelöf es el criterio mayorante de Weierstrass o mejor conocido como prueba M de Weierstrass. Este criterio nos permite comprobar la convergencia uniforme de una serie infinita cuyos términos son al mismo tiempo funciones de variable real o compleja.

Demostración: Por hipótesis sabemos que para cada $x$ en $D$

$$\left| \sum_{n = 1}^{\infty} f_{n}(x) \right| \leq \sum_{n = 1}^{\infty}|f_{n}(x)| \leq \sum_{n = 1}^{\infty }M_{n} < \infty \label{10} \tag{10}$$

es decir, la serie $\sum_{n = 1}^{\infty} M_{n}$ converge y como $|f_{n}(x)| \leq M_{n}$ y usando el criterio de comparación directa, entonces $\sum_{n = 1}^{\infty}| f_{n}(x)|$ converge, en consecuencia $\sum_{n = 1}^{\infty}f_{n}(x)$ converge absolutamente, esto significa que existe una función $f$ límite puntual de la serie de funciones tal que

$$f(x) = \sum_{n = 1}^{\infty}f_{n}(x)$$

o bien,

$$|f(x)| = \left| \sum_{n = 1}^{\infty}f_{n}(x) \right| \label{11} \tag{11}$$

Como queremos demostrar la convergencia uniforme tomemos $N \in \mathbb{N}$, tal que para $n > N$ la serie sea convergente. Vemos que podemos escribir lo siguiente.

$$\left|f(x) -\sum_{n = 1}^{N}f_{n}(x) \right| = \left |\sum_{n = N + 1}^{\infty}f_{n}(x) \right| \label{12} \tag{12}$$

sabemos que

$$\left|\sum_{n = N + 1}^{\infty}f_{n}(x) \right | \leq \sum_{n = N + 1}^{\infty} |f_{n}(x)| \label{13} \tag{13}$$

y por hipótesis

$$\sum_{n = N + 1}^{\infty}|f_{n}(x)| \leq \sum_{n = N + 1}^{\infty}M_{n} \label{14} \tag{14}$$

De los resultados (\ref{13}) y (\ref{14}) obtenemos

$$\left| \sum_{n = N + 1}^{\infty}f_{n}(x)\right| \leq \sum_{n = N + 1}^{\infty}M_{n} \label{15} \tag{15}$$

Al ser $\sum_{n = 1}^{\infty }M_{n}$ convergente, el número

$$\varepsilon = \sum_{n = N + 1}^{\infty }M_{n}$$

puede hacerse tan pequeño como se quiera eligiendo $N$ suficiente grande, así

$$\left| \sum_{n = N + 1}^{\infty}f_{n}(x) \right | < \varepsilon \label{16} \tag{16}$$

Por lo tanto, de acuerdo a (\ref{7}), la serie $\sum_{n = 1}^{\infty}f_{n}(x)$ converge uniformemente.

$\square$

Con esto concluimos nuestro repaso sobre series y sucesiones de funciones. Teniendo presente estos resultados definamos las iterantes de Picard.

Iterantes de Picard

El matemático francés Charles Émile Picard (1856 – 1941) desarrolló un método iterativo para obtener una solución de una ecuación diferencial de primer orden. A este método iterativo se le conoce como iterantes de Picard.

Las iterantes de Picard de manera desglosada tienen la siguiente forma:

\begin{align*}
y_{0}(x) &= y_{0} \\
y_{1}(x) &= y_{0} + \int_{x_{0}}^{x}f(t,y_{0}(t)) dt \\
y_{2}(x) &= y_{0} + \int_{x_{0}}^{x}f(t,y_{1}(t)) dt \\
y_{3}(x) &= y_{0} + \int_{x_{0}}^{x}f(t,y_{2}(t))dt \\
\vdots \\
y_{n}(x) &= y_{0} + \int_{x_{0}}^{x} f(t, y_{n -1}(t)) dt
\end{align*}

Las iterantes de Picard siempre convergen, en el intervalo adecuado, a la solución del PVI (\ref{1}), esto lo verificaremos al momento de demostrar el teorema de Picard – Lindelöf, pero considerando que es cierto se puede deducir un resultado interesante, para ello consideremos el siguiente teorema.

La demostración de este resultado también será parte de la demostración del teorema de Picard – Lindelöf, así que por el momento consideremos que es cierto y observemos lo siguiente.

Si las iterantes de Picard satisfacen las hipótesis del teorema anterior y suponiendo que $f(x,y)$ es una función continua en $U$ que contiene a los puntos $(x, y_{n}(x))$, $\forall x \in [a, b]$, $\forall n \in \mathbb{N},$ entonces se tiene lo siguiente.

\begin{align*}
y(x) &= \lim_{n \to \infty } y_{n + 1}(x) \\
&= \lim_{n \to \infty} \left[y_{0} + \int_{x_{0}}^{x} f(t, y_{n}(t)) dt \right] \\
&= y_{0} + \int_{x_{0}}^{x} \lim_{n \to \infty} f(t, y_{n}(t)) dt \\
&= y_{0} + \int_{x_{0}}^{x} f(t, y(t)) dt
\end{align*}

es decir,

$$ y(x) = y_{0} + \int_{x_{0}}^{x} f(t, y(t)) dt \label{19} \tag{19}$$

Este resultado corresponde a la ecuación integral equivalente al problema de valor inicial. Con este método notamos que si las iterantes de Picard convergen a la solución del PVI, entonces $y(x)$ verifica la ecuación integral, tal como lo demostramos en la entrada anterior.

Por otro lado, al definir las iterantes de Picard hemos considerado un conjunto de la forma

$$R = \{ (x, y) \in \mathbb{R}^{2} \mid |x -x_{0}| \leq a, |y -y_{0}| \leq b, \hspace{0.2cm} a, b \in \mathbb{R} \}$$

La forma de este conjunto evita tener problemas para definir las iterantes. En general un conjunto de la forma $U = \delta \times \mathbb{R}$, $\delta = [a, b]$, $a, b \in \mathbb{R}$ conocidos como bandas verticales permite, no solamente que estén bien definidas, sino que además todas las iterantes estén definidas en el intervalo $\delta$.

Realicemos un ejemplo en el que apliquemos las iterantes de Picard para obtener la solución particular de un problema de valor inicial.

Ejemplo: Usando las iterantes de Picard, resolver el siguiente problema de valor inicial.

$$\dfrac{dy}{dx} = y; \hspace{1cm} y(0) = 1$$

Solución: En este caso tenemos la función, $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ definida por

$$f(x, y(x)) = y(x)$$

Es claro que es una función continua en $\mathbb{R}^{2}$. Por tanto, la ecuación integral equivalente al PVI para este caso es

$$y(x) = y_{0} + \int_{x_{0}}^{x} f(t, y(t)) dt = 1 + \int_{0}^{x} y(t)dt$$

La iterante inicial es la función constante $y_{0}(x) = 1$. Comencemos a calcular el resto de las iterantes de Picard de acuerdo a la relación iterativa (\ref{17}).

\begin{align*}
y_{1}(x) &= 1 + \int_{0}^{x} y_{0}(t) dt = 1 + \int_{0}^{x} 1dt = 1 + x \\
y_{2}(x) &= 1 + \int_{0}^{x} y_{1}(t) dt = 1 + \int_{0}^{x} (1 + t) dt = 1 + x + \dfrac{x^{2}}{2!} \\
y_{3}(x) &= 1 + \int_{0}^{x} y_{2}(t) dt = 1 + \int_{0}^{x} \left(1 + t + \dfrac{t^{2}}{2}\right) dt = 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} \\
\vdots
\end{align*}

La afirmación que hacemos es que para $n$ se obtiene

$$y_{n}(x) = 1 + \int_{0}^{x} y_{n -1}(t) dt = 1 + \dfrac{x}{1!} + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \cdots + \dfrac{x^{n}}{n!} \label{20} \tag{20}$$

Ya lo hemos probado para $n = 1$, supongamos que la afirmación (\ref{20}) es verdadera y probemos para $n + 1$.

\begin{align*}
y_{n + 1}(x) &= 1 + \int_{0}^{x} y_{n}(t)dt \\
&= 1 + \int_{0}^{x} \left(1 + \dfrac{t}{1!} + \dfrac{t^{2}}{2!} + \cdots + \dfrac{t^{n}}{n!} \right) dt \\
&= 1 + x + \dfrac{x^{2}}{2 \cdot 1!} + \dfrac{x^{3}}{3 \cdot 2!} + \cdots + \dfrac{x^{n + 1}}{(n + 1) \cdot n!} \\
&= 1 + \dfrac{x}{1!} + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \cdots + \dfrac{x^{n + 1}}{(n + 1)!}
\end{align*}

Esto es,

$$y_{n + 1}(x) = 1 + \dfrac{x}{1!} + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \cdots + \dfrac{x^{n + 1}}{(n + 1)!}$$

Con esto hemos probado por inducción que las iterantes de Picard corresponden a la serie

$$y_{n}(x) = \sum_{k = 0}^{n} \dfrac{x^{k}}{k!}$$

Para obtener la solución al PVI debemos ver a qué converge esta serie, para ello tomemos el limite $n \rightarrow \infty$ observando que para cada $x \in \mathbb{R}$ existe el límite.

\begin{align*}
y(x) = \lim_{n \to \infty} y_{n}(x) = \lim_{n \to \infty} \sum_{k = 0}^{n} \dfrac{x^{k}}{k!} = \sum_{k = 0}^{\infty}\dfrac{x^{k}}{k!} = e^{x}
\end{align*}

Por lo tanto, la solución del problema de valor inicial

$$\dfrac{dy}{dx} = y; \hspace{1cm} y(0) = 1$$

es

$$y(x) = e^{x}$$

Sólo para verificar el resultado apliquemos el método de separación de variables para resolver el PVI.

\begin{align*}
\dfrac{dy}{dx} &= y \\
\dfrac{1}{y}\dfrac{dy}{dx} &= 1 \\
\int{\dfrac{dy}{y}} &= \int{dx} \\
\ln y &= x + c \\
y &= Ce^{x}
\end{align*}

La solución general de la ecuación diferencial $\dfrac{dy}{dx} = y$ es $y(x) = Ce^{x}$.

Apliquemos la condición inicial $y(0) = 1$.

$$y(0) = Ce^{0} = C = 1$$

En efecto, la solución al PVI es $y(x) = e^{x}$, tal como lo obtuvimos con las iterantes de Picard.

Para garantizar que las iterantes de Picard convergen a la solución del PVI se deben satisfacer las condiciones del teorema de existencia y unicidad, pero las hemos pasado por alto ya que el propósito de este ejercicio es ver cómo calcular las iterantes de Picard, sin embargo cabe mencionar que este PVI si las cumple por lo que la solución obtenida si es única. Más adelante veremos un ejemplo en el que si verificaremos que se cumple el teorema de existencia y unicidad.

$\square$

Con esto concluimos con la teoría preliminar que necesitamos conocer para demostrar el teorema de existencia y unicidad de Picard – Lindelöf. Sin embargo, es necesario hacer algunas aclaraciones.

Anteriormente mencionamos que existe un resultado global y uno local y esto es porque existen dos situaciones. En el teorema de Picard – Lindelöf hemos considerado como hipótesis un conjunto de la forma $U = \delta \times \mathbb{R}$ con $\delta = [a, b]$, $a, b \in \mathbb{R}$ y $f: U \rightarrow \mathbb{R}$ continua en $U$, además de que $f$ sea lipschitziana respecto de la segunda variable en $U$, estas condiciones son suficientes para tener un resultado global en el que siempre tendremos una solución única del problema de valor inicial definida en $\delta$, sin embargo es posible y más común que el conjunto $U$ no sea una banda vertical o siéndolo que $f$ no sea lipschitziana respecto de la segunda variable en $U$ o ambas a la vez. En esta segunda situación, bajo determinadas hipótesis, tendremos un teorema de existencia y unicidad local.

A continuación presentamos el teorema de existencia y unicidad local, este teorema no lo demostraremos pero gran parte de lo que veremos en la demostración del resultado global puede ser adaptado a las condiciones de este teorema.

Teorema de existencia y unicidad local

Es usual encontrarnos con ecuaciones diferenciales donde no se cumplan las tres condiciones del teorema global, sin embargo es posible que se cumplan en un pequeño conjunto $R \subset \mathbb{R}^{2}$ que contenga el punto $(x_{0}, y_{0})$ del PVI, de ahí la localidad del teorema. El conjunto compacto y convexo que más se parece a una banda vertical es el producto cartesiano de dos intervalos compactos en $\mathbb{R}$, es decir, un rectángulo con lados paralelos a los ejes de coordenadas. Un conjunto apropiado sería un rectángulo centrado en el punto $(x_{0}, y_{0})$.

$$R = \{(x, y) \in \mathbb{R}^{2} \mid |x- x_{0}| < a, |y -y_{0}| < b, \hspace{0.2cm} a, b \in \mathbb{R} \} \label{21} \tag{21}$$

El teorema de existencia y unicidad local establece lo siguiente.

En este curso nos enfocamos en el resultado global porque es un resultado general, sin embargo el resultado local nos permite hallar una región cerca del punto $(x_{0}, y_{0})$ donde un problema de valor inicial puede cumplir con las hipótesis del teorema para garantizar la existencia y unicidad de una solución, de esta forma es que, en la práctica, el resultado local puede ser un resultado más útil.

La demostración a detalle de este teorema se puede encontrar en la sección de videos de este mismo curso.

Para concluir esta entrada realicemos un ejemplo de un problema de valor inicial en el que apliquemos el teorema local para garantizar la existencia y unicidad de la solución y resolvamos el PVI aplicando las iterantes de Picard.

Aplicación del teorema de existencia y unicidad

  • Verificar las hipótesis del teorema local para el siguiente problema de valor inicial.

$$\dfrac{dy}{dx} = 2x(y -1); \hspace{1cm} y(0) = 2 \label{23} \tag{23}$$

  • Resolver este problema usando las iterantes de Picard.
  • Hallar el intervalo de solución $\delta$.

Solución: El primer ejercicio consiste en verificar que el PVI satisface las hipótesis del teorema local.

En este caso la función $f$ está dada por

$$f(x, y) = 2x(y -1)$$

la cual está definida en todo $\mathbb{R}^{2}$. Buscamos la solución particular que pasa por el punto $(x_{0}, y_{0}) = (0, 2)$ y como la función es continua en $\mathbb{R}^{2}$, en particular lo es en todo rectángulo de la forma

$$R = \{(x, y) \in \mathbb{R}^{2} \mid |x| \leq a, |y -2| \leq b \}, \hspace{1cm} (a > 0, b > 0) \label{24} \tag{24}$$

Con esto hemos verificado las dos primeras hipótesis del teorema local, veamos ahora si la función es lipschitziana.

Para todo $(x, y_{1}), (x, y_{2})$ puntos de $R$, se tiene

\begin{align*}
|f(x, y_{1}) -f(x, y_{2})| &= |2x(y_{1} -1) -2x(y_{2} -1)| \\
&= 2|x||y_{1} -y_{2}| \\
&= 2|x||(y_{1} -2) + (2 -y_{2})| \\
&\leq 2|x|(|y_{1} -2| + |2 -y_{2}|) \\
\end{align*}

Como $|x| \leq a$ y $|y -2| \leq b$, en particular

$$|y_{1} -2| + |2 -y_{2}| \leq b + b = 2b$$

entonces podemos acotar el último resultado de la siguiente manera.

$$2|x|(|y_{1} -2| + |2 -y_{2}|) \leq 2(a)(2b) = 4ab$$

Si definimos la constante de Lipschitz $L = 4ab$, obtenemos finalmente que

$$|f(x, y_{1}) -f(x, y_{2})| \leq L = 4ab \label{25} \tag{25}$$

probando así que $f$ es Lipschitziana en $U$.

Con esto hemos verificado que se cumplen las hipótesis del teorema local de Picard, por lo tanto podemos concluir que existe una única solución $y = y(x)$ al problema de valor inicial dado. Ahora resolvamos el PVI usando las iterantes de Picard.

Recordemos que las iterantes de Picard $y_{n}(x)$ asociadas al problema de valor inicial son

$$y_{0}(x) = y_{0}, \hspace{1cm} y_{n}(x) = y_{0} + \int_{x_{0}}^{x} f(t, y_{n -1}(t)) dt$$

Ya sabemos que $y_{0} = 2$ y $x_{0} = 0$ y recordemos que la función $f$ es $f(x, y) = 2x(y-1)$, así para $n = 1$, tenemos

$$y_{1}(x) = 2 + \int_{0}^{x} f(t, 2) dt = 2 + \int_{0}^{x} 2t(2 -1) dt = 2 + x^{2}$$

$$\Rightarrow y_{1}(x) = 2 + x^{2}$$

Para $n = 2$, tenemos

$$y_{2}(x) = 2 + \int_{0}^{x} f(t, 2 + t^{2}) dt = 2 + \int_{0}^{x} 2t(1 + t^{2})dt = 2 +x^{2} + \dfrac{x^{4}}{2}$$

$$\Rightarrow y_{2}(x) = 2 +x^{2} + \dfrac{x^{4}}{2}$$

Para $n = 3$, se tiene

$$y_{3}(x) = 2 + \int_{0}^{x} f \left( t, 2 + t^{2} + \dfrac{t^{4}}{2} \right) dt = 2 + \int_{0}^{x} 2t \left( 1 + t^{2} + \dfrac{t^{4}}{2} \right) dt$$

$$\Rightarrow y_{3}(x) = 2 + x^{2} + \dfrac{x^{4}}{2} + \dfrac{x^{6}}{3!}$$

Uno más, para $n = 4$, tenemos

$$y_{4}(x) = 2 + \int_{0}^{x} f \left( t, 2 + t^{2} + \dfrac{t^{4}}{2} + \dfrac{t^{6}}{3!} \right) dt = 2 + \int_{0}^{x} 2t \left( 1 + t^{2} + \dfrac{t^{4}}{2} + \dfrac{t^{6}}{3!} \right) dt$$

$$\Rightarrow y_{4}(x) = 2 + x^{2} + \dfrac{x^{4}}{2} + \dfrac{x^{6}}{3!} + \dfrac{x^{8}}{4!}$$

Estas iteraciones sugieren la siguiente serie.

$$y_{n}(x) = 1 + 1 + x^{2} + \dfrac{x^{4}}{2!} + \dfrac{x^{6}}{3!} + \dfrac{x^{8}}{4!} + \cdots +\dfrac{x^{2n}}{n!}$$

Esta fórmula es cierta para $n = 1,2,3, 4$ y si es cierta para $n$, entonces podemos sustituirla en la formula general de las iterantes de Picard mostrando que es cierta para $n+1$.

\begin{align*}
y_{n + 1}(x) &= 2 + \int_{0}^{x} f(t, y_{n}(t))dt \\
&= 2 + \int_{0}^{x} 2t\left( 1 + t^{2} + \dfrac{t^{4}}{2} + \dfrac{t^{6}}{3!} + \dfrac{t^{8}}{4!} + \cdots + \dfrac{t^{2n}}{n!}\right) dt \\
&= 2 + x^{2} + \dfrac{x^{4}}{2} + \dfrac{x^{6}}{3!} + \dfrac{x^{8}}{4!} + \dfrac{x^{10}}{5!} + \cdots + \dfrac{x^{2(n + 1)}}{(n + 1)!}
\end{align*}

Por lo tanto,

$$y_{n}(x) = 1 + \sum_{k = 0}^{n}\dfrac{x^{2k}}{k!} \label{26} \tag{26}$$

Como el PVI cumple con las hipótesis del teorema de existencia y unicidad entonces el límite $n \rightarrow \infty$ de las iterantes de Picard será la solución al problema de valor inicial. Apliquemos el límite a la serie (\ref{26}).

\begin{align*}
y(x) &= \lim_{n \to \infty} y_{n}(x) \\
&= \lim_{n \to \infty} \left( 1 + \sum_{k = 0}^{n} \dfrac{(x^{2})^{k}}{k!} \right) \\
&= 1 + \lim_{n \to \infty} \left( \sum_{k = 0}^{n} \dfrac{(x^{2})^{k}}{k!} \right) \\
&= 1 +\sum_{k = 0}^{\infty} \dfrac{(x^{2})^{k}}{k!} \\
&= 1 + e^{x^{2}}
\end{align*}

Por lo tanto, la solución al PVI (\ref{23}) es

$$y(x) = 1 + e^{x^{2}} \label{27} \tag{27}$$

Inmediatamente se puede verificar que $y(0)=2$ y que para todo $x \in \mathbb{R}$

$$\dfrac{dy}{dx} = 2xe^{x^{2}} = 2x \left(e^{x^{2}} \right) = 2x (y -1)$$

lo cual implica que la solución es válida en $\delta = (-\infty, \infty)$.

Sólo para verificar el resultado resolvamos rápidamente este PVI aplicando el método de separación de variables.

\begin{align*}
\dfrac{dy}{dx} &= 2x(y -1) \\
\dfrac{1}{y -1} \dfrac{dy}{dx} &= 2x \\
\int {\dfrac{dy}{y -1}} &= \int {2x dx} \\
\ln{(y -1)} &= x^{2} + c \\
y -1 &= e^{x^{2} + c} \\
y &= 1 + Ce^{x^{2}}
\end{align*}

La solución general a la ecuación diferencial

$$\dfrac{dy}{dx} = 2x(y -1)$$

es

$$y(x) = 1 + Ce^{x^{2}}$$

Apliquemos la condición inicial $y(0) = 2$.

$$y(0) = 1 + Ce^{0} = 1 + C = 2$$

De donde $C = 2 -1 = 1$. Con este resultado concluimos que la solución particular es

$$y(x) = 1 + e^{x^{2}}$$

tal como lo obtuvimos con las iterantes de Picard.

$\square$

Ya sea el resultado global o el local, este teorema garantiza completamente la existencia y unicidad de la solución particular a un problema de valor inicial para el caso de una ecuación diferencial de primer orden.

En los métodos de resolución presentados a lo largo de esta unidad hemos pasado por alto las condiciones del teorema de Picard – Lindelöf y hemos tratado de justificar nuestros resultados con los teoremas de existencia y unicidad presentados para el caso de una ED de primer orden y para el caso de una ED de primer orden lineal, se hizo esto debido a la complejidad de la demostración del teorema de Picard – Lindelöf, pero ahora ya contamos con todo lo necesario para demostrarlo y así darle una completa justificación a lo que hemos hecho a lo largo de esta primer unidad.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Sea la sucesión de funciones $\{f_{n}\}$ donde, para cada $n \in \mathbb{N}$, $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ es la función dada por $$f_{n}(x) = \dfrac{x^{2n}}{1 + x^{2n}}$$ $\forall x\in \mathbb{R}$. Estudiar la convergencia puntual y uniforme de $\{f_{n}(x)\}$.
  1. Sea la sucesión de funciones $\{f_{n}\}$ donde, para cada $n \in \mathbb{N}$, $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ es la función dada por $$f_{n}(x) = \dfrac{x}{1 + nx^{2}}$$ $\forall x\in \mathbb{R}$. Estudiar la convergencia puntual y uniforme de $\{f_{n}(x)\}$.
  1. Resolver el siguiente problema de valor inicial usando las iterantes de Picard. $$\dfrac{dy}{dx} = x + y; \hspace{1cm} y(0) = 2$$ Verificar el resultado resolviendo el PVI usando algún método visto anteriormente.
  1. Resolver el siguiente problema de valor inicial usando las iterantes de Picard. $$\dfrac{dy}{dx} = 2(y + 1); \hspace{1cm} y(0) = 0$$ Verificar el resultado resolviendo la ecuación usando algún método visto anteriormente.

Más adelante…

Con esta entrada concluimos con la teoría preliminar necesaria para poder demostrar el resultado global del teorema de existencia y unicidad de Picard – Lindelöf. Hemos hecho un breve repaso sobre convergencia de series y sucesiones de funciones, definimos las iterantes de Picard y presentamos el resultado local del teorema de existencia y unicidad.

Usando lo visto en esta y la anterior entrada concluiremos la primera unidad del curso demostrando el resultado global del teorema de existencia y unicidad de Picard – Lindelöf.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Teorema de Existencia y Unicidad – Ecuación Integral, Funciones Lipschitzianas y Lema de Gronwall

Por Omar González Franco

Estudié matemáticas, la locura de la razón.
– Benjamin Moser

Introducción

A lo largo de esta primera unidad hemos estudiado una variedad de ecuaciones diferenciales ordinarias de primer orden y hemos desarrollado distintas técnicas para resolver cada tipo de ecuación. Vimos que una sola ecuación puede tener infinitas soluciones y sólo cuando le imponemos una condición inicial es como podremos obtener una solución particular de esa ecuación diferencial. Ahora bien, si la solución existe, entonces debe ser única pero, ¿es siempre cierto esto?.

Ya presentamos el teorema de existencia y unicidad para ecuaciones diferenciales de primer orden y el teorema de existencia y unicidad para el caso de ecuaciones diferenciales lineales de primer orden, nuestro objetivo ahora es tener un teorema de existencia y unicidad general que pueda aplicarse a cualquier ecuación diferencial ordinaria de primer orden.

Este teorema, conocido como teorema de existencia y unicidad de Picard – Lindelöf contiene las hipótesis suficientes para garantizar que si existe una solución a un problema de valor inicial (PVI), entonces dicha solución es única.

Cabe mencionar que es posible enunciar un teorema de existencia y unicidad de tipo global y uno de tipo local. En el caso de tipo global el intervalo de existencia de la solución se conoce a priori, mientras que en uno de tipo local se asegura que existe un intervalo, en un principio desconocido, donde el PVI tiene solución única. En este curso demostraremos el resultado de tipo global y veremos que el de tipo local es consecuencia del global, además de que puedes encontrar la demostración al teorema de tipo local en la sección de videos.

Demostrar el teorema de existencia y unicidad de Picard – Lindelöf no es tarea fácil, primero será necesario desarrollar una teoría preliminar en la que estableceremos algunos conceptos nuevos y, así mismo, haremos un breve repaso sobre conceptos que conocemos y que nos serán de utilidad para demostrar dicho teorema. Esta teoría preliminar la desarrollaremos a lo largo de esta y la siguiente entrada para finalmente demostrar el teorema en la última entrada de esta primera unidad.

Comenzaremos enunciando el teorema de existencia y unicidad de Picard – Lindelöf para tenerlo presente, a pesar de que quizá algunas cosas no queden claras, el objetivo de esta teoría preliminar será comprender lo que nos quiere decir este teorema, además de brindarnos las herramientas necesarias para demostrarlo.

Bien, ¡comencemos!.

Teorema de Existencia y Unicidad de Picard-Lindelöf

El teorema global de existencia y unicidad para ecuaciones diferenciales ordinarias de primer orden es el siguiente.

Una observación importante es que el punto $(x_{0}, y_{0})$ puede estar en la frontera de la banda vertical $U = [a, b] \times \mathbb{R}$, es decir, puede ser de la forma $(a, y_{0})$ o $(b, y_{0}).$

Podemos notar que en el enunciado se hace mención de términos que aún no conocemos, como lo son función lipschitziana e Iterantes de Picard, así que necesitamos definirlos.

Este teorema corresponde al resultado global en el que el intervalo es una banda vertical $U = [a, b] \times \mathbb{R}$, en el caso local se considera una región limitada definida como

$$R = \{ (x, y) \in \mathbb{R}^{2}:|x -x_{1}| \leq a, |y -y_{1}| \leq b, \hspace{0.3cm} a, b \in \mathbb{R} \}$$

y la solución esta definida en el intervalo $\delta = [x_{0} -h, x_{0} + h]$ para cierta $h \in \mathbb{R}$. Una vez demostrado el resultado global retomaremos el caso local.

En esta teoría preliminar veremos que el PVI (\ref{1}) puede ser equivalente a resolver una ecuación integral, estudiaremos las funciones lipschitzianas de una y dos variables, demostraremos algunas proposiciones al respecto, demostraremos el lema de Gronwall, repasaremos algunos conceptos importantes sobre sucesiones, series y convergencia, definiremos las iteraciones de Picard y veremos algunos ejemplos. Una vez desarrollada esta teoría pasaremos a la demostración del teorema de existencia y unicidad.

Para comenzar, veamos que el PVI (\ref{1}) se puede escribir de forma equivalente como una ecuación integral cuando la función $f$ es continua.

Ecuación integral equivalente a un PVI

Un PVI como (\ref{1}) se puede escribir de forma equivalente como una ecuación integral en el caso en el que la función $f$ sea continua. Evidentemente este no es un curso ecuaciones integrales, pero para entender esta equivalencia definiremos lo que es una ecuación integral.

Teniendo en cuenta esta definición demostremos nuestro primer teorema de esta teoría preliminar el cual refleja el hecho de que un PVI como (\ref{1}) es equivalente a resolver una ecuación integral.

Demostración:

$\Rightarrow$ Supongamos que $y: \delta \rightarrow \mathbb{R},$ con gráfica contenida en $U$, es solución del PVI, entonces cumple que

$$\dfrac{dy}{dx} = f(x, y); \hspace{1cm} y(x_{0}) = y_{0}$$

Como $y$ es solución de la ecuación diferencial en el intervalo $\delta$, entonces debe ser continua en el mismo intervalo, así tenemos que $f$ y $y$ son continuas y por tanto $\dfrac{dy}{dx}$ y la función

$$g: \delta \rightarrow \mathbb{R}, \hspace{1cm} t \rightarrow g(t) = f(t, y(t))$$

también son continuas, de esta manera podemos integrar la ecuación $\dfrac{dy}{dx} = f(x, y)$ para cualquier $x \in \delta$.

\begin{align*}
\int_{x_{0}}^{x}\dfrac{dy}{dx}(t)dt &= \int_{x_{0}}^{x} f(t, y(t)) dt \\
\end{align*}

Aplicando el teorema fundamental del cálculo (regla de Barrow) en el lado izquierdo de la ecuación, tenemos

\begin{align*}
y(x) -y(x_{0}) &= \int_{x_{0}}^{x} f(t, y(t))dt \\
y(x) &= y(x_{0}) + \int_{x_{0}}^{x} f(t, y(t)) dt \\
y(x) &= y_{0} + \int_{x_{0}}^{x} f(t, y(t)) dt
\end{align*}

obteniendo así que $y(x)$ verifica la ecuación integral (\ref{3}).

$\Leftarrow$ Ahora supongamos que $y(x)$ es una función continua en $\delta$ y que satisface la ecuación integral

$$y(x) = y_{0} + \int_{x_{0}}^{x} f(t, y(t)) dt$$

Derivemos esta expresión.

\begin{align*}
\dfrac{dy}{dx} &= \dfrac{d}{dx} \left( y_{0} + \int_{x_{0}}^{x} f(t, y(t))dt \right) \\
&= \dfrac{dy_{0}}{dx} + \dfrac{d}{dx} \left( \int_{x_{0}}^{x} f(t, y(t))dt \right) \\
&= 0 + f(x, y) \\
&= f(x, y)
\end{align*}

Donde se ha aplicado el teorema fundamental del cálculo. Con este resultado vemos que se ha recuperado la ecuación diferencial $\dfrac{dy}{dx} = f(x, y)$, mostrando así que $y(x)$ es solución a la ecuación diferencial y además

\begin{align*}
y(x_{0}) = y_{0} + \int_{x_{0}}^{x_{0}} f(t, y(t)) dt = y_{0} + 0 = y_{0}
\end{align*}

es decir, se satisface la condición inicial $y(x_{0}) = y_{0}$, de esta manera queda demostrado que $y(x)$ es solución del PVI.

$\square$

Este resultado es muy útil en muchos resultados sobre ecuaciones diferenciales y nos será de utilidad para motivar, más adelante, la introducción a las llamadas iterantes de Picard.

Continuando con nuestra teoría preliminar, un concepto sumamente importante que estudiaremos a continuación es el de funciones lipschitzianas.

Funciones Lipschitzianas

Como estamos trabajando con la ecuación diferencial

$$\dfrac{dy}{dx} = f(x, y)$$

la función $f$ es una función de dos variables, así que nos interesa estudiar las funciones lipschitzianas de dos variables, sin embargo es probable que este sea un concepto nuevo y para que sea más intuitivo entenderlo presentaremos la definición de función lipschitziana para el caso de una función de una variable y realizaremos algunos ejemplos sencillos para posteriormente definir la función lipschitziana en el caso de dos variables.

Con esta definición observamos que si $x_{1} \neq x_{2}$ el cociente

$$\dfrac{f(x_{1}) -f(x_{2})}{x_{1} -x_{2}}$$

corresponde a la pendiente de la recta secante a la gráfica de $f$ que pasa por los puntos $(x_{1}, f(x_{1}))$ y $(x_{2}, f(x_{2}))$, de esta forma la condición de Lipschitz indica que todas estas pendientes están acotadas, es decir, existe una constante $L > 0$, tal que

$$\left|\dfrac{f(x_{1}) -f(x_{2})}{x_{1} -x_{2}} \right|\leq L$$

para cada $x_{1}, x_{2} \in I$, con $x_{1} \neq x_{2}$.

Recta secante que une a los puntos $(x_{1}, f(x_{1}))$ y $(x_{2}, f(x_{2}))$.

No entraremos es muchos detalles para el caso de una función de una variable, pero cabe mencionar que cualquier función lipschitziana es uniformemente continua, ya que dado $\varepsilon > 0$ basta tomar $\delta = \dfrac{\varepsilon}{L}$ y la condición de Lipschitz (\ref{4}) para que se verifique que

$$|x_{1} -x_{2}| < \delta \Rightarrow |f(x_{1}) -f(x_{2})| < \varepsilon$$

Como ejemplo mostremos que toda recta es una función lipschitziana.

Ejemplo: Mostrar que la función

$$f(x) = mx + b$$

es una función lipschitziana, con $L = |m|$.

Solución: Queremos probar que se cumple (\ref{4}). Vemos que

\begin{align*}
|f(x_{1}) -f(x_{2})| &= |mx_{1} + b -(mx_{2} + b)| \\
&= |mx_{1} + b -mx_{2} -b| \\
&= |mx_{1} -mx_{2}| \\
&= |m||x_{1} -x_{2}|\\
&= L|x_{1} -x_{2}|
\end{align*}

En donde consideramos que $L = |m|$. En este caso se da la igualdad

$$|f(x_{1}) -f(x_{2})| = L |x_{1} -x_{2}|$$

probando así que la función $f(x) = mx + b$ es una función Lipschitziana.

$\square$

Hay funciones uniformemente continuas que no son lipschitzianas, un ejemplo puede ser la función $f:[0, 1] \rightarrow \mathbb{R}$ definida como $f(x) = \sqrt{x}$, esta función es uniformemente continua pero no lipschitziana. Mostremos este hecho.

Ejemplo: Mostrar que la función $f:[0, 1] \rightarrow \mathbb{R}$, definida como $f(x) = \sqrt{x}$ no es lipschitziana.

Solución: Vamos a suponer que la función $f(x) = \sqrt{x}$ es lipschitziana y lleguemos a una contradicción. Si $f(x) = \sqrt{x}$ fuera lipschitziana debería satisfacer que

$$|f(x_{1}) -f(x_{2})| \leq L |x_{1} -x_{2}|$$

$\forall x_{1}, x_{2} \in [0, 1]$ y para alguna $L \geq 0$. Vemos que

$$|f(x) -f(0)| = |\sqrt{x} -\sqrt{0}| \leq L |x -0|$$

es decir, $\forall x \in [0, 1]$ ($x$ es positiva),

$$\sqrt{x} \leq L x$$

Si $x \in (0, 1]$ ($x \neq 0$), entonces

$$\dfrac{\sqrt{x}}{x} \leq L \Rightarrow \dfrac{1}{\sqrt{x}} \leq L$$

Este último resultado nos dice que la función $\dfrac{1}{\sqrt{x}}$ esta acotada por $L$ para $x \in (0, 1]$, sin embargo si tomamos el límite $x \rightarrow 0$ por la derecha obtenemos

$$\lim_{x \to 0^{+}}\frac{1}{\sqrt{x}} = \infty \hspace{1cm} !$$

Hemos llegado a una contradicción y todo ocurrió de suponer que la función $f(x) = \sqrt{x}$ era lipschitziana. Por lo tanto, a pesar de ser uniformemente continua, $f(x) = \sqrt{x}$ no es lipschitziana.

$\square$

Un resultado más que no demostraremos es el siguiente teorema.

Hay funciones lipschitzianas que no son derivables, por ejemplo la función $f: \mathbb{R} \rightarrow \mathbb{R}$ definida por $f(x) = |x|$.

Podemos decir, entonces, que la condición de Lipschitz es una condición intermedia entre continuidad uniforme y la existencia de derivada acotada.

Con esto en mente, ahora definamos lo que es una función lipschitziana para el caso en el que la función $f$ es de dos variables. Para este caso, la condición de Lipschitz sólo afectará a una de las variables, concretamente a la segunda, importante considerar este hecho.

La relación (\ref{5}) es lo que se pide que se cumpla en la tercer hipótesis del teorema de Picard – Lindelöf.

Enunciemos dos proposiciones importantes con respecto a las funciones lipschitzianas de dos variables que nos serán de utilidad a la hora de demostrar el teorema de Picard – Lindelöf.

Demostración: Sea $f(x, y)$ una función lipschitziana respecto de la variable $y$ y supongamos que existe su derivada parcial con respecto a dicha variable $\dfrac{\partial f}{\partial y}$. Por definición, para $(x, y) \in U$ se tiene que

$$\dfrac{\partial f}{\partial y}(x, y) \doteq \lim_{h \to 0}\dfrac{f(x, y + h) -f(x, y)}{h} \label{7} \tag{7}$$

Dado un $\delta > 0$ y para $h$ suficientemente pequeño $|h|< \delta$, el punto $(x, y + h)$ pertenece a $U$. Sea $L$ una constante de Lipschitz de $f$ respecto de $y$ en $U$. De acuerdo a la definición de la condición de Lipschitz se verifica que

$$|f(x, y + h) -f(x, y)| \leq L |y + h -y| = L|h| \label{8} \tag{8}$$

Usando (\ref{7}) y (\ref{8}) tenemos lo siguiente.

\begin{align*}
\left|\dfrac{\partial f}{\partial y}(x, y) \right| &= \left|\lim_{h \to 0} \dfrac{f(x, y + h) -f(x, y)}{h}\right| \\
&= \lim_{h \to 0}\left|\dfrac{f(x, y + h) -f(x, y)}{h} \right| \\
&\leq \lim_{h \to 0} \dfrac{L|h|}{|h|} = L
\end{align*}

Esto es,

$$\left| \dfrac{\partial f}{\partial y}(x, y) \right| \leq L$$

lo que significa que $\dfrac{\partial f}{\partial y}$ esta acotada en $U$ por la constante de Lipschitz $L$.

$\square$

Ahora revisemos el resultado recíproco de la proposición anterior en donde es necesario que $U$ sea un conjunto convexo.

Demostración: Para demostrar esta proposición haremos uso del teorema del valor medio para funciones de una variable, de aquí la necesidad de que $U$ sea convexo.

Por hipótesis, $\dfrac{\partial f}{\partial y}$ esta acotada en $U$, sea $L > 0$, tal que

$$ \left| \dfrac{\partial f}{\partial y}(x, y)\right|\leq L \label{9} \tag{9}$$

para cada $(x, y) \in U$, y sean $(x, y_{1}), (x, y_{2}) \in U$ con $y_{1} < y_{2}$. Como $U$ es convexo tenemos garantizado que para cada $y$ tal que $y_{1} < y < y_{2}$ el punto $(x, y)$ pertenece a $U$, pues dicho punto pertenece al segmento que une los puntos $(x, y_{1})$ y $(x, y_{2})$, con estos resultados la función

$g_{x}:[y_{1}, y_{2}] \rightarrow \mathbb{R}, \hspace{1cm} g_{x}(y) = f(x, y)$

está bien definida y es derivable

$$g_{x}^{\prime}(y) = \dfrac{\partial f}{\partial y}(x, y)$$

para cada $y \in [y_{1}, y_{2}]$. Por el teorema del valor medio, existe $y$ tal que $y_{1} < y < y_{2}$ y tal que

$g_{x}(y_{1}) -g_{x}(y_{2}) = g_{x}^{\prime}(y) (y_{1} -y_{2})$

es decir,

$f(x, y_{1}) -f(x, y_{2}) = \dfrac{\partial f}{\partial y}(x, y)(y_{1} -y_{2})$

Esta igualdad también la podemos escribir como

$$|f(x, y_{1}) -f(x, y_{2})| = \left|\dfrac{\partial f}{\partial y}(x, y)\right||y_{1} -y_{2}| \label{10} \tag{10}$$

Por la desigualdad (\ref{9}), tenemos

$$\left|\dfrac{\partial f}{\partial y}(x, y)\right||y_{1} -y_{2}| \leq L|y_{1} -y_{2} | \label{11} \tag{11}$$

De los resultados (\ref{10}) y (\ref{11}) concluimos que

$$|f(x, y_{1}) -f(x, y_{2})| \leq L|y_{1} -y_{2} |$$

lo que prueba que $f$ es una función lipschitziana con respecto de la segunda variable.

$\square$

Esta proposición es bastante útil, pues basta verificar que la derivada $\dfrac{\partial f}{\partial y}$ de $f = f(x, y)$ esta acotada en un conjunto convexo $U$ para concluir que $f$ es una función lipschitziana respecto de la segunda variable. Realicemos un ejemplo.

Ejemplo: Sea $U = [-1, 1] \times \mathbb{R}$. Mostrar que la función $f: U \rightarrow \mathbb{R}$ definida como

$$f(x, y) = |x|\sin^{2}(y)$$

es una función lipschitziana respecto de la segunda variable.

Solución: Es claro que el conjunto $U$ es convexo y que existe la derivada de $f$ con respecto a $y$ dada por

$$\dfrac{\partial f}{\partial y} = 2|x|\sin(y)\cos(y)$$

Como

$$|\sin(y) \cos(y)| \leq 1$$

$\forall y \in \mathbb{R}$ y $|x| < 1, \forall x \in [-1, 1]$, notamos que

$$2|x||\sin(y)\cos(y)| \leq 2$$

Esto es,

$$\left|\dfrac{\partial f}{\partial y}\right| \leq 2$$

esto muestra que la derivada de $f$ esta acotada, por la proposición anterior concluimos que la función $f$ es lipschitziana y podemos tomar como constante de Lipchitz el valor $L = 2$.

$\square$

En este ejemplo vimos que el valor $L = 2$ es una cota de $\left|\dfrac{\partial f}{\partial y}\right|$, sin embargo cualquier número mayor a $2$ cumple también la desigualdad y por tanto también puede ser una constante de Lipschitz en $U$. En general, una buena constante de Lipschitz puede ser

$$L= \sup_{(x, y) \in U}\left|\dfrac{\partial f}{\partial y}(x, y)\right| \label{12} \tag{12}$$

De ambas proposiciones podemos realizar la siguiente caracterización de Lipschitz, bastante útil en la práctica.

En este corolario unimos los resultados de las dos proposiciones anteriores.

Con esto concluimos el estudio de las funciones lipschitzianas, es importante tener presente este último corolario ya que será de suma relevancia en la demostración del teorema de Picard.

Para concluir con esta entrada presentaremos una herramienta más que nos será de mucha utilidad a la hora de demostrar el teorema de Picard – Lindelöf, en particular nos ayudará a probar la unicidad de la solución al PVI (\ref{1}). Revisemos el Lema de Gronwall.

Lema de Gronwall

Este resultado fue desarrollado por Thomas Hakon Grönwall en 1919.

Demostración: Definamos la función

$$g(x) = \int_{x_{0}}^{x}f(t)dt \label{15} \tag{15}$$

Notemos que

$$g(x_{0}) = 0 \hspace{1cm} y \hspace{1cm} \dfrac{dg}{dx} = f(x)$$

En términos de $g(x)$ y $\dfrac{dg}{dx}$ la desigualdad (\ref{13}) se puede escribir de la siguiente forma.

$$0 \leq \dfrac{dg}{dx} \leq \alpha + \beta g(x)$$

de donde,

$$\dfrac{dg}{dx}-\beta g(x) \leq \alpha \label{16} \tag{16}$$

Multipliquemos ambos lados de la desigualdad por $e^{-\beta (x -x_{0})}$.

\begin{align*}
e^{-\beta (x -x_{0})} \left( \dfrac{dg}{dx} -\beta g(x) \right) \leq e^{-\beta (x-x_{0})} \alpha \\
e^{-\beta (x -x_{0})}\dfrac{dg}{dx}-\beta e^{-\beta (x -x_{0})} g(x) \leq \alpha e^{-\beta (x -x_{0})} \label{17} \tag{17}
\end{align*}

Identificamos que el lado izquierdo de la última desigualdad corresponde a la derivada del producto de las funciones $e^{-\beta(x -x_{0})}$ y $g(x)$, en efecto

\begin{align*}
\dfrac{d}{dx} \left( g(x) e^{-\beta (x -x_{0})} \right ) &= \dfrac{dg}{dx} e^{-\beta (x -x_{0})} + g(x) \left( -\beta e^{-\beta (x -x_{0})} \right ) \\
&= e^{-\beta (x -x_{0})} \dfrac{dg}{dx} -\beta e^{-\beta (x -x_{0})} g(x)
\end{align*}

Sustituimos en la desigualdad (\ref{17}).

$$\dfrac{d}{dx} \left( g(x)e^{-\beta (x -x_{0})} \right ) \leq \alpha e^{-\beta (x -x_{0})} \label{18} \tag{18}$$

Integremos de $x_{0}$ a $x$.

\begin{align*}
\int_{x_{0}}^{x} \dfrac{d}{dt} \left( g(t) e^{-\beta (t -x_{0})} \right ) dt &\leq \alpha \int_{x_{0}}^{x} e^{-\beta (t -x_{0})}dt \\
g(x)e^{-\beta (x -x_{0})} -g(x_{0})e^{-\beta (x_{0} -x_{0})} &\leq \alpha \left[ -\dfrac{1}{\beta} \left( e^{-\beta(x -x_{0})} -e^{-\beta(x_{0} -x_{0})} \right) \right]
\end{align*}

pero

$$g(x_{0}) = \int_{x_{0}}^{x_{0}}f(t)dt = 0 \hspace{1cm} y \hspace{1cm} e^{-\beta (x_{0} -x_{0})} = 1$$

Así,

$$g(x)e^{-\beta (x -x_{0})} \leq -\dfrac{\alpha}{\beta} \left ( e^{-\beta (x -x_{0})} -1 \right) \label{19} \tag{19}$$

Multipliquemos ambos lados de la desigualdad por $e^{\beta (x -x_{0})}$.

\begin{align*}
g(x) &\leq -\dfrac{\alpha}{\beta}e^{\beta (x -x_{0})} \left( e^{-\beta (x -x_{0})} -1 \right) \\
&= -\dfrac{\alpha}{\beta}\left( 1 -e^{\beta (x -x_{0})} \right) \\
&= \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right )
\end{align*}

es decir,

$$g(x) \leq \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right ) \label{20} \tag{20}$$

De la desigualdad original (\ref{13}) sabemos que

\begin{align*}
0 \leq f(x) &\leq \alpha +\beta \int_{x_{0}}^{x} f(t)dt \\
0 \leq f(x) &\leq \alpha + \beta g(x)
\end{align*}

de donde,

$$\dfrac{f(x) -\alpha}{\beta} \leq g(x) \label{21} \tag{21} $$

De los resultados (\ref{20}) y (\ref{21}), tenemos

$$\dfrac{f(x) -\alpha}{\beta} \leq g(x) \leq \dfrac{\alpha}{\beta}\left( e^{\beta (x -x_{0})} -1 \right)$$

lo que nos interesa es la desigualdad

$$\dfrac{f(x) -\alpha}{\beta} \leq \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right)$$

haciendo un poco de álgebra obtenemos lo siguiente.

\begin{align*}
\dfrac{f(x) -\alpha}{\beta} &\leq \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right) \\
f(x) -\alpha &\leq \beta \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right) \\
f(x) &\leq \alpha + \beta \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right) \\
f(x) &\leq \alpha + \alpha \left( e^{\beta (x -x_{0})} -1 \right) \\
f(x) &\leq \alpha + \alpha e^{\beta (x -x_{0})} -\alpha \\
f(x) &\leq \alpha e^{\beta (x-x_{0})}
\end{align*}

Por lo tanto,

$$f(x) \leq \alpha e^{\beta (x-x_{0})}$$

Con esto queda demostrado que si se cumple la desigualdad (\ref{13}), entonces $f(x) \leq \alpha e^{\beta (x -x_{0})}$, $\forall x \in I$.

$\square$

Usando el lema de Gronwall podemos demostrar el siguiente corolario de manera inmediata.

Demostración: Debido a que se cumplen todas las hipótesis del lema de Gronwall sabemos que $\forall x \in I$

$0 \leq f(x) \leq \alpha e^{\beta (x -x_{0})}$

Pero si $\alpha = 0$, entonces

$$0 \leq f(x) \leq 0$$

de donde se deduce que $f(x) = 0$, $\forall x \in I$.

$\square$

Con esto concluimos la primer entrada sobre la teoría preliminar que necesitamos conocer para poder demostrar el teorema de existencia y unicidad de Picard – Lindelöf.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Probar que la función $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = c$ es una función lipschitziana
  1. Probar que la función $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) =|x|$ es lipschitziana, con $L = 1$
  1. Probar que la función $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^{2}$ no es una función lipschitziana.
    Hint: Suponer que lo es, es decir $$|f(x_{2}) -f(x_{1})| \leq L |x_{2} -x_{1}|$$ y considerar la definición de derivada $$\lim_{x_{2} \to x_{1}} \dfrac{|f(x_{2}) -f(x_{1})|}{|x_{2} -x_{1}|} = | f^{\prime}(x_{1})|$$ para llegar a una contradicción.

En los siguientes ejercicios se puede usar la definición de función lipschitziana respecto de la segunda variable o las proposiciones vistas.

  1. Probar que la función $f: U \rightarrow \mathbb{R}$ con $$U = \{(x, y): 0 \leq x \leq 1, y \in \mathbb{R} \}$$ definida como $$f(x, y) = y \cos (x)$$ es una función lipschitziana respecto de la segunda variable, con $L = 1$.
  1. Probar que la función $f: U \rightarrow \mathbb{R}$ con $$U = \{(x, y): 1 \leq x \leq 2, y \in \mathbb{R} \}$$ definida como $$f(x, y) = -\dfrac{2}{x} y + e^{x} \sin (x)$$ es una función lipschitziana respecto de la segunda variable, con $L = 2$.

Más adelante…

En esta entrada conocimos el teorema de existencia y unicidad de Picard – Lindelöf para ecuaciones diferenciales ordinarias de primer orden. Vimos que el PVI (\ref{1}) es equivalente a resolver la ecuación integral (\ref{3}), definimos a las funciones lipschitzianas de dos variables, demostramos algunos resultados al respecto y concluimos con la demostración del lema de Gronwall. Todos estos resultados los aplicaremos más adelante en la demostración del teorema de Picard – Lindelöf.

En la siguiente entrada continuaremos desarrollando esta teoría preliminar. Definiremos el concepto de aproximaciones sucesivas, mejor conocidas como iterantes de Picard, haremos un breve repaso sobre convergencia de series y sucesiones de funciones, presentaremos el resultado local del teorema de existencia y unicidad y resolveremos un ejercicio al respecto.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales l: Ecuación de Bernoulli y ecuación de Riccati

Por Omar González Franco

“Obvio” es la palabra más peligrosa del mundo en matemáticas.
– E. T. Bell

Introducción

Con esta entrada concluiremos el desarrollo de métodos de resolución de ecuaciones diferenciales de primer orden.

Presentaremos dos ecuaciones diferenciales no lineales más, conocidas como ecuación diferencial de Bernoulli y ecuación diferencial de Riccati en honor a sus formuladores Jacob Bernoulli y Jacopo Francesco Riccati, respectivamente.

Ecuación diferencial de Bernoulli

La ecuación diferencial de Bernoulli es una ecuación diferencial ordinaria de primer orden formulada por Jacob Bernoulli en el siglo XVll.

Si a la ecuación de Bernoulli la dividimos por la función $a_{1}(x) \neq 0$, obtenemos

$$\dfrac{dy}{dx} + \dfrac{a_{0}(x)}{a_{1}(x)} y = \dfrac{g(x)}{a_{1}(x)} y^{n}$$

Definimos las siguientes funciones.

$$P(x)=\dfrac{a_{0}(x)}{a_{1}(x)} \hspace{1cm} y \hspace{1cm} Q(x)=\dfrac{g(x)}{a_{1}(x)} \label{2} \tag{2}$$

Entonces una ecuación de Bernoulli se puede reescribir como

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n} \label{3} \tag{3}$$

La ecuación (\ref{3}) es también una definición común de ecuación de Bernoulli.

Notemos que si $n = 0$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal no homogénea.

$$\dfrac{dy}{dx} + P(x) y = Q(x) \label{4} \tag{4}$$

Y si $n = 1$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal homogénea.

\begin{align*}
\dfrac{dy}{dx} + P(x) y &= Q(x) y \\
\dfrac{dy}{dx} + [P(x) -Q(x)] y &= 0 \\
\end{align*}

Si definimos

$$R(x) = P(x) -Q(x)$$

entonces

$$\dfrac{dy}{dx} + R(x) y = 0 \label{5} \tag{5}$$

Las ecuaciones (\ref{4}) y (\ref{5}) ya las sabemos resolver.

Nuestro objetivo será resolver la ecuación de Bernoulli para el caso en el que $n \neq 0$ y $n \neq 1$.

Una propiedad de las ecuaciones de Bernoulli es que la sustitución

$$u(x) = y^{1 -n} \label{6} \tag{6}$$

la convierte en una ecuación lineal, de tal manera que podremos resolverla usando algún método de resolución visto para ecuaciones diferenciales lineales.

Consideremos la ecuación de Bernoulli en la forma (\ref{3}).

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n}$$

Dividimos toda la ecuación por $y^{n} \neq 0$.

$$\dfrac{1}{y^{n}} \dfrac{dy}{dx} + P(x) y^{1-n} = Q(x) \label{7} \tag{7}$$

La derivada de la función (\ref{6}) es

$$\dfrac{du}{dx} = (1 -n) y^{-n} \dfrac{dy}{dx} = (1 -n) \dfrac{1}{y^{n}} \dfrac{dy}{dx}$$

de donde,

$$\dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n} \dfrac{du}{dx} \label{8} \tag{8}$$

Sustituyamos (\ref{6}) y (\ref{8}) en la ecuación (\ref{7}).

$$\dfrac{1}{1-n} \dfrac{du}{dx} + P(x)u = Q(x) \label{9} \tag{9}$$

Multipliquemos por $1 -n$ en ambos lados de la ecuación.

$$\dfrac{du}{dx} + (1 -n)P(x)u = (1 -n)Q(x)$$

Definimos las funciones

$$R(x) = (1 -n)P(x) \hspace{1cm} y \hspace{1cm} S(x) = (1 -n)Q(x)$$

En términos de estas funciones la ecuación (\ref{9}) se puede escribir de la siguiente forma.

$$\dfrac{du}{dx} + R(x)u = S(x) \label{10} \tag{10}$$

Este resultado corresponde a una ecuación diferencial lineal de primer orden no homogénea y, por tanto, puede ser resuelta aplicando el algoritmo descrito para resolver ecuaciones diferenciales lineales.

Los pasos que se recomiendan seguir para resolver una ecuación diferencial de Bernoulli se presentan a continuación.

Método para resolver ecuaciones de Bernoulli

  1. El primer paso es escribir a la ecuación de Bernoulli en la forma (\ref{3}).
  1. Dividimos toda la ecuación por $y^{n}$ y consideramos el cambio de variable $u = y^{1 -n}$, así como la respectiva derivada $$\dfrac{du}{dx} = (1 -n)\dfrac{1}{y^{n}} \dfrac{dy}{dx}$$
  1. Sustituimos $$y^{1 -n} = u \hspace{1cm} y \hspace{1cm} \dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n}\dfrac{du}{dx}$$ en la ecuación resultante del paso anterior y haciendo un poco de álgebra podremos reducir la ecuación de Bernoulli en una ecuación lineal de primer orden no homogénea.
  1. Resolvemos la ecuación resultante usando el método de resolución de ecuaciones diferenciales lineales lo que nos permitirá obtener la función $u(x)$.
  1. Regresamos a la variable original para obtener finalmente la solución $y(x)$.

Realicemos un ejemplo en el que apliquemos estos pasos.

Ejemplo: Resolver la ecuación de Bernoulli

$$3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$$

Solución: El primer paso es escribir la ecuación de Bernoulli en la forma (\ref{3}).

\begin{align*}
3(1 + x^{2}) \dfrac{dy}{dx} &= 2xy (y^{3} -1) \\
\dfrac{dy}{dx} & =\dfrac{2xy (y^{3} -1)}{3(1 + x^{2})} \\
\dfrac{dy}{dx} &= \dfrac{2xy^{4}}{3(1 + x^{2})} -\dfrac{2xy}{3(1 + x^{2})} \\
\dfrac{dy}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) y &= \left( \dfrac{2x}{3(1 + x^{2})} \right) y^{4}
\end{align*}

La última relación muestra a la ecuación en la forma (\ref{3}) con $n = 4$, ahora dividamos toda la ecuación por $y^{4}$.

$$\dfrac{1}{y^{4}} \dfrac{dy}{dx} + \left( \dfrac{2x}{3(1+x^{2})} \right) y^{-3} = \dfrac{2x}{3(1 + x^{2})} \label{11} \tag{11}$$

Consideremos la sustitución

$$u = y^{1 -n} = y^{1 -4} = y^{-3} = \dfrac{1}{y^{3}}$$

y

$$\dfrac{du}{dx} = -3 y^{-4} \dfrac{dy}{dx}$$

De donde,

$$\dfrac{1}{y^{4}} \dfrac{dy}{dx} = -\dfrac{1}{3} \dfrac{du}{dx} \hspace{1cm} y \hspace{1cm} y^{-3} = u$$

Sustituimos estos resultados en la ecuación (\ref{11}).

\begin{align*}
-\dfrac{1}{3} \dfrac{du}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) u &= \dfrac{2x}{3(1 + x^{2})} \\
\dfrac{du}{dx} +\left( -\dfrac{2x}{1 + x^{2}} \right) u &= -\dfrac{2x}{1 + x^{2}} \label{12} \tag{12}
\end{align*}

La última ecuación es una expresión en la forma (\ref{10}). Con esto hemos logrado reducir la ecuación de Bernoulli en una ecuación diferencial lineal de primer orden no homogénea.

Establecemos las siguientes funciones.

$$R(x) = -\dfrac{2x}{1 + x^{2}} \hspace{1cm} y \hspace{1cm} S(x) = -\dfrac{2x}{1 + x^{2}}$$

A partir de aquí aplicamos el método de resolución de ecuaciones diferenciales lineales.

La ecuación ya se encuentra en su forma canónica. Determinemos el factor integrante dado por

$$\mu (x) = e^{\int {R(x)dx}} \label{13} \tag{13}$$

Resolvamos la integral del exponente omitiendo la constante de integración.

\begin{align*}
\int {R(x)dx} &= -\int \dfrac{2x}{1 + x^{2}} dx \\
&= -\ln|1 + x^{2}|
\end{align*}

Por lo tanto,

$$\mu (x) = e^{-\ln|1 + x^{2}|} = \dfrac{1}{1+x^{2}}$$

Multipliquemos a la ecuación (\ref{12}) por el factor integrante.

$$\dfrac{1}{1 + x^{2}} \dfrac{du}{dx} -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right) u = -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right)$$

Identificamos que el lado izquierdo de la ecuación es la derivada del producto del factor integrante $\mu(x)$ por la función $u(x)$, de esta manera

$$\dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) = -\dfrac{2x}{(1 + x^{2})^{2}}$$

Integramos ambos lados de la ecuación con respecto a $x$. Por tratarse del último paso sí consideramos a la constante de integración.

$$\int \dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) dx = -\int \dfrac{2x}{(1 + x^{2})^{2}} dx$$

En el lado izquierdo aplicamos el teorema fundamental del cálculo y en el lado derecho consideramos la sustitución $a(x) = 1 + x^{2}$ para resolver la integral. El resultado que se obtiene es

\begin{align*}
\dfrac{u}{1 + x^{2}} &= \dfrac{1}{1 + x^{2}} + c \\
u &= 1 + (1 + x^{2})c \\
\end{align*}

Regresamos a la variable original $u = y^{-3}$.

$$\dfrac{1}{y^{3}} = 1 + (1 + x^{2})c$$

Por lo tanto, la solución general (implícita) de la ecuación diferencial de Bernoulli

$$3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$$

es

$$y^{3}(x) = \dfrac{1}{1 + (1 + x^{2}) c}$$

$\square$

Ahora revisemos la ecuación de Riccati.

Ecuación diferencial de Riccati

La ecuación de Riccati es una ecuación diferencial ordinara no lineal de primer orden, inventada y desarrollada en el siglo XVlll por el matemático italiano Jacopo Francesco Riccati.

Resolver la ecuación de Riccati requiere del conocimiento previo de una solución particular de la ecuación, llamemos a dicha solución $\hat{y}(x)$. Si hacemos la sustitución

$$y(x) = \hat{y}(x) + u(x) \label{15} \tag{15}$$

La ecuación de Riccati adquiere la forma de una ecuación de Bernoulli, de tarea moral comprueba este hecho. Ya vimos que para resolver una ecuación de Bernoulli debemos reducirla a una ecuación lineal no homogénea, así que veamos directamente cómo reducir una ecuación de Riccati a una ecuación lineal no homogénea.

Sea $\hat{y}(x)$ una solución particular de la ecuación de Riccati y consideremos la sustitución

$$y(x) = \hat{y}(x) + \dfrac{1}{u(x)} \label{16} \tag{16}$$

Derivemos esta ecuación.

$$\dfrac{dy}{dx} = \dfrac{d\hat{y}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{17} \tag{17}$$

Como $\hat{y}(x)$ es una solución de la ecuación de Riccati, entonces satisface la ecuación diferencial.

$$\dfrac{d\hat{y}}{dx} = q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} \label{18} \tag{18}$$

Sustituyendo (\ref{18}) en (\ref{17}) obtenemos la siguiente ecuación.

$$\dfrac{dy}{dx} = q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{19} \tag{19}$$

Ahora podemos igualar la ecuación (\ref{19}) con la ecuación de Riccati (\ref{14}).

\begin{align*}
q_{0}(x) + q_{1}(x) y +q_{2}(x) y^{2} &= q_{0}(x) + q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
q_{1}(x) y +q_{2}(x) y^{2} &= q_{1}(x) \hat{y} + q_{2}(x) \hat{y}^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x) \hat{y} -q_{1}(x) y + q_{2}(x) \hat{y}^{2} -q_{2}(x) y^{2} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x)(\hat{y} -y) + q_{2}(x)(\hat{y}^{2} -y^{2})
\end{align*}

En la última relación sustituimos la función (\ref{16}).

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{1}(x) \left[ \hat{y} -\left( \hat{y} + \dfrac{1}{u} \right) \right] + q_{2}(x) \left [ \hat{y}^{2} -\left( \hat{y} + \dfrac{1}{u} \right) ^{2} \right ] \\
&= q_{1}(x) \left( \hat{y} -\hat{y} -\dfrac{1}{u} \right) + q_{2}(x) \left( \hat{y}^{2} -\hat{y}^{2} -2 \hat{y} \dfrac{1}{u} -\dfrac{1}{u^{2}} \right) \\
&= q_{1}(x) \left( -\dfrac{1}{u} \right ) + q_{2}(x) \left( -2\dfrac{\hat{y}}{u} -\dfrac{1}{u^{2}} \right) \\
&= -\dfrac{q_{1}(x)}{u} -2 q_{2}(x) \dfrac{\hat{y}}{u} -\dfrac{q_{2}(x)}{u^{2}}
\end{align*}

Esto es,

$$\dfrac{1}{u^{2}} \dfrac{du}{dx} = -\dfrac{q_{1}(x)}{u} -2 q_{2}(x) \dfrac{\hat{y}}{u} -\dfrac{q_{2}(x)}{u^{2}}$$

Multipliquemos ambos lados de la ecuación por $u^{2}$.

\begin{align*}
\dfrac{du}{dx} &= -q_{1}(x)u -2q_{2}(x) \hat{y} u -q_{2}(x) \\
\dfrac{du}{dx} &= -\left( q_{1}(x) + 2q_{2}(x) \hat{y} \right) u -q_{2}(x)
\end{align*}

Vemos que

$$\dfrac{du}{dx} + \left( q_{1}(x) + 2q_{2}(x) \hat{y} \right) u = -q_{2}(x) \label{20} \tag{20}$$

Definamos las funciones

$$R(x) = q_{1}(x) + 2q_{2}(x) \hat{y}(x) \hspace{1cm} y \hspace{1cm} S(x) = -q_{2}(x)$$

Por lo tanto, la ecuación (\ref{20}) queda de la siguiente forma.

$$\dfrac{du}{dx} + R(x) u = S(x) \label{21} \tag{21}$$

Queda demostrado que la sustitución (\ref{16}) convierte a la ecuación de Riccati en una ecuación diferencial lineal y, por tanto, puede ser resuelta con el método de resolución de ecuaciones lineales.

Como es usual, enunciemos la serie de pasos que se recomienda seguir para resolver las ecuaciones diferenciales de Riccati.

Método para resolver ecuaciones de Riccati

  1. El primer paso es escribir a la ecuación de Riccati en la forma (\ref{14}) y estar seguros de que conocemos previamente una solución particular $\hat{y}(x)$ de la ecuación.
  1. Como queremos reducir la ecuación de Riccati en una ecuación lineal no homogénea consideramos la sustitución $$y(x) = \hat{y}(x) + \dfrac{1}{u(x)}$$ con $\hat{y}(x)$ la solución particular dada.

    Si se deseara reducirla a una ecuación de Bernoulli se hace la sustitución $$y(x) = \hat{y}(x) + u(x)$$
  1. Debido a que $\hat{y}(x)$ es solución de la ecuación de Riccati, el siguiente paso es derivar la sustitución $y = \hat{y} + \dfrac{1}{u}$ y en el resultado sustituir $\dfrac{d\hat{y}}{dx}$ por la ecuación de Riccati para la solución particular, esto es

$$\dfrac{dy}{dx} = \dfrac{d\hat{y}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} = \left[ q_{1}(x) + q_{2}(x) \hat{y} + q_{3}(x) \hat{y}^{2} \right] -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

  1. Igualamos la ecuación anterior con la ecuación de Riccati original en la forma (\ref{14}) y hacemos la sustitución $$y(x) = \hat{y}(x) + \dfrac{1}{u(x)}$$
  1. Hecho lo anterior y haciendo un poco de álgebra podremos reducir la ecuación de Riccati en una ecuación lineal de primer orden y así aplicar el método de resolución para este tipo de ecuaciones.
  1. Una vez obtenida la función $u(x)$ la sustituimos en $y(x)$ para obtener la solución deseada.

Realicemos un ejemplo para poner en practica este método.

Ejemplo: Resolver la ecuación de Riccati

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$$

dada la solución particular $\hat{y} = \dfrac{2}{x}$.

Solución: La ecuación diferencial prácticamente se encuentra en la forma de la ecuación (\ref{14}), sólo para que sea claro escribimos

$$\dfrac{dy}{dx} = \left( -\dfrac{4}{x^{2}} \right) + \left( -\dfrac{1}{x} \right) y + y^{2}$$

Comencemos por verificar que la solución particular dada efectivamente satisface la ecuación de Riccati. Por un lado,

$$\dfrac{d \hat{y}}{dx} = -\dfrac{2}{x^{2}}$$

Por otro lado,

\begin{align*}
-\dfrac{4}{x^{2}} -\dfrac{\hat{y}}{x} + \hat{y}^{2} &= -\dfrac{4}{x^{2}} -\dfrac{1}{x} \left( \dfrac{2}{x} \right) + \left( \dfrac{2}{x} \right)^{2} \\
&= -\dfrac{4}{x^{2}} -\dfrac{2}{x^{2}} + \dfrac{4}{x^{2}} \\
&= -\dfrac{2}{x^{2}}
\end{align*}

En efecto,

$$\dfrac{d \hat{y}}{dx} = -\dfrac{4}{x^{2}} -\dfrac{\hat{y}}{x} + \hat{y}^{2} = -\dfrac{2}{x^{2}}$$

El siguiente paso es hacer la sustitución (\ref{16}).

$$y(x) = \hat{y}(x) + \dfrac{1}{u(x)} = \dfrac{2}{x} + \dfrac{1}{u}$$

De acuerdo a (\ref{19}), tenemos

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{1}{x} \left( \dfrac{2}{x} \right) + \left( \dfrac{2}{x} \right)^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

Igualemos este resultado con la ecuación de Riccati original.

\begin{align*}
-\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2} &= -\dfrac{4}{x^{2}} -\dfrac{2}{x^{2}} + \dfrac{4}{x^{2}} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
-\dfrac{y}{x} + y^{2} &= \dfrac{2}{x^{2}} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{y}{x} -y^{2}
\end{align*}

En la última ecuación sustituimos $y = \dfrac{2}{x} + \dfrac{1}{u}$.

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{1}{x} \left( \dfrac{2}{x} + \dfrac{1}{u} \right) -\left( \dfrac{2}{x} + \dfrac{1}{u} \right)^{2} \\
&= \dfrac{2}{x^{2}} + \dfrac{2}{x^{2}} + \dfrac{1}{xu} -\left( \dfrac{4}{x^{2}} + \dfrac{4}{xu} + \dfrac{1}{u^{2}} \right) \\
&= \dfrac{4}{x^{2}} + \dfrac{1}{xu} -\dfrac{4}{x^{2}} -\dfrac{4}{xu} -\dfrac{1}{u^{2}} \\
&= -\dfrac{3}{xu} -\dfrac{1}{u^{2}} \\
\end{align*}

De donde,

$$\dfrac{du}{dx} + \dfrac{3}{x}u = -1$$

Esta expresión tiene la forma de una ecuación diferencial lineal (\ref{21}), de donde podemos determinar que

$$R(x) = \dfrac{3}{x} \hspace{1cm} y \hspace{1cm} S(x) = -1$$

La ecuación de Riccati ha sido reducida a una ecuación lineal no homogénea, ahora apliquemos el método de resolución de ecuaciones diferenciales lineales.

Calculemos el factor integrante $\mu(x) = e^{\int R(x)dx}$.

$$\int {R(x)dx} = \int {\dfrac{3}{x}dx} = 3\ln|x|$$

El factor integrante es

$$\mu (x) = e^{3 \ln|x|} = x^{3}$$

Multipliquemos la ecuación diferencial por el factor integrante.

\begin{align*}
x^{3} \dfrac{du}{dx} + x^{3} \left( \dfrac{3}{x} \right ) u &= -x^{3} \\
x^{3} \dfrac{du}{dx} + 3x^{2}u &= -x^{3}
\end{align*}

Identificamos que el lado izquierdo de la ecuación corresponde a la derivada del producto entre el factor integrante $\mu(x)$ y la función $u(x)$, entonces

$$\dfrac{d}{dx} \left( x^{3}u \right) = -x^{3}$$

Integramos ambos lados de la ecuación con respecto a $x$.

\begin{align*}
\int {\dfrac{d}{dx} \left( x^{3}u \right) dx} &= \int {-x^{3}dx} \\
x^{3}u &= -\dfrac{x^{4}}{4} + c \\
u(x) &= -\dfrac{x}{4} + \dfrac{c}{x^{3}}
\end{align*}

Ya determinamos el valor de $u(x)$, ahora sólo lo sustituimos en la función $y = \dfrac{2}{x} + \dfrac{1}{u}$.

Por lo tanto, la solución general de la ecuación de Bernoulli

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$$

es

$$y(x) = \dfrac{2}{x} + \dfrac{1}{\dfrac{c}{x^{3}} -\dfrac{x}{4}} = \dfrac{2}{x} + \dfrac{4x^{3}}{4c -x^{4}}$$

$\square$

Hemos concluido con el estudio de las ecuaciones diferenciales de primer orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones de Bernoulli.
  • $\dfrac{dy}{dx} + \dfrac{1}{x}y = \dfrac{2}{3}x^{4}y^{4}$
  • $3x \dfrac{dy}{dx} -2y = x^{3}y^{-2}$
  • $x^{2} \dfrac{dy}{dx} -2xy = 3y^{4} \hspace{0.8cm}$ con la condición inicial $\hspace{0.5cm} y(1) = \dfrac{1}{2}$
  1. Resolver las siguientes ecuaciones de Riccati.
  • $x^{3} \dfrac{dy}{dx} = x^{4}y^{2} -2x^{2}y -1 \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} \hat{y} = \dfrac{1}{x^{2}}$
  • $\dfrac{dy}{dx} = xy^{2} + y + \dfrac{1}{x^{2}} \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} \hat{y} = -\dfrac{1}{x}$
  1. Demostrar que la sustitución $$y(x) = \hat{y}(x) + u(x)$$ convierte a una ecuación de Riccati en una ecuación de Bernoulli. $\hat{y}(x)$ es una solución particular de la ecuación de Riccati.

Más adelante…

Con esta entrada concluimos el estudio de las ecuaciones diferenciales de primer orden, a lo largo de la unidad vimos una descripción cualitativa y posteriormente una descripción analítica en la que desarrollamos varios métodos para resolver ecuaciones diferenciales de primer orden tanto lineales como no lineales.

Antes de pasar a la siguiente unidad y comenzar con el estudio de las ecuaciones diferenciales de segundo orden, es importante hacer un estudio con mayor detalle sobre el teorema de existencia y unicidad ya que es este teorema el que justifica toda la teoría que hemos desarrollado a lo largo de la unidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones diferenciales exactas

Por Omar González Franco

Los matemáticos han alcanzado lo más alto del pensamiento humano.
– Havelock Ellis

Introducción

Ahora sabemos que método aplicar si nos encontramos con ecuaciones diferenciales no lineales con variables separables u homogéneas.

Esta entrada la dedicaremos a un tipo de ecuaciones diferenciales no lineales conocidas como ecuaciones exactas. Estas ecuaciones suelen ser más complejas e interesantes que las anteriores y su método de resolución involucra un mayor número de pasos a seguir.

Ecuaciones diferenciales exactas

Existe un caso especial en el que $f(x, y) = c$, donde $c$ es una constante, en este caso la diferencial, de acuerdo a la ecuación (\ref{1}), es

$$\dfrac{\partial f}{\partial x}dx + \dfrac{\partial f}{\partial y}dy = 0 \label{2} \tag{2}$$

Esto significa que dada una familia de curvas $f(x, y) = c$ es posible generar una ecuación diferencial de primer orden si se calcula la diferencial de ambos lados de la igualdad.

Ejemplo: Sea

$$f(x, y) = 8x^{2}y -x^{3} + y^{2} = c$$

una familia de curvas, calcular su diferencial.

Solución: De acuerdo a la definición de diferencial de una función de dos variables (\ref{1}), necesitamos calcular $\dfrac{\partial f}{\partial x}$ y $\dfrac{\partial f}{\partial y}$. Por un lado,

$$\dfrac{\partial f}{\partial x} = 16xy -3x^{2}$$

Por otro lado,

$$\dfrac{\partial f}{\partial y} = 8x^{2} + 2y$$

Por lo tanto, la diferencial de la función dada es

$$(16xy -3x^{2}) dx + (8x^{2} + 2y) dy = 0$$

$\square$

En el ejemplo anterior vimos que

$$(16xy -3x^{2}) dx + (8x^{2} + 2y) dy$$

corresponde a la diferencial de la función

$$f(x, y) = 8x^{2}y -x^{3} + y^{2}$$

Por lo tanto, $(16xy -3x^{2}) dx + (8x^{2} + 2y) dy$ es una diferencial exacta.

No todas las ecuaciones de primer orden escritas en la forma

$$M(x, y) dx + N(x, y) dy = 0 \label{3} \tag{3}$$

corresponden a la diferencial de alguna función $f(x, y) = c$, pero en caso de serlo, entonces la función $f(x, y) = c$ sería una solución implícita de (\ref{3}). Este tipo de ecuaciones tienen un nombre particular.

Ejemplo: Sea la función

$$f(x, y) = e^{x} + xy + e^{y} = c$$

una familia de curvas. Mostrar que la ecuación diferencial

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

es una ecuación exacta con respecto a la función $f(x, y)$.

Solución: Para verificar que es una ecuación exacta debemos verificar que el término

$$(e^{x} + y)dx + (e^{y} + x)dy$$

sea una diferencial exacta.

Consideremos la función dada

$$f(x, y) = e^{x} + xy + e^{y} = c$$

Por un lado,

$$\dfrac{\partial f}{\partial x} = e^{x} + y$$

Por otro lado,

$$\dfrac{\partial f}{\partial y} = e^{y} + x$$

Por lo tanto, la diferencial de la función $f(x, y)$ es

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

esto nos indica que el término

$$(e^{x} + y)dx + (e^{y} + x)dy$$

es una diferencial exacta ya que corresponde a la diferencial de la función $f(x, y)$. Por lo tanto, la ecuación

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

es una ecuación exacta. No sólo hemos mostrado que es una ecuación exacta, sino que incluso ahora podemos decir que la ecuación

$$e^{x} + xy + e^{y} = c$$

es una solución implícita de la ecuación diferencial.

$\square$

En este ejemplo nos han dado la función $f(x, y) = c$, pero es claro que dada una ecuación diferencial exacta resolverla implica hallar dicha función $f$. Entonces, ¿cómo podemos saber si una ecuación diferencial es exacta si previamente no conocemos la función $f$? y en caso de que de alguna manera seamos capaces de mostrar que la ecuación diferencial es exacta, ¿cómo podemos hallar a la función $f$?.

Antes de aprender a resolver las ecuaciones diferenciales exactas veamos un teorema que nos permite saber si la ecuación diferencial es exacta o no. Si la ecuación es exacta, entonces tenemos garantizado la existencia de una función $f$ tal que $f(x, y) = c$, dicha función será la solución de la ecuación exacta.

Demostración: Supongamos que $M(x, y) dx + N(x, y) dy$ es exacta, entonces por definición existe alguna función $f$ tal que para toda $x$ en $U$ se satisface lo siguiente.

$$M(x, y) dx + N(x, y) dy = \dfrac{\partial f}{\partial x} dx + \dfrac{\partial f}{\partial y} dy$$

Esta relación sólo se cumple si

$$M(x, y) = \dfrac{\partial f}{\partial x} \hspace{1cm} y \hspace{1cm} N(x, y) = \dfrac{\partial f}{\partial y} \label{5} \tag{5}$$

Si derivamos parcialmente la expresión

$$M(x, y) = \dfrac{\partial f}{\partial x}$$

con respecto a $y$ en ambos lados, obtenemos

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x} \right)
= \dfrac{\partial^{2} f}{\partial y \partial x}
= \dfrac{\partial^{2} f}{\partial x \partial y}
= \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y} \right)
= \dfrac{\partial N}{\partial x}$$

Donde

$$\dfrac{\partial^{2} f}{\partial y \partial x} = \dfrac{\partial^{2} f}{\partial x \partial y}$$

se cumple debido a que las primeras derivadas parciales de $M(x, y)$ y $N(x, y)$ son continuas en $U$.

Si es posible encontrar una función $f$ tal que se cumple (\ref{5}), entonces la condición

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

es necesaria y suficiente. Encontrar la función $f$ en realidad corresponde a un método de resolución de ecuaciones exactas y lo desarrollaremos a continuación.

$\square$

Solución a las ecuaciones exactas

La ecuación diferencial que queremos resolver es de la forma

$$M(x, y) dx + N(x, y) dy = 0$$

Por el teorema anterior sabemos que siempre y cuando se cumpla que

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

entonces debe existir una función $f$ para la que

$$\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)$$

Para obtener la función $f(x, y)$ debemos integrar la primer ecuación con respecto a $x$ manteniendo a $y$ constante o integrar la segunda ecuación con respecto a $y$ manteniendo a $x$ constante, vamos a hacer el primer caso y como tarea moral realiza el siguiente procedimiento tomando el segundo caso, notarás que el resultado es equivalente.

Tomando el primer caso, integremos la primer ecuación con respecto a $x$.

\begin{align*}
\int{\dfrac{\partial f}{\partial x} dx} &= \int{M(x, y) dx} \\
f(x, y) &= \int{M(x, y) dx} + g(y) \label{6} \tag{6} \\
\end{align*}

Hemos hecho uso del teorema fundamental del cálculo y la función $g(y)$ corresponde a la constante de integración, es constante en $x$, pero sí puede variar en $y$ ya que en este caso la estamos considerando como una constante al hacer la integral.

Ahora derivemos a (\ref{6}) con respecto a $y$.

\begin{align*}
\dfrac{\partial f}{\partial y} &= \dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} + g(y) \right) \\
&= \dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} \right) + \dfrac{dg}{dy}
\end{align*}

Pero,

$$\dfrac{\partial f}{\partial y} = N(x, y)$$

Entonces,

$$\dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} \right) + \dfrac{dg}{dy} = N(x, y)$$

Despejemos a

$$\dfrac{dg}{dy} = g^{\prime}(y)$$

Se tiene,

$$g^{\prime}(y) = N(x, y) -\dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \label{7} \tag{7}$$

Lo que nos interesa en obtener la función $f(x, y)$, así que podemos integrar la ecuación (\ref{7}) con respecto a $y$ y sustituir $g(y)$ en la ecuación (\ref{6}). Como sabemos, la solución implícita es $f(x, y) = c$. Integremos la ecuación (\ref{7}).

$$g(y) = \int{N(x, y) dy} -\int{ \left[ \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \right] dy} \label{8} \tag{8}$$

Sustituimos el resultado (\ref{8}) en la ecuación (\ref{6}) e igualamos el resultado a la constante $c$.

$$f(x, y) = \int{M(x, y) dx} + \int{N(x, y) dy} -\int{ \left[ \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \right] dy} = c \label{9} \tag{9}$$

De esta manera habremos encontrado una solución implícita de la ecuación diferencial exacta.

Una observación interesante es que la función $g^{\prime}(y)$ es independiente de $x$, la manera de comprobarlo es con el siguiente resultado.

\begin{align*}
\dfrac{\partial g}{\partial x} &= \dfrac{\partial}{\partial x} \left[ N(x, y) -\dfrac{\partial}{\partial y} \left( \int{M(x, y) dx}\right) \right] \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial}{\partial x} \left(\dfrac{\partial}{\partial y}\int{M(x, y) dx}\right) \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial}{\partial y} \left(\dfrac{\partial}{\partial x}\int{M(x, y) dx}\right) \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \\
&= 0
\end{align*}

Ya que

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Las ecuaciones (\ref{6}), (\ref{8}) y (\ref{9}) son el resultado de tomar el primer caso. Si realizas el segundo caso en el que a la ecuación

$$\dfrac{\partial f}{\partial y} = N(x, y)$$

se integra con respecto a $y$ y al resultado se deriva con respecto a $x$ obtendremos las expresiones análogas, dichas expresiones son, respectivamente

$$f(x, y) = \int{N(x, y) dy} + h(x) \label{10} \tag{10}$$

$$h(x) = \int{M(x, y) dx} -\int{ \left[ \dfrac{\partial}{\partial x} \left( \int{N(x, y) dy} \right) \right] dx} \label{11} \tag{11}$$

y

$$f(x, y) = \int{N(x, y) dy} + \int{M(x, y) dx} -\int{ \left[ \dfrac{\partial}{\partial x} \left( \int{N(x, y) dy} \right) \right] dx} = c \label{12} \tag{12}$$

Método de solución de ecuaciones diferenciales exactas

Hemos desarrollado la teoría sobre cómo obtener la solución $f(x, y)$ de las ecuaciones diferenciales exactas. Debido a que no se recomienda memorizar los resultados, presentamos a continuación la siguiente serie de pasos o algoritmo que se recomiendan seguir para resolver una ecuación diferencial exacta.

  1. El primer paso es verificar que la ecuación diferencial
    $$M(x, y) dx + N(x, y) dy = 0$$ sea exacta para garantizar la existencia de la función $f$ tal que $f(x, y) = c$. Para verificar este hecho usamos el criterio para una diferencial exacta que consiste en verificar que se cumple la relación $$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$
  1. Una vez que verificamos que la ecuación es exacta tenemos garantizado que existe una función $f$ tal que $f(x, y) = c$ es una solución implícita de la ecuación diferencial. Para determinar dicha función definimos $$\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)$$
  1. El siguiente paso es integrar alguna de las ecuaciones anteriores en su respectiva variable, se recomienda integrar la que sea más sencilla de resolver, de esta manera obtendremos $$f(x, y) = \int{M(x, y) dx} + g(y) \hspace{1cm} o \hspace{1cm} f(x, y) = \int{N(x, y) dy} + h(x)$$
  1. Después derivamos parcialmente a la función $f(x, y)$ con respecto a la variable $y$ o $x$ según la elección hecha en el paso anterior, de manera que obtendremos el resultado $$\dfrac{\partial f}{\partial y} = \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) + \dfrac{dg}{dy} = N(x, y)$$ o bien, $$\dfrac{\partial f}{\partial x} = \dfrac{\partial}{\partial x} \left(\int{N(x, y) dy}\right) + \dfrac{dh}{dx} = M(x, y)$$
  1. De los resultados anteriores obtendremos una expresión para $\dfrac{dg}{dy}$, o para $\dfrac{dh}{dx}$, debemos integrar estas expresiones para obtener las funciones $g(y)$ o $h(x)$.
  1. El último paso es sustituir las funciones $g(y)$ o $h(x)$ en la ecuación $f(x, y) = c$ lo que nos devolverá, en general, una solución implícita de la ecuación diferencial exacta.

Realicemos un ejemplo en el que apliquemos este método para que todo quede más claro.

Ejemplo: Resolver la ecuación diferencial

$$(4 x^{3} -4xy^{2} + y) dx + (4y^{3} -4x^{2}y + x) dy = 0$$

Solución: La ecuación diferencial es de la forma (\ref{3}), de manera que podemos definir

$$M(x, y) = 4 x^{3} -4xy^{2} + y \hspace{1cm} y \hspace{1cm} N(x, y) = 4y^{3} -4x^{2}y + x$$

Ambas funciones son continuas y tienen derivadas parciales continuas en cualquier región $U \in \mathbb{R}^{2}$, entonces podemos aplicar el criterio para una diferencial exacta. Verifiquemos que se satisface la relación (\ref{4}).

$$\dfrac{\partial M}{\partial y} = -8xy + 1 \hspace{1cm} y \hspace{1cm} \dfrac{\partial N}{\partial x}= -8xy +1$$

En efecto,

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Por lo tanto, la ecuación diferencial sí es exacta, esto nos garantiza la existencia de una función $f$ tal que $f(x, y) = c$ es solución, entonces podemos definir

$$\dfrac{\partial f}{\partial x} = M(x, y) = 4x^{3} -4xy^{2} + y \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y) = 4y^{3} -4x^{2}y + x$$

El tercer paso nos indica que debemos integrar una de las ecuaciones anteriores, en este caso elegiremos integrar la ecuación

$$\dfrac{\partial f}{\partial x} = 4x^{3} -4xy^{2} + y$$

con respecto a la variable $x$.

$$\int{ \dfrac{\partial f}{\partial x} dx} = \int{ ( 4x^{3} -4xy^{2} + y) dx}$$

Del lado izquierdo aplicamos el teorema fundamental del cálculo y del lado derecho resolvemos la integrar, el resultado es

$$f(x,y) = x^{4} -2x^{2}y^{2} + xy + g(y)$$

La función $g(y)$ es la constante que considera a todas las constantes que aparecen al integrar y decimos que es constante porque no depende de la variable $x$, pero es posible que pueda depender de la variable $y$.

El cuarto paso es derivar la última ecuación con respecto a la variable $y$ ya que deseamos conocer a $\dfrac{dg}{dy} = g^{\prime}(y)$.

$$\dfrac{\partial f}{\partial y} = -4x^{2}y + x + \frac{dg}{dy}$$

Y sabíamos que

$$\dfrac{\partial f}{\partial y} = 4y^{3} -4x^{2}y + x$$

Igualando ambas ecuaciones, obtenemos

$$-4x^{2}y + x + \dfrac{dg}{dy} = 4y^{3} -4x^{2}y + x$$

Para que esta igualdad se cumpla es necesario que

$$\dfrac{dg}{dy} = 4y^{3}$$

Ahora que ya conocemos a $\dfrac{dg}{dy} = g^{\prime}(y)$, la integramos con respecto a $y$. Esto corresponde al penúltimo paso.

\begin{align*}
\int {\dfrac{dg}{dy} dy} &= {\int 4y^{3} dy} \\
g(y) &= y^{4}
\end{align*}

El último paso es sustituir el resultado $g(y)$ en la función $f(x, y) = c$. En la integración anterior omitimos a las constantes porque podemos englobarlas en la constante $c$.

$$f(x,y) = x^{4} -2x^{2}y^{2} + xy + y^{4} = c$$

de donde

$$(x^{2} -y^{2})^{2} + xy= c$$

Por lo tanto, la solución (implícita) de la ecuación diferencial exacta

$$(4 x^{3} -4xy^{2} + y) dx + (4y^{3} -4x^{2}y + x) dy = 0$$

es

$$(x^{2} -y^{2})^{2} + xy= c$$

$\square$

Por su puesto que hay ecuaciones diferenciales de la forma (\ref{3}) que no cumplen con la condición (\ref{4}), es decir, que no son exactas, en estos casos es posible apoyarnos de una función auxiliar tal que si multiplicamos a la ecuación diferencial por esta función se volverá exacta, si esto ocurre a dicha función la llamamos factor integrante. Así es, usaremos un método similar al método por factor integrante de las ecuaciones lineales, pero esta vez es para convertir a una ecuación diferencial no exacta en exacta.

Factores integrantes

En entradas anteriores vimos que multiplicar la ecuación diferencial lineal

$$\dfrac{dy}{dx} + P(x)y = Q(x) \label{13} \tag{13}$$

por un factor integrante $\mu(x)$ hace que el lado izquierdo de la ecuación sea igual a la derivada del producto de $\mu(x)$ con $y(x)$ permitiendo resolver la ecuación con sólo integrar, esta idea de multiplicar por un factor integrante también nos será de ayuda al trabajar con ecuaciones diferenciales de la forma

$$M(x, y) dx + N(x, y) dy = 0$$

que no son exactas. Lo que se espera es que multiplicando por un factor integrante $\mu (x, y)$ a la ecuación no exacta ésta se vuelva una ecuación exacta.

Consideremos la ecuación

$$M(x, y) dx + N(x, y) dy = 0$$

pero que no es exacta, esto significa que el lado izquierdo de la ecuación no corresponde a la diferencial de alguna función $f(x, y)$. Supongamos que existe una función $\mu (x, y)$ tal que al multiplicar la ecuación diferencial por esta función se vuelve una ecuación diferencial exacta. Es decir, la ecuación

$$\mu (x, y) M(x, y) dx + \mu (x, y) N(x, y) dy = 0 \label{14} \tag{14}$$

ahora es exacta y se puede resolver con el método que ya conocemos. Lo que veremos ahora es un método para determinar el factor integrante $\mu (x, y)$.

Por el criterio de diferencial exacta, la ecuación diferencial (\ref{14}) es exacta si

$$\dfrac{\partial (\mu M)}{\partial y} = \dfrac{\partial (\mu N)}{\partial x} \label{15} \tag{15}$$

Usando la regla del producto, la ecuación anterior se puede escribir como

$$\mu \dfrac{\partial M}{\partial y} + \dfrac{\partial \mu}{\partial y} M = \mu \dfrac{\partial N}{\partial x} + \dfrac{\partial \mu}{\partial x} N$$

Reordenando los términos obtenemos la siguiente expresión.

$$\dfrac{\partial \mu}{\partial x} N -\dfrac{\partial \mu}{\partial y} M = \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) \mu \label{16} \tag{16}$$

Para determinar la función $\mu(x, y)$ debemos resolver esta ecuación diferencial parcial, sin embargo no estamos en condiciones de hacerlo, pues no sabemos resolver ecuaciones diferenciales parciales. Para simplificar el problema vamos a considerar la hipótesis de que la función $\mu$ depende sólo de una variable, consideremos por ejemplo que $\mu$ depende sólo de $x$, así se cumple que

$$\dfrac{\partial \mu}{\partial x} = \dfrac{d \mu}{dx} \hspace{1cm} y \hspace{1cm} \dfrac{\partial \mu}{\partial y} = 0$$

Con estas hipótesis la ecuación (\ref{16}) se puede escribir de la siguiente forma.

$$\dfrac{d \mu}{dx} = \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) \mu \label{17} \tag{17}$$

Seguimos en problemas si el cociente de la derecha depende tanto de $x$ como de $y$. En el caso en el que dicho cociente sólo depende de $x$, entonces la ecuación será separable así como lineal.

Supongamos que la ecuación (\ref{17}) sólo depende de la variable $x$, entonces dividimos toda la ecuación por $\mu$ para separar las variables.

$$\dfrac{1}{\mu} \dfrac{d \mu}{dx} = \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$

Integremos ambos lados de la ecuación con respecto a la variable $x$.

\begin{align*}
\int{ \dfrac{1}{\mu}\dfrac{d \mu}{dx} dx} &= \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx \\
\ln|\mu (x)| &= \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx
\end{align*}

Finalmente apliquemos la exponencial en ambos lados de la ecuación.

$$\mu (x) = \exp \left[ \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx \right] \label{18} \tag{18}$$

Es totalmente análogo el caso en el que el factor integrante es sólo función de la variable $y$, en este caso se cumple

$$\dfrac{\partial \mu}{\partial x} = 0 \hspace{1cm} y \hspace{1cm} \dfrac{\partial \mu}{\partial y} = \dfrac{d \mu}{dy}$$

Es así que la ecuación (\ref{16}) queda de la siguiente forma.

$$\dfrac{d \mu}{dy} = \dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) \mu \label{19} \tag{19}$$

Si el cociente de la derecha sólo depende de la variable $y$, entonces se puede resolver la ecuación (\ref{19}), obteniendo

$$\mu (y) = \exp \left[ \int{\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dy} \right] \label{20} \tag{20}$$

Las funciones (\ref{18}) y (\ref{20}) corresponden a la forma del factor integrante que vuelven a la ecuación no exacta en exacta, según las condiciones que se presenten.

A manera de resumen, para el caso en el que la ecuación diferencial

$$M(x, y) dx + N(x, y) dy = 0$$

no es exacta probamos los siguientes dos casos:

  • Si $$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$ es una función sólo de $x$, entonces un factor integrante para la ecuación (\ref{14}) es: $$\mu (x) = \exp \left[ \int{\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right]$$
  • Si $$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$$ es una función sólo de $y$, entonces un factor integrante para la ecuación (\ref{14}) es: $$\mu (y) = \exp \left[ \int{\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dy} \right]$$

Realicemos un ejemplo para aclarar dudas.

Ejemplo: Resolver la siguiente ecuación diferencial no exacta.

$$\left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + e^{y/x} dy = 0$$

Solución: Verifiquemos que no es una ecuación exacta, definamos

$$M(x, y) = 1 -\dfrac{y}{x} e^{y/x} \hspace{1cm} y \hspace{1cm} N(x, y) = e^{y/x}$$

Calculemos las derivadas parciales correspondientes.

$$\dfrac{\partial M}{\partial y} = -\dfrac{1}{x} e^{y/x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial N}{\partial x} = -\dfrac{y}{x^{2}} e^{y/x}$$

Como

$$\dfrac{\partial M}{\partial y} \neq \dfrac{\partial N}{\partial x}$$

entonces la ecuación diferencial no es exacta. Para hacerla exacta debemos encontrar un factor integrante que dependa de $x$ o de $y$, para ello primero debemos ver si el cociente

$$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$

es una función sólo de $x$ o si el cociente

$$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$$

es una función sólo de $y$. Calculemos ambos cocientes usando los resultados anteriores.

$$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) = \left( 1 -\dfrac{y}{x} e^{y/x} \right)^{-1} \left( -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{1}{x} e^{y/x} + \dfrac{y}{x^{2}} e^{y/x} \right) = \dfrac{\dfrac{1}{x} e^{y/x}}{1 -\dfrac{y}{x} e^{y/x}}$$

y

$$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) = e^{-y/x} \left( -\dfrac{1}{x} e^{y/x} -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{y}{x^{2}} e^{y/x} \right) = -\dfrac{1}{x}$$

Este último cociente es el que nos sirve ya que sólo depende de la variable $x$. Calculemos el factor integrante, en este caso corresponde a la expresión (\ref{18}).

\begin{align*}
\mu (x) &= \exp \left[ \int{\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right] \\
&= \exp \left[\int{-\dfrac{1}{x}} dx \right] \\
&= -e^{\ln |x|} \\
&= x^{-1}
\end{align*}

Por lo tanto, el factor integrante es

$$\mu (x)= \dfrac{1}{x}$$

Multipliquemos ambos lados de la ecuación original por el factor integrante.

\begin{align*}
\dfrac{1}{x} \left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + \dfrac{1}{x} e^{y/x} dy &= 0 \\
\left( \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \right) dx +\dfrac{1}{x} e^{y/x} dy &= 0
\end{align*}

Verifiquemos que la última expresión corresponde a una ecuación diferencial exacta. Definamos

$$\hat{M}(x, y) = \mu(x) M(x, y) \hspace{1cm} y \hspace{1cm} \hat{N}(x, y) = \mu(x) N(x, y)$$

Entonces,

$$\hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \hat{N}(x, y) = \dfrac{1}{x} e^{y/x}$$

Calculemos las derivadas parciales correspondientes.

\begin{align*}
\dfrac{\partial \hat{M}}{\partial y} = -\dfrac{1}{x^{2}} e^{y/x} -\dfrac{y}{x^{3}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial \hat{N}}{\partial x} = -\dfrac{1}{x^{2}} e^{y/x} -\dfrac{y}{x^{3}} e^{y/x}
\end{align*}

En efecto,

$$\dfrac{\partial \hat{M}}{\partial y} = \dfrac{\partial \hat{N}}{\partial x}$$

La nueva ecuación sí es exacta, esto nos garantiza que existe una función $f$ tal que $f(x, y) = c$ es solución de la ecuación exacta, dicha función debe satisfacer que

$$\dfrac{\partial f}{\partial x} = \hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = \hat{N}(x, y) = \dfrac{1}{x} e^{y/x}$$

Es nuestra elección que ecuación integrar, sin embargo notamos que la función $\hat{N}(x, y)$ es la más sencilla de integrar, así que integremos esta ecuación con respecto a $y$.

\begin{align*}
\int{ \dfrac{\partial f}{\partial y} dy} &= \int{ \dfrac{1}{x} e^{y/x} dy} \\
f(x, y) &= e^{y/x} + h(x)
\end{align*}

Derivemos parcialmente este resultado con respecto a la variable $x$.

$$\dfrac{\partial f}{\partial x} = -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{dh}{dx}$$

Pero sabemos que

$$\dfrac{\partial f}{\partial x} = \hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x}$$

Igualemos ambas ecuaciones.

$$\dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} = -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{dh}{dx}$$

Para que se cumpla esta igualdad es necesario que

$$\dfrac{dh}{dx} = \dfrac{1}{x}$$

Integremos esta ecuación con respecto a $x$ omitiendo las constantes.

\begin{align*}
\int{ \dfrac{dh}{dx} dx} &= \int {\dfrac{1}{x} dx} \\
h(x) &= \ln |x|
\end{align*}

Sustituimos la función $h(x)$ en la función $f(x, y)$ e igualamos a una constante $c$.

$$f(x, y) = e^{y/x} + \ln |x|= c$$

Apliquemos la función exponencial

\begin{align*}
e^{\left( e^{y/x} + \ln (x) \right)} &= e^{c} \\
e^{e^{y/x}} e^{\ln (x)} &= k \\
e^{e^{y/x}} x &= k
\end{align*}

Donde $k = e^{c}$. Por lo tanto, la solución a la ecuación diferencial

$$\left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + e^{y/x} dy = 0$$

es

$$x e^{e^{y/x}} = k$$

$\square$

Aquí concluimos nuestro estudio sobre las ecuaciones diferenciales exactas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones diferenciales exactas (verificar que son exactas).
  • $(2x -5y + 2)dx + (1- 6y -5x)dy = 0$
  • $\left( y -\dfrac{y}{x^{2}}e^{y/x} \right) dx + \left( x + \dfrac{1}{x}e^{y/x} \right) dy = 0$
  • $\left[ \sin(y) + \dfrac{y}{x^{2}} \sin \left( \dfrac{y}{x} \right) \right] dx + \left[ x \cos(y) -\dfrac{1}{x} \sin \left( \dfrac{y}{x} \right) \right] dy = 0$
  1. Resolver las siguientes ecuaciones diferenciales no exactas.
  • $[e^{x} \cos(y)] dx + [-xe^{x} \sin(y)] dy = 0$
  • $[2x \sin(y) + ye^{xy}] dx + [x \cos(y) + e^{xy}] dy = 0$
  1. En el procedimiento realizado para resolver ecuaciones diferenciales exactas vimos que hay dos posibilidades para llegar a resultados equivalentes. Desarrolla el otro camino y deduce las expresiones (\ref{10}), (\ref{11}) y (\ref{12}).

Más adelante…

Para concluir con nuestro estudio sobre ecuaciones diferenciales no lineales de primer orden, en la siguiente entrada presentaremos la ecuación de Bernoulli y la ecuación de Riccati, así como sus respectivos métodos de resolución.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»