Archivo del Autor: Omar González Franco

Ecuaciones Diferenciales I: Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos singulares

Por Omar González Franco

Sin matemáticas, no hay nada que puedas hacer. Todo a tu alrededor
es matemáticas. Todo a tu alrededor son números.
– Shakuntala Devi

Introducción

Hemos comenzado con el estudio de las ecuaciones diferenciales lineales de segundo orden con coeficientes variables. Ya hemos aprendido cómo obtener soluciones con respecto a puntos ordinarios, ahora aprenderemos a obtener soluciones con respecto a puntos singulares.

En la entrada anterior vimos que para resolver ecuaciones de la forma

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0 \label{1} \tag{1}$$

se proponía una solución de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{2} \tag{2}$$

donde $x_{0}$ es un punto ordinario de la ecuación diferencial (\ref{1}).

En ocasiones no se pueden encontrar soluciones como (\ref{2}), así que se propone una solución de la forma

$$y(x) = (x -x_{0})^{r} \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{3} \tag{3}$$

Donde $r$ es una constante. En realidad, la solución (\ref{3}) es una generalización ya que si $r = 0$ regresamos a la forma (\ref{2}).

En esta entrada aprenderemos a resolver ecuaciones diferenciales en las que su solución es de la forma (\ref{3}).

Puntos singulares

El que la solución de una ecuación diferencial sea de la forma (\ref{3}) esta directamente relacionado con que el punto $x_{0}$ sea un punto singular y no un punto ordinario. En la entrada anterior definimos estos conceptos, sin embargo en esta entrada es necesario profundizar más acerca de los puntos singulares. Recordemos la definición de punto singular.

Nota: Las siguientes definiciones se basan en la forma estándar (\ref{1}) de una ecuación diferencial lineal de segundo orden.

Lo nuevo ahora es que un punto singular puede ser clasificado como regular o irregular.

Para fines prácticos en conveniente definir los puntos singulares regulares e irregulares a través de un límite.

Realicemos algunos ejemplos.

Ejemplo: Clasificar los puntos singulares de la ecuación diferencial

$$x^{3}(x^{2} -9) \dfrac{d^{2}y}{dx^{2}} + (x+3) \dfrac{dy}{dx} + (x -3)^{3}y = 0$$

Solución: El primer paso es escribir a la ecuación diferencial en la forma estándar (\ref{1}), así que dividimos toda la ecuación por el coeficiente de la segunda derivada de $y$.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1}{x^{3}(x -3)} \dfrac{dy}{dx} + \dfrac{(x -3)^{2}}{x^{3}(x + 3)} y = 0$$

Identificamos que

$P(x) = \dfrac{1}{x^{3}(x -3)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{(x -3)^{2}}{x^{3}(x + 3)}$

Notamos que la función $P(x)$ no está definida en los puntos $x = 3$ y $x = 0$, mientras que la función $Q(x)$ no está definida en $x = -3$ y $x = 0$, de manera que los puntos singulares son $x_{0} = 3$, $x_{0} = 0$ y $x_{0} = -3$. El resto de puntos en $\mathbb{R}$ son puntos ordinarios de la ecuación diferencial.

Para determinar si son regulares o irregulares definamos las nuevas funciones de acuerdo a (\ref{4}) y observemos si dichas funciones son analíticas o no en el correspondiente punto singular.

  • Caso 1: $x_{0} = 3$.

Definamos las nuevas funciones.

$$p(x) = (x -3)P(x) = \dfrac{1}{x^{3}} \hspace{1cm} y \hspace{1cm} q(x) = (x-3)^{2}Q(x) = \dfrac{(x -3)^{4}}{x^{3}(x + 3)}$$

Es claro que las nuevas funciones $p(x)$ y $q(x)$ si son analíticas en $x_{0} = 3$, por lo que dicho punto es un punto singular regular. Usando la definición de límite, se tiene

$$\lim_{x \to 3} p(x) = \lim_{x \to 3}\dfrac{1}{x^{3}} = \dfrac{1}{9} \hspace{1cm} y \hspace{1cm} \lim_{x \to 3} q(x) = \lim_{x \to 3} \dfrac{(x -3)^{4}}{x^{3}(x + 3)} = 0$$

Los límites existen, así que llegamos a la misma conclusión.

  • Caso 2: $x_{0} = 0$.

Definamos las nuevas funciones.

$$p(x) = x P(x) = \dfrac{1}{x^{2}(x -3)} \hspace{1cm} y \hspace{1cm} q(x) = x^{2} Q(x) = \dfrac{(x -3)^{2}}{x(x + 3)}$$

En este caso las funciones $p(x)$ y $q(x)$ siguen sin estar definidas para $x = 0$ lo que significa que no se pueden representar mediante una serie de potencias, es decir, no son analíticas en dicho punto. Veamos que ocurre con los limites. Por un lado,

$$\lim_{x \to 0}p(x) = \lim_{x \to 0}\dfrac{1}{x^{2}(x -3)} = -\infty$$

Por otro lado,

$$\lim_{x \to 0^{+}} q(x) = \lim_{x \to 0^{+}} \dfrac{(x -3)^{2}}{x(x + 3)} = \infty \hspace{1cm} y \hspace{1cm} \lim_{x \to 0^{-}} q(x) = \lim_{x \to 0^{-}} \dfrac{(x -3)^{2}}{x(x + 3)} = -\infty $$

Vemos que el limite de $p(x)$ es divergente, mientras que el límite de $q(x)$ no existe en $x = 0$.

En conclusión, $x_{0} = 0$ es un punto singular irregular.

  • Caso 3: $x_{0} = -3$.

Definamos las nuevas funciones.

$$p(x) = (x+3) P(x) = \dfrac{x + 3}{x^{3}(x -3)} \hspace{1cm} y \hspace{1cm} q(x) = (x + 3)^{2} Q(x) = \dfrac{(x -3)^{2}(x + 3)}{x^{3}}$$

Las nuevas funciones son analíticas en $x_{0} = -3$, confirmemos que los límites existen.

$$\lim_{x \to -3} p(x) = \lim_{x \to -3} \dfrac{x + 3}{x^{3}(x -3)} = 0 \hspace{1cm} y \hspace{1cm} \lim_{x \to -3} q(x) = \lim_{x \to -3} \dfrac{(x -3)^{2}(x + 3)}{x^{3}} = 0$$

En efecto, los limites existen, así que $x_{0} = -3$ es un punto singular regular.

$\square$

Realicemos un ejemplo más.

Ejemplo: Determinar el punto singular de la ecuación diferencial

$$(x + 1)^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + x^{2} y = 0$$

Solución: Escribimos a la ecuación diferencial en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{x}{(x + 1)^{2}} \dfrac{dy}{dx} + \dfrac{x^{2}}{(x + 1)^{2}} y = 0$$

Identificamos que

$$P(x) = \dfrac{x}{(x + 1)^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{x^{2}}{(x + 1)^{2}}$$

Notamos que el único punto singular es $x_{0} = -1$. Definamos las funciones $p(x)$ y $q(x)$.

$$p(x) = (x + 1)P(x) = \dfrac{x}{x+1} \hspace{1cm} y \hspace{1cm} q(x) = (x + 1)^{2}Q(x) = x^{2}$$

Aunque la función $q(x)$ si es analítica en $x_{0} = -1$, $p(x)$ no lo es. Por lo tanto, la ecuación diferencial no se puede desarrollar en potencias de $x + 1$ y por definición $x_{0} = -1$ es un punto singular irregular.

$\square$

Solución a ecuaciones diferenciales

Ahora que sabemos identificar puntos singulares de una ecuación diferencial podemos resolverlas con respecto a dichos puntos proponiendo una solución de la forma (\ref{3}). Ahora bien, debido a la complejidad de los cálculos, sólo estudiaremos el caso en el que el punto $x_{0} = 0$ es un punto singular regular.

A continuación enunciamos el teorema que establece que (\ref{3}) es una solución de la ecuación diferencial (\ref{1}) con respecto al punto singular $x_{0}$.

Con este teorema podemos establecer lo siguiente:

  • Si $x_{0}$ es un punto ordinario, entonces $r = 0$ y (\ref{2}) es la solución general.
  • Si $x_{0}$ es un punto singular regular, entonces (\ref{6}) dará una solución o la solución general.
  • Si $x_{0}$ es un punto singular irregular, entonces pueden o no existir soluciones de la forma (\ref{6}).

No demostraremos este teorema, pero será la base para resolver ecuaciones diferenciales.

La manera de resolver ecuaciones diferenciales con respecto a puntos singulares es bastante similar al caso de soluciones con respecto a puntos ordinarios, sin embargo en este caso, además de obtener una relación de recurrencia, obtendremos una ecuación cuadrática para $r$ que deberemos de resolver, a dicha ecuación se le conoce como ecuación indicial.

A continuación desarrollaremos el método de resolución que nos permitirá obtener la expresión general de la ecuación indicial, dicho método se conoce como método de Frobenius.

Método de Frobenius

Queremos resolver una ecuación diferencial en su forma estándar con respecto al punto singular regular $x_{0} = 0$.

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0$$

Multipliquemos esta ecuación por $x^{2}$.

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x [xP(x)] \dfrac{dy}{dx} + [x^{2}Q(x)] y = 0$$

Si usamos las definiciones (\ref{4}) para $x_{0} = 0$, entonces podemos escribir la ecuación anterior de la siguiente manera.

$$x^{2}\dfrac{d^{2}y}{dx^{2}} + xp(x) \dfrac{dy}{dx} + q(x)y = 0 \label{7} \tag{7}$$

Con $p(x)$ y $q(x)$ son funciones analíticas en $x = 0$, esto significa que se pueden representar mediante una serie de potencias con respecto a dicho punto, sean

$$p(x) = p_{0} + p_{1}x + p_{2}x^{2} + \cdots = \sum_{n = 0}^{\infty} p_{n}x^{n} \label{8} \tag{8}$$

y

$$q(x) = q_{0} + q_{1}x + q_{2}x^{2} + \cdots = \sum_{n = 0}^{\infty} q_{n}x^{n} \label{9} \tag{9}$$

dichas series. Una observación interesante es que si todos los coeficientes son cero excepto $p_{0}$ y $q_{0}$, entonces recuperamos la ecuación de Cauchy – Euler.

$$x^{2}\dfrac{d^{2}y}{dx^{2}} + p_{0}x \dfrac{dy}{dx} + q_{0}y = 0 \label{10} \tag{10}$$

El teorema anterior nos indica que la forma de la solución es

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

La primera y segunda derivada son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Sustituyamos todos estos resultados en la ecuación diferencial (\ref{7}).

$$x^{2} \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} + x \left[ \sum_{n = 0}^{\infty} p_{n}x^{n} \right] \sum_{n = 0}(n + r)c_{n}x^{n + r -1} + \left[ \sum_{n = 0}^{\infty} q_{n}x^{n} \right] \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

Introducimos los términos $x^{2}$ y $x$ a las series de las derivadas de $y$.

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \left[ \sum_{n = 0}^{\infty} p_{n}x^{n} \right] \sum_{n = 0}(n + r)c_{n}x^{n + r} + \left[ \sum_{n = 0}^{\infty} q_{n}x^{n} \right] \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

Tomemos los términos para $n = 0$.

\begin{align*}
r(r -1)c_{0}x^{r} + p_{0}rc_{0}x^{r} + q_{0}c_{0}x^{r} &= 0 \\
c_{0}x^{r} [r(r -1) + p_{0}r + q_{0}] &= 0
\end{align*}

Sabemos que $x^{r} \neq 0$ y el método nos obliga a considerar que siempre $c_{0} \neq 0$, entonces

$$r(r -1) + p_{0}r + q_{0} = 0$$

o bien,

$$r^{2} + (p_{0} -1)r + q_{0} = 0 \label{11} \tag{11}$$

Esta relación corresponde a la ecuación indicial con raíces $r_{1}$ y $r_{2}$ reales. En todos los casos se le asigna a $r_{1}$ la raíz mayor, es decir, debe ocurrir que $r_{1} > r_{2}$, siempre y cuando no sean raíces repetidas. A las raíces $r_{1}$ y $r_{2}$ se les denomina raíces indiciales.

El siguiente paso en el método es continuar igualando cada término a cero a través de una relación de recurrencia y con ello determinar los coeficientes de la solución propuesta $y(x)$, todo de manera similar que en el método de la entrada anterior.

En el enunciado del teorema enfatizamos que hay al menos una solución, esto significa que no siempre puede obtenerse una segunda serie solución que junto con la primera serie forme la solución general de la ecuación diferencial. No lo demostraremos, pero a continuación se muestra la forma de ambas soluciones linealmente independientes de acuerdo a los casos que pueden ocurrir con las raíces indiciales.

De acuerdo a la ecuación indicial (\ref{11}) se distinguen tres casos:

  • Caso 1: $r_{1} -r_{2} \neq$ número entero.

En este caso las soluciones de la ecuación diferencial (\ref{1}), son

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r_{1}}, \hspace{1cm} c_{0} \neq 0 \label{12} \tag{12}$$

$$y_{2}(x) = \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r_{2}}, \hspace{1cm} \hat{c}_{0} \neq 0 \label{13} \tag{13}$$

  • Caso 2: $r_{1} = r_{2} = r$.

En el caso en el que ambas raíces indiciales son iguales, las soluciones de la ecuación diferencial (\ref{1}), son

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}, \hspace{1cm} c_{0} \neq 0 \label{14} \tag{14}$$

$$y_{2}(x) = y_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r} \label{15} \tag{15}$$

  • Caso 3: $r_{1} -r_{2} =$ entero positivo.

En este caso las soluciones de la ecuación diferencial (\ref{1}), son

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r_{1}}, \hspace{1cm} c_{0} \neq 0 \label{16} \tag{16}$$

$$y_{2}(x) = Cy_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r_{2}}, \hspace{1cm} \hat{c}_{0} \neq 0 \label{17} \tag{17}$$

Donde $C$ es una constante que podría ser cero.

En todos los casos $y_{1}(x)$ y $y_{2}(x)$ son linealmente independientes. Por lo tanto, la solución general es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{18} \tag{18}$$

En los casos en los que el método de Frobenius no nos de una segunda solución es posible obtenerla con métodos que ya hemos estudiado antes. El primero de ellos es usar variación de parámetros, en este caso se propone la solución

$$y_{2}(x) = u(x)y_{1}(x)$$

y se sustituye, junto con las derivadas correspondientes, en la ecuación diferencial, esto nos permitirá obtener una ecuación diferencial para $u(x)$ que debemos resolver.

Otro método es usar directamente la forma de las soluciones $y_{2}(x)$ propuestas anteriormente para cada caso, calcular las derivadas correspondientes y sustituir en la ecuación diferencial.

Un tercer método se puede aplicar una vez que ya hemos determinado la primer solución $y_{1}(x)$ y es usando la expresión que deducimos en entradas anteriores.

$$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x) dx}}}{y_{1}^{2}(x)} dx} \label{19} \tag{19}$$

Una de las mejores maneras para comprender algo es a través de ejemplos y práctica, así que hemos decidido resolver tres ejemplos, uno para cada caso y así poder comprender del todo en qué consiste el método de Frobenius.

Cabe mencionar que a lo largo de esta entrada hemos dado las herramientas para trabajar, pero no se ha dado un fundamento formal de los resultados, para conocerlos se pueden revisar los videos del tema correspondiente en la sección de videos de este curso, en él se encontrarán los fundamentos de cómo es que se obtienen las soluciones linealmente independientes dadas para cada condición de las raíces indiciales.

Para concluir esta entrada realicemos los 3 ejemplos antes mencionados.

Solución cuando la diferencia de las raíces indiciales difiere de un número entero

Ejemplo: Resolver la ecuación diferencial

$$3x^{2} \dfrac{d^{2}y}{dx^{2}} -x\dfrac{dy}{dx} + (1 -x) y = 0$$

con respecto al punto singular $x_{0} = 0$.

Solución: Dividimos la ecuación diferencial por el coeficiente de la segunda derivada de $y$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{3x} \dfrac{dy}{dx} + \dfrac{1 -x}{3x^{2}}y = 0$$

Identificamos que

$$P(x) = -\dfrac{1}{3x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{1-x}{3x^{2}}$$

Ninguna función está definida en $x = 0$. Definimos las funciones $p(x)$ y $q(x)$ de acuerdo a (\ref{4}).

$$p(x) = -\dfrac{1}{3} \hspace{1cm} y \hspace{1cm} q(x) = \dfrac{1-x}{3}$$

Vemos que

$$\lim_{x \to 0} p(x) = -\dfrac{1}{3} \hspace{1cm} y \hspace{1cm} \lim_{x \to 0} q(x) = \dfrac{1}{3}$$

Esto nos muestra que $p(x)$ y $q(x)$ son analíticas en $x = 0$ y que dicho punto es un punto singular regular.

Obtendremos la ecuación indicial directamente de la expresión (\ref{11}).

Vemos que

$$p(x) = \sum_{n = 0}^{\infty}p_{n}x^{n} = p_{0} + p_{1}x + p_{2}x^{2} + \cdots = -\dfrac{1}{3}$$

de donde,

$$p_{0} = -\dfrac{1}{3}$$

y $p_{k} = 0$ $\forall$ $k \geqslant 1$ con $k \in \mathbb{N}$. Por otro lado

$$q(x) = \sum_{n = 0}^{\infty}q_{n}x^{n} = q_{0} + q_{1}x + q_{2}x^{2} + \cdots = \dfrac{1}{3} -\dfrac{1}{3}x$$

de donde,

$$q_{0} = \dfrac{1}{3} \hspace{1cm} y \hspace{1cm} q_{1} = -\dfrac{1}{3}$$

y $q_{k} = 0$ $\forall$ $k \geqslant 2$ con $k \in \mathbb{N}$.

Sustituimos $p_{0}$ y $q_{0}$ en la ecuación indicial (\ref{11}).

$$r^{2} + \left( -\dfrac{1}{3} -1 \right)r + \dfrac{1}{3} = r^{2} -\dfrac{4}{3}r + \dfrac{1}{3} = 0$$

Resolviendo para $r$ se obtiene que las raíces son

$$r_{1} = 1 \hspace{1cm} y \hspace{1cm} r_{2}= \dfrac{1}{3}$$

Notemos que

$$r_{1} -r_{2} = \dfrac{2}{3}$$

es decir, la diferencia de las raíces indiciales difiere de un número entero, esto nos indica que estamos en condiciones del caso 1, en donde las soluciones están dadas por las funciones (\ref{12}) y (\ref{13}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 1}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1/3}, \hspace{1cm} \hat{c}_{0} \neq 0$$

Para continuar con el método de Frobenius consideremos la solución general

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

y sus derivadas

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Una vez obtenida la relación de recurrencia ya se podrá sustituir los valores correspondientes de $r$. Sustituyamos en la ecuación diferencial.

$$3x^{2} \left[ \sum_{n = 0}^{\infty} (n + r)(n + r -1)c_{n}x^{n + r -2} \right] -x \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + (1 -x) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$3 \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r} -\sum_{n = 0}^{\infty}c_{n}x^{n + r + 1} = 0$$

En la última serie hacemos $k = n + 1$ y en el resto $k = n$.

$$3 \sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}c_{k}x^{k + r} -\sum_{k = 1}^{\infty}c_{k -1}x^{k + r} = 0$$

Para que todas las series comiencen en $k = 1$ extraemos el primer término de las tres primeras series y la suma la igualamos a cero.

\begin{align*}
3r(r -1)c_{0}x^{r} -rc_{0}x^{r} + c_{0}x^{r} &= 0 \\
c_{0}x^{r} \left[ 3r(r -1) -r + 1 \right] &= 0
\end{align*}

Como $x^{r} \neq 0$ y $c_{0} \neq 0$, entonces

\begin{align*}
3r(r -1) -r + 1 &= 0 \\
3r^{2} -4r + 1 &= 0
\end{align*}

Con este otro procedimiento podemos obtener la ecuación indicial. Ahora nos queda la ecuación

$$3 \sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} -\sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}c_{k}x^{k + r} -\sum_{k = 1}^{\infty}c_{k -1}x^{k + r} = 0$$

Podemos juntar todas las series en una sola.

$$\sum_{k = 1}^{\infty} [3(k + r)(k + r -1)c_{k} -(k + r)c_{k} + c_{k} -c_{k -1}]x^{k + r} = 0$$

Para satisfacer la igualdad es necesario que

$$c_{k} [3(k + r)(k + r -1) -(k + r) + 1] -c_{k -1} = 0$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{c_{k -1}}{3(k + r)(k + r -1) -(k + r) +1}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Hay que determinar los coeficientes para cada valor de las raíces indiciales. Para el valor de la primer raíz indicial $r = 1$, la relación de recurrencia es

$$c_{k} = \dfrac{c_{k -1}}{k(3k + 2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Determinemos los coeficientes para este caso.

$k = 1$.

$$c_{1} = \dfrac{c_{0}}{1(3(1) + 2)} = \dfrac{c_{0}}{5}$$

$k = 2$.

$$c_{2} = \dfrac{c_{1}}{2(3(2) + 2)} = \dfrac{c_{1}}{16} = \dfrac{c_{0}}{80}$$

$k = 3$.

$$c_{3} = \dfrac{c_{2}}{3(3(3) + 2)} = \dfrac{c_{2}}{33} = \dfrac{c_{0}}{2640}$$

$k = 4$.

$$c_{4} = \dfrac{c_{3}}{4(3(4) + 2)} = \dfrac{c_{3}}{56} = \dfrac{c_{0}}{147840}$$

Etcétera, entonces la primer solución es de la forma

\begin{align*}
y_{1}(x) &= x^{1} ( c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + \cdots) \\
&= x \left( c_{0} + \dfrac{c_{0}}{5}x + \dfrac{c_{0}}{80}x^{2} + \dfrac{c_{0}}{2640}x^{3} + \dfrac{c_{0}}{147840}x^{4} + \cdots \right) \\
&= c_{0}x \left( 1 + \dfrac{x}{5} + \dfrac{x^{2}}{80} + \dfrac{x^{3}}{2640} + \dfrac{x^{4}}{147840} + \cdots \right)
\end{align*}

Por otro lado, para $r = \dfrac{1}{3}$ la relación de recurrencia es

$$\hat{c}_{k} = \dfrac{\hat{c}_{k -1}}{k(3k -2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Usamos la notación $\hat{c}_{k}$ sólo para hacer referencia de que son los coeficientes de la segunda solución, pero se obtiene de la misma relación de recurrencia obtenida por el método, sólo que ahora usando $r = \dfrac{1}{3}$.

Determinemos los coeficientes para este caso.

$k = 1$.

$$\hat{c}_{1} = \dfrac{\hat{c}_{0}}{1(3(1) -2)} = \hat{c}_{0}$$

$k = 2$.

$$\hat{c}_{2} = \dfrac{\hat{c}_{1}}{2(3(2) -2)} = \dfrac{\hat{c}_{0}}{8}$$

$k = 3$.

$$\hat{c}_{3} = \dfrac{\hat{c}_{2}}{3(3(3) -2)} = \dfrac{\hat{c}_{2}}{21} = \dfrac{\hat{c}_{0}}{168}$$

$k = 4$.

$$\hat{c}_{4} = \dfrac{\hat{c}_{3}}{4(3(4) -2)} = \dfrac{\hat{c}_{3}}{40} = \dfrac{\hat{c}_{0}}{6720}$$

Etcétera, entonces la segunda solución es de la forma

\begin{align*}
y_{2}(x) &= x^{1/3} (\hat{c}_{0} + \hat{c}_{1}x + \hat{c}_{2}x^{2} + \hat{c}_{3}x^{3} + \hat{c}_{4}x^{4} + \cdots) \\
&= x^{1/3} \left( \hat{c}_{0} + \hat{c}_{0}x + \dfrac{\hat{c}_{0}}{8}x^{2} + \dfrac{\hat{c}_{0}}{168}x^{3} + \dfrac{\hat{c}_{0}}{6720}x^{4} + \cdots \right) \\
&= \hat{c}_{0}x^{1/3} \left( 1 + x + \dfrac{x^{2}}{8} + \dfrac{x^{3}}{168} + \dfrac{x^{4}}{6720} + \cdots \right)
\end{align*}

Si definimos $C_{1} = c_{0}$ y $C_{2} = \hat{c}_{0}$, entonces la solución general de la ecuación diferencial es

$$y(x) = C_{1}x \left( 1 + \dfrac{x}{5} + \dfrac{x^{2}}{80} + \dfrac{x^{3}}{2640} + \dfrac{x^{4}}{147840} + \cdots \right) + C_{2} x^{1/3} \left( 1 + x + \dfrac{x^{2}}{8} + \dfrac{x^{3}}{168} + \dfrac{x^{4}}{6720} + \cdots \right)$$

$\square$

Con este ejemplo podemos aclarar algunas cosas.

La primera de ellas es que desarrollando el método mismo obtendremos la ecuación indicial, así que no necesariamente debemos sustituir en la ecuación (\ref{11}), sin embargo sustituir en la ecuación (\ref{11}) nos permitirá, desde un inicio, conocer las raíces indiciales y con ello podremos determinar la forma de la segunda solución según sea el caso.

Otra cosa importante es que se pueden calcular los coeficientes que se deseen, en el ejemplo sólo calculamos los primeros $5$ coeficientes, es decir hasta $k = 4$, pero se puede continuar, lo interesante de continuar es que en algunas ocasiones es posible determinar una relación que generaliza la forma de los coeficientes y con ello formar una serie que incluso puede converger a una función conocida. Los siguientes ejercicios son un ejemplo de esto.

También hay que mencionar que en este ejemplo el método de Frobenius sí nos proporcionó la segunda solución usando la relación de recurrencia, esto no ocurrirá en algunos otros casos, como el que sigue a continuación, en estos casos será necesario aplicar algunos de los métodos que ya mencionamos antes.

Solución cuando las raíces indiciales son repetidas

Ejemplo: Resolver la ecuación diferencial

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + (x^{2} -x) \dfrac{dy}{dx} + y = 0$$

con respecto al punto singular $x_{0} = 0$.

Solución: Escribimos la ecuación en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{x -1}{x} \dfrac{dy}{dx} + \dfrac{1}{x^{2}} y = 0$$

Identificamos que

$$P(x) = \dfrac{x -1}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{1}{x^{2}}$$

Mientras que las funciones $p(x)$ y $q(x)$ están dadas por

$$p(x) = x -1 \hspace{1cm} y \hspace{1cm} q(x) = 1$$

Como los límites existen

$$\lim_{x \to 0}p(x) = -1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0} q(x) = 1$$

entonces $x = 0$ es un punto singular regular. En esta ocasión vamos a obtener las raíces indiciales directamente de la expresión resultante para $k = 0$. Sustituyamos las funciones correspondientes en la ecuación diferencial.

$$x^{2} \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + (x^{2} -x) \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r + 1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En la segunda serie hacemos $k = n + 1$ y en el resto $k = n$.

$$ \sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}(k -1 + r)c_{k-1}x^{k + r} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}c_{k}x^{k + r} = 0$$

Extraemos el primer término de las series que comienzan con $k = 0$ para que todas comiencen con $k = 1$ y la suma de dichos términos la igualamos a cero.

\begin{align*}
r(r -1)c_{0}x^{r} -rc_{0}x^{r} + c_{0}x^{r} &= 0 \\
c_{0}x^{r}[r(r -1) -r + 1] &= 0
\end{align*}

como $x^{r} \neq 0$ y $c_{0} \neq 0$, entonces

\begin{align*}
r(r -1) -r + 1 &= 0 \\
r^{2} -2r + 1 &= 0
\end{align*}

Hemos obtenido la ecuación indicial. Resolviendo para $r$ se obtiene que

$$r_{1} = r_{2} = 1$$

Las raíces indiciales son iguales, de manera que estamos en condiciones del caso 2 en el que las soluciones son de la forma (\ref{14}) y (\ref{15}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 1}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = \ln (x) \sum_{n = 0}^{\infty}c_{n}x^{n + 1} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1}$$

Ahora tenemos la ecuación en la que todas las series tienen la misma potencia y comienzan con el mismo índice.

$$\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r} -\sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}c_{k}x^{k + r} = 0$$

Juntamos todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + r)(k + r -1)c_{k} + (k -1 + r)c_{k -1} -(k + r)c_{k} + c_{k}]x^{k + r} = 0$$

de donde

$$c_{k}[(k + r)(k + r -1) -(k + r) + 1] + c_{k -1}(k -1 + r) = 0$$

despejando a $c_{k}$ se obtiene la relación de recurrencia.

$$c_{k} = \dfrac{c_{k -1}(k -1 + r)}{(k + r) -1 -(k + r)(k + r -1)} = \dfrac{c_{k -1}}{1 -k -r}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Cómo $r = 1$, entonces la relación de recurrencia es

$$c_{k} = -\dfrac{c_{k -1}}{k}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Determinemos los coeficientes.

$k = 1$.

$$c_{1} = -\dfrac{c_{0}}{1} = -c_{0}$$

$k = 2$.

$$c_{2} = -\dfrac{c_{1}}{2} = \dfrac{c_{0}}{2}$$

$k = 3$.

$$c_{3} = -\dfrac{c_{2}}{3} = -\dfrac{c_{0}}{6}$$

$k = 4$.

$$c_{4} = -\dfrac{c_{3}}{4} = \dfrac{c_{0}}{24}$$

$k = 5$.

$$c_{5} = -\dfrac{c_{4}}{5} = -\dfrac{c_{0}}{120}$$

Etcétera, la primera solución es

\begin{align*}
y_{1}(x) &= x(c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + c_{5}x^{5} + \cdots) \\
&= x \left( c_{0} -c_{0}x + \dfrac{c_{0}}{2}x^{2} -\dfrac{c_{0}}{6}x^{3} + \dfrac{c_{0}}{24}x^{4} -\dfrac{c_{0}}{120}x^{5} + \cdots \right) \\
&= c_{0}x \left( 1 -x + \dfrac{x^{2}}{2} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\dfrac{x^{5}}{5!} + \cdots \right)
\end{align*}

Lo que mencionamos antes, la solución va teniendo forma de una serie que conocemos, pues sabemos que

$$e^{-x} = \sum_{n = 0}^{\infty} \dfrac{(-x)^{n}}{n!} = 1 -x + \dfrac{x^{2}}{2} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\dfrac{x^{5}}{5!} + \cdots$$

Entonces,

$$y_{1}(x) = c_{0}xe^{-x}$$

Consideremos que $c_{0} = 1 \neq 0$, así la primer solución de la ecuación diferencial es

$$y_{1}(x) = xe^{-x}$$

Notemos que el método ya no nos ofrece una segunda solución. Para obtener la segunda solución se pueden usar los tres métodos antes mencionados. Uno de ellos es usando variación de parámetros. Un segundo método puede ser por derivación de la solución propuesta

$$y_{2}(x) = y_{1}\ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1}$$

las derivadas son

$$\dfrac{dy_{2}}{dx} = \dfrac{y_{1}}{x} + \ln (x)\dfrac{dy_{1}}{dx} + \sum_{n = 0}^{\infty}(n + 1)\hat{c}_{n}x^{n}$$

y

$$\dfrac{d^{2}y_{2}}{dx^{2}} = -\dfrac{y_{1}}{x^{2}} + \dfrac{2}{x} \dfrac{dy_{1}}{dx} + \ln(x) \dfrac{d^{2}y_{1}}{dx^{2}} + \sum_{n = 0}^{\infty}(n + 1)n \hat{c}_{n}x^{n -1}$$

Se sustituyen estos resultados en la ecuación diferencial y se procede igual que antes con la diferencia de que ahora no obtendremos una ecuación indicial, pero sí una relación de recurrencia para obtener los coeficientes $\hat{c}_{k}$. ¡Seguro este método es un camino largo!.

Un tercer método es aplicar directamente la formula (\ref{19}). Debido a que este es el camino menos largo, obtendremos la segunda solución por este método.

Recordemos que

$$P(x) = \dfrac{x -1}{x}$$

y que la primer solución es

$$y_{1}(x) = x e^{-x}$$

Notemos que

$$-\int{P(x)dx} = -\int{\dfrac{x -1}{x}dx} = \int{ \left( \dfrac{1}{x} -1 \right) dx} = \ln(x) -x$$

Sustituimos en (\ref{19}).

\begin{align*}
y_{2}(x) &= x e^{-x} \int{\dfrac{e^{\ln(x) -x}}{(xe^{-x})^{2}}dx} \\
&= x e^{-x} \int{\dfrac{xe^{-x}}{x^{2}e^{-2x}}dx} \\
&= x e^{-x} \int{\dfrac{e^{x}}{x}dx}
\end{align*}

La integral resultante es conocida como integral exponencial $Ei(x)$ y corresponde a una función especial definida en el plano complejo. Para nuestro caso es conveniente escribir a la exponencial como serie e integrar término a término.

\begin{align*}
y_{2}(x) &= x e^{-x} \int{\dfrac{1}{x} \left( 1 + x + \dfrac{x^{2}}{2} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots \right)dx} \\
&= x e^{-x} \int{ \left( \dfrac{1}{x} + 1 + \dfrac{x}{2} + \dfrac{x^{2}}{3!} + \dfrac{x^{3}}{4!} + \cdots \right) dx} \\
&= x e^{-x} \left[ \ln(x) + x + \dfrac{x^{2}}{2(2!)} + \dfrac{x^{3}}{3(3!)} + \dfrac{x^{4}}{4(4!)} + \cdots \right] \\
&= x e^{-x} \ln(x) + x e^{-x} \sum_{n = 1}^{\infty}\dfrac{x^{n}}{n(n!)}
\end{align*}

Vemos que

\begin{align*}
xe^{-x} \sum_{n = 1}^{\infty}\dfrac{x^{n}}{n(n!)} &= x \left( 1 -x + \dfrac{x^{2}}{2!} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\cdots \right) \left( x + \dfrac{x^{2}}{2(2!)} + \dfrac{x^{3}}{3(3!)} + \dfrac{x^{4}}{4(4!)} + \cdots \right) \\
&= \left( x -x^{2} + \dfrac{x^{3}}{2} -\dfrac{x^{4}}{6} + \dfrac{x^{5}}{24} -\cdots \right) \left( x + \dfrac{x^{2}}{4} + \dfrac{x^{3}}{18} + \dfrac{x^{4}}{96} + \cdots \right) \\
&= x^{2} + \left( \dfrac{x^{3}}{4} -x^{3} \right) + \left( \dfrac{x^{4}}{18} -\dfrac{x^{4}}{4} + \dfrac{x^{4}}{2} \right) + \left( \dfrac{x^{5}}{96} -\dfrac{x^{5}}{18} + \dfrac{x^{5}}{8} -\dfrac{x^{5}}{6} \right) + \cdots \\
&= x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots
\end{align*}

Entonces la segunda solución es

$$y_{2}(x) = xe^{-x} \ln(x) + x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots$$

Por lo tanto, la solución general de la ecuación diferencial es

$$y(x) = C_{1}xe^{-x} + C_{2} \left( xe^{-x} \ln(x) + x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots \right)$$

$\square$

Solución cuando la diferencia de las raíces indiciales es un número entero positivo

Ejemplo: Resolver la ecuación diferencial

$$x\dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 4x^{3} y = 0$$

con respecto al punto singular $x_{0} = 0$.

Solución: Dividimos toda la ecuación por $x$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{x} \dfrac{dy}{dx} + 4x^{2}y = 0$$

Identificamos que

$$P(x) = -\dfrac{1}{x} \hspace{1cm} y \hspace{1cm} Q(x)= 4x^{2}$$

Es claro que $x = 0$ es un punto ordinario de $Q(x)$, sin embargo es un punto singular regular de $P(x)$, pues

$$\lim_{x \to 0}xP(x) = \lim_{x \to 0}-1 = -1$$

Sustituimos las funciones correspondientes en la ecuación diferencial.

$$x \left[ \sum_{n = 0}^{\infty }(n + r)(n + r -1)c_{n}x^{n + r -2} \right] -\left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + 4x^{3} \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} + 4 \sum_{n = 0}^{\infty}c_{n}x^{n + r + 3} = 0$$

Con el propósito de que en la tercer serie $x$ tenga la misma potencia que las dos primeras, hacemos $k = n + 4$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} + 4 \sum_{k = 4}^{\infty}c_{k -4}x^{k + r -1} = 0$$

Para $k = 0$, se tiene

\begin{align*}
r(r -1)c_{0}x^{r -1} -rc_{0}x^{r -1} &= 0 \\
c_{0}x^{r -1} [r(r -1) -r] &= 0
\end{align*}

de donde se obtiene la ecuación indicial

$$r^{2} -2r = 0$$

cuyas raíces son

$$r_{1} = 2 \hspace{1cm} y \hspace{1cm} r_{2} = 0$$

Como

$$r_{1} -r_{2} = 2$$

Es decir, la diferencia es un número entero, entonces estamos en condiciones del caso 3 y por tanto las soluciones son de la forma (\ref{16}) y (\ref{17}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 2}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = C \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n + 2} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}, \hspace{1cm} \hat{c}_{0}\neq 0$$

Recordemos que $C$ puede ser cero.

Necesitamos que todas las series comiencen en $k = 4$ para poder obtener la relación de recurrencia. Extraemos los términos para $k = 1$, $k = 2$ y $k = 3$ y cada suma correspondiente la igualamos a cero.

$k = 1$.

\begin{align*}
(1 + r)(r)c_{1}x^{r} -(1 + r)c_{1}x^{r} &= 0 \\
x^{r}[(1 + r)(r) -(1 + r)]c_{1} &= 0
\end{align*}

Debido a que

$$(1 + r)(r) -(1 + r) \neq 0$$

de acuerdo a los valores de las raíces indiciales, entonces necesariamente $c_{1} = 0$.

$k = 2$.

\begin{align*}
(2 + r)(1 + r)c_{2}x^{r + 1} -(2 + r)c_{2}x^{r + 1} &= 0 \\
x^{r + 1}[(2 + r)(1 + r) -(2 + r)] c_{2} &= 0
\end{align*}

de donde necesariamente $c_{2} = 0$.

$k = 3$.

\begin{align*}
(3 + r)(2 + r)c_{3}x^{r + 2} -(3 + r)c_{3}x^{r + 2} &= 0 \\
x^{r + 2}[(3 + r)(2 + r) -(3 + r)] c_{3} &= 0
\end{align*}

Igualmente obtenemos que $c_{3} = 0$.

Ahora tenemos la ecuación

$$\sum_{k = 4}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 4}^{\infty}(k + r)c_{k}x^{k + r -1} + 4 \sum_{k = 4}^{\infty}c_{k -4}x^{k + r -1} = 0$$

La reescribimos en una sola serie.

$$\sum_{k = 4}^{\infty}[(k + r)(k + r -1)c_{k} -(k + r)c_{k} + 4c_{k -4}]x^{k + r -1} = 0$$

De donde,

$$c_{k}[(k + r)(k + r -1) -(k + r)] + 4c_{k -4} = 0$$

Despejando $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{4c_{k -4}}{(k + r) -(k + r)(k + r -1)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Para el caso en el que $r = 2$ la relación de recurrencia es

$$c_{k} = -\dfrac{4c_{k -4}}{k(k + 2)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Determinemos los coeficientes.

$k = 4$.

$$c_{4} = -\dfrac{4c_{0}}{4(4 + 2)} = -\dfrac{4c_{0}}{24} = -\dfrac{c_{0}}{6}$$

Para $k = 5$, $k = 6$ y $k = 7$ obtendremos que $c_{5} = 0$, $c_{6} = 0$ y $c_{7} = 0$ respectivamente.

$k = 8$.

$$c_{8} = -\dfrac{4c_{4}}{8(8 + 2)} = -\dfrac{4c_{4}}{80} = -\dfrac{c_{4}}{20} = \dfrac{c_{0}}{120}$$

De la misma manera $c_{9} = c_{10} = c_{11} = 0$.

$k = 12$.

$$c_{12} = -\dfrac{4c_{8}}{12(12 + 2)} = -\dfrac{4c_{8}}{168} = -\dfrac{c_{8}}{42} = -\dfrac{c_{0}}{5040}$$

Etcétera, entonces

\begin{align*}
y_{1}(x) &= x^{2} \left( c_{0} -\dfrac{c_{0}}{6}x^{4} + \dfrac{c_{0}}{120}x^{8} -\dfrac{c_{0}}{5040}x^{12} + \cdots \right) \\
&= c_{0} \left( x^{2} -\dfrac{x^{6}}{3!} + \dfrac{x^{10}}{5!} -\dfrac{x^{14}}{7!} + \cdots \right)
\end{align*}

Sabemos que

$$\sin(x) = x -\dfrac{x^{3}}{3!} + \dfrac{x^{5}}{5!} -\dfrac{x^{7}}{7!} + \cdots = \sum_{n = 0}^{\infty} \dfrac{(-1)^{n} x^{2n + 1}}{(2n + 1)!}$$

Entonces la primer solución es

$$y_{1}(x) = c_{0} \sin(x^{2})$$

Para obtener la segunda solución $y_{2}$ podemos probar con la relación de recurrencia que obtuvimos o por alguno de los métodos que ya conocemos.

Consideremos la relación de recurrencia obtenida

$$c_{k} = \dfrac{4c_{k -4}}{(k + r) -(k + r)(k + r -1)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Usemos la notación $\hat{c}_{k}$ y el valor de la segunda raíz indicial $r = 0$, en este caso la relación de recurrencia es

$$\hat{c}_{k} = -\dfrac{4c_{k -4}}{k(k -2)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Los mismos coeficientes que fueron cero en el caso anterior serán cero en este caso, así que sólo consideraremos que $k = 4, 8, 12, \cdots$. Determinemos los coeficientes.

$k = 4$.

$$\hat{c}_{4} = -\dfrac{4 \hat{c}_{0}}{4(4 -2)} = -\dfrac{4 \hat{c}_{0}}{8} = -\dfrac{\hat{c}_{0}}{2}$$

$k = 8$.

$$\hat{c}_{8} = -\dfrac{4 \hat{c}_{4}}{8(8 -2)} = -\dfrac{4 \hat{c}_{4}}{48} = -\dfrac{\hat{c}_{4}}{12} = \dfrac{\hat{c}_{0}}{24}$$

$k = 12$.

$$\hat{c}_{12} = -\dfrac{4 \hat{c}_{8}}{12(12 -2)} = -\dfrac{4 \hat{c}_{8}}{120} = -\dfrac{\hat{c}_{8}}{30} = -\dfrac{\hat{c}_{0}}{720}$$

Etcétera, entonces

\begin{align*}
y &= \hat{c}_{0} -\dfrac{\hat{c}_{0}}{2}x^{4} + \dfrac{\hat{c}_{0}}{24}x^{8} -\dfrac{\hat{c}_{0}}{720}x^{12} + \cdots \\
&= \hat{c}_{0} \left( 1 -\dfrac{x^{4}}{2!} + \dfrac{x^{8}}{4!} -\dfrac{x^{12}}{6!} + \cdots \right)
\end{align*}

Sabemos que

$$\cos(x) = 1 -\dfrac{x^{2}}{2!} + \dfrac{x^{4}}{4!} -\dfrac{x^{6}}{6!} + \cdots = \sum_{n = 0}^{\infty} \dfrac{(-1)^{n} x^{2n}}{(2n)!}$$

Entonces la segunda solución es

$$y_{2}(x) = \hat{c}_{0} \cos(x^{2})$$

Vemos que el método no nos indica la existencia de la función $\ln(x)$ y nosotros esperamos una solución de la forma

$$y_{2}(x) = C \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n + 2} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}, \hspace{1cm} \hat{c}_{0}\neq 0$$

Entonces podemos concluir que $C = 0$, así

$y_{2}(x) = \hat{c}_{0} \cos(x^{2})$

Veamos que se obtiene usando la fórmula (\ref{19}). Recordemos que

$$P(x) = -\dfrac{1}{x}$$

y consideremos que $c_{0} = 1$, tal que

$$y_{1}(x) = \sin(x^{2})$$

Vemos que

$$-\int{P(x) dx} = \int{\dfrac{dx}{x}} = \ln(x)$$

Sustituyamos en (\ref{19}).

$$y_{2}(x) = \sin(x^{2}) \int{\dfrac{e^{\ln(x)}}{(\sin(x^{2}))^{2}} dx} = \sin(x^{2}) \int{\dfrac{x}{(\sin(x^{2}))^{2}}dx}$$

Resolviendo la integral se obtiene que

$$\int{\dfrac{x}{(\sin(x^{2}))^{2}}dx} = -\dfrac{1}{2} \cot(x^{2})$$

Entonces,

$$y_{2}(x) = -\dfrac{1}{2} \sin(x^{2}) \left( \dfrac{\cos(x^{2})}{\sin(x^{2})} \right) = -\dfrac{1}{2} \cos(x^{2}) = \hat{c}_{0} \cos(x^{2})$$

Este método nos indica que efectivamente $C = 0$. Si $C_{1} = c_{0}$ y $C_{2} = \hat{c}_{0}$, entonces la solución general de la ecuación diferencial es

$$y(x) = C_{1} \sin(x^{2}) + C_{2} \cos(x^{2})$$

$\square$

Hemos concluido con esta entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Usar el método de Frobenius para obtener la solución general de las siguientes ecuaciones diferenciales en el punto singular $x_{0}= 0$. Verificar que dicho punto es singular.
  • $2x \dfrac{d^{2}y}{dx^{2}} + (x + 1) \dfrac{dy}{dx} + 3y = 0$.
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{6}x \dfrac{dy}{dx} + \dfrac{1}{3}y = 0$.
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} + 6x \dfrac{dy}{dx} + (6 -x^{2})y = 0$.
  • $2x^{2} \dfrac{d^{2}y}{dx^{2}} -x^{2} \dfrac{dy}{dx} -(x + 4)y = 0$.
  • $x \dfrac{d^{2}y}{dx^{2}} + (x -1) \dfrac{dy}{dx} + \left( \dfrac{1}{x} -1 \right) y = 0$.
  • $(x^{2} -x) \dfrac{d^{2}y}{dx^{2}} + (3x -1) \dfrac{dy}{dx} + y = 0$.

Más adelante…

Ahora que sabemos resolver ecuaciones diferenciales lineales de segundo orden con coeficientes variables con respecto a puntos ordinarios y puntos singulares, en las siguientes entradas resolveremos algunas ecuaciones diferenciales especiales cuya utilidad es de suma importancia en otras áreas del conocimiento como la física, biología e ingeniería entre otras.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos ordinarios

Por Omar González Franco

El mundo de las matemáticas no es un lugar aburrido en el que estar.
Es un lugar extraordinario; merece la pena pasar el tiempo allí.
– Marcus du Sautoy

Introducción

Hasta este punto de la unidad dos hemos desarrollado distintos métodos para resolver ecuaciones diferenciales lineales de orden superior, en particular de segundo orden con coeficientes constantes a excepción de la ecuación de Cauchy – Euler.

Para finalizar con la segunda unidad es el turno de estudiar las ecuaciones diferenciales lineales de segundo orden con coeficientes variables. Estas ecuaciones suelen ser mucho más complicadas de resolver ya que no se resuelven en términos de funciones elementales, sino que tienen forma de serie de potencias infinitas.

Nos parece adecuado comenzar esta entrada con un repaso sobre series de potencias, posteriormente veremos su utilidad en los métodos de resolución de las ecuaciones diferenciales antes mencionadas, así mismo, introduciremos algunos conceptos nuevos relacionados con el tipo de solución que tienen estas ecuaciones diferenciales.

Series de potencias

Algunas propiedades y conceptos importantes que debemos recordar son los siguientes.

Toda serie de potencias tiene un intervalo de convergencia.

Si $R> 0$, entonces la serie de potencias (\ref{1}) converge para $|x -a| < R$ y diverge para $|x -a| > R$.

Si la serie converge sólo en su centro $a$, entonces $R = 0$.

Si la serie converge para toda $x$, entonces se escribe $R = \infty$.

Una serie de potencias podría converger o no en los puntos extremos $a -R$ y $a + R$ de este intervalo.

El radio de convergencia también se puede determinar con las siguientes expresiones.

$$R = \left( \lim_{n \to \infty} \sqrt[n]{|c_{n}|} \right)^{-1} \hspace{1cm} o \hspace{1cm} R = \lim_{n \to \infty} \left| \dfrac{c_{n}}{c_{n + 1}} \right| \label{4} \tag{4}$$

Realicemos un ejemplo.

Ejemplo: Hallar el radio de convergencia y el intervalo de convergencia de la serie de potencias

$$\sum_{n = 1}^{\infty} \dfrac{n^{2}}{2^{n}} \left( x -1 \right)^{n}$$

Solución: Para determinar el radio de convergencia utilicemos la segunda expresión de (\ref{4}). De la serie de potencias identificamos que

$$c_{n} = \dfrac{n^{2}}{2^{n}} \hspace{1cm} y \hspace{1cm} c_{n + 1} = \dfrac{(n + 1)^{2}}{2^{n + 1}}$$

Calculemos el límite.

$$R = \lim_{n \to \infty} \left| \dfrac{c_{n}}{c_{n + 1}} \right| = \lim_{n \to \infty} \left| \dfrac{\dfrac{n^{2}}{2^{n}}}{\dfrac{(n + 1)^{2}}{2^{n + 1}}} \right| = 2 \lim_{n \to \infty} \left| \dfrac{n^{2}}{(n + 1)^{2}} \right|$$

Sabemos que

$$\lim_{n \to \infty} \left| \dfrac{n^{2}}{(n + 1)^{2}} \right| = 1$$

Por lo tanto, el radio de convergencia es $R = 2$.

Para determinar el intervalo de convergencia utilicemos la expresión (\ref{5}).

\begin{align*}
\lim_{n \to \infty} \left| \dfrac{c_{n + 1}(x -a)^{n + 1}}{c_{n}(x -a)^{n}} \right| &= \lim_{n \to \infty} \left| \dfrac{\dfrac{(n + 1)^{2}}{2^{n + 1}}(x -1)^{n + 1}}{\dfrac{n^{2}}{2^{n}}(x -1)^{n}} \right| \\
&= |x -1| \lim_{n \to \infty} \dfrac{2^{n}(n + 1)^{2}}{2^{n + 1}n^{2}} \\
&= \dfrac{1}{2} |x -1| \lim_{n \to \infty} \dfrac{n^{2} + 2n + 1}{n^{2}} \\
&= L
\end{align*}

Es claro que

$$\lim_{n \to \infty} \dfrac{n^{2} + 2n + 1}{n^{2}} = 1$$

Entonces,

$$\dfrac{1}{2} |x -1| = L$$

La condición de convergencia nos indica que $L < 1$, considerando esto tenemos que

\begin{align*}
\dfrac{1}{2} |x -1| &< 1 \\
|x -1| &< 2 \\
-2 < x -1 &< 2 \\
-1 < x &< 3
\end{align*}

Por lo tanto, el intervalo de convergencia es $I = (-1, 3)$.

Notemos que la mitad de la longitud del intervalo de convergencia efectivamente corresponde al valor del radio de convergencia obtenido.

$$R = \dfrac{3 -(-1)}{2} = \dfrac{4}{2} = 2$$

$\square$

Series de potencias como funciones

Nota: La convergencia en un extremo se podría perder por derivación o ganar por integración. Algo similar ocurre con los índices de una serie, supongamos que

$$y = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

es una serie de potencias en $x$, las primeras dos derivadas están dadas como

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty} n x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}n(n -1)x^{n -2}$$

Sin embargo, notemos que el primer término en la primera derivada y los dos primeros términos de la segunda derivada son cero, entonces los podemos omitir y correr el índice para escribir

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty} n x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)x^{n -2}\label{7} \tag{7}$$

Un concepto de bastante importancia y utilidad en las próximas entradas es el siguiente.

Podemos hacer operaciones con series de potencias, a continuación se muestran algunas de ellas.

  • Suma: Dos series de potencias pueden sumarse término a término.

Sean

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n} \hspace{1cm} y \hspace{1cm} g(x) = \sum_{n = 0}^{\infty}b_{n}(x -a)^{n}$$

dos series de potencias con radio de convergencia $R> 0$, entonces

$$f(x) + g(x) = \sum_{n = 0}^{\infty}(c_{n} + b_{n})(x -a)^{n} \label{9} \tag{9}$$

Para toda $|x -a| < R$.

  • Producto: Dos series de potencias pueden multiplicarse término a término (cada término de la primera por cada término de la segunda).

Sean

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n} \hspace{1cm} y \hspace{1cm} g(x) = \sum_{n = 0}^{\infty}b_{n}(x -a)^{n}$$

dos series de potencias con radio de convergencia $R> 0$, entonces

$$f(x)g(x) = \sum_{n = 0}^{\infty}(c_{0}b_{n} + c_{1}b_{n -1} + \cdots + c_{n}b_{0})(x -a)^{n} \label{10} \tag{10}$$

Para toda $|x -a| < R$.

  • Derivación: Una serie de potencias puede derivarse término a término.

Sea

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n}$$

una serie de potencias convergente para $|x -a| < R$ con $R> 0$. La derivada de la serie $f$ es

$$F(x) = \dfrac{df}{dx} = \sum_{n = 1}^{\infty}nc_{n}(x -a)^{n -1} \label{11} \tag{11}$$

y también es convergente y tiene el mismo radio de convergencia que $f(x)$.

  • Integración: Una serie de potencias puede integrarse término a término.

Sea

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n}$$

una serie de potencias convergente para $|x -a| < R$ con $R> 0$. La integral de la serie $f$ es

$$F(x) = \int_{0}^{x}f(t)dt = \sum_{n = 0}^{\infty}\dfrac{c_{n}}{n + 1}(x -a)^{n + 1} \label{12} \tag{12}$$

y tiene a $R$ como radio de convergencia.

A lo largo de ésta y las siguientes entradas será de suma importancia y utilidad simplificar la suma de dos o más series de potencias, cada una expresada en notación de suma, en una sola expresión de suma, muchas veces esto implica que se deba hacer un cambio en el índice de la suma.

Para poder sumar dos series en necesario que ambos índices de las sumas comiencen con el mismo número y las potencias de $x$ sean las mismas y estén en fase. Por ejemplo, consideremos las siguientes dos series

$$f(x) = \sum_{n = 1}^{\infty} = \dfrac{n}{n+2}x^{n + 1} \hspace{1cm} y \hspace{1cm} g(x) = \sum_{n = 1}^{\infty} = \dfrac{1}{n^{2} + 1}x^{n + 1}$$

Como ambas series comienzan con el mismo número $n = 1$ y en ambas la potencia de $x$ es la misma $n + 1$, entonces podemos combinar ambas series en una sola de acuerdo a la expresión (\ref{9})

\begin{align*}
f(x) + g(x) &= \sum_{n = 1}^{\infty} \left[ \dfrac{n}{n+2} + \dfrac{1}{n^{2} + 1} \right]x^{n + 1} \\
&= \sum_{n = 1}^{\infty} \dfrac{n^{3} + 2n + 2}{n^{3} + 2n^{2} + n + 2}x^{n + 1}
\end{align*}

¿Pero que ocurre si no comienzan con el mismo número y/o las potencias de $x$ no coinciden?. En estos casos será necesario hacer un cambio en el índice de la suma y por tanto en la potencia de $x$. A continuación se muestra un ejemplo en el que describimos la forma de hacerlo.

Ejemplo: Reescribir la expresión

$$f(x) = \sum_{n = 1}^{\infty}2nc_{n}x^{n -1} + \sum_{n = 0}^{\infty}6c_{n}x^{n + 1}$$

como una sola serie de potencias cuyo término general tenga $x^{k}$.

Solución: Notemos que la potencia de $x$ en la primer serie para $n = 1$ es $x^{0}$, mientras que en la segunda serie para $n = 0$ es $x^{1}$, como ambas potencias son distintas decimos que no están en fase, para corregir esto y hacer que estén en fase extraemos el primer término de la primer serie.

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} = 2c_{1} + \sum_{n = 2}^{\infty}2nc_{n}x^{n -1}$$

Así, la potencia de $x$ para $n = 2$ es $x^{1}$. Con esto hemos logrado que ambas series estén en fase a pesar de que tengan distintas potencias en $x$ y comiencen con distintos números para $n$.

Procedemos a hacer el cambio de índice, para ello se toman como guía los exponentes de $x$. Para la primer serie tomamos $k = n -1$, de donde $n = k + 1$. Si $n = 2$, entonces $k = 1$ con esto podemos escribir a la primer serie de la siguiente manera.

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} = 2c_{1} + \sum_{k = 1}^{\infty}2(k + 1)c_{k + 1}x^{k}$$

Para la segunda serie tomamos $k = n + 1$, de donde $n = k -1$, si $n = 0$, entonces $k = 1$, así la segunda serie se puede escribir de la siguiente manera.

$$\sum_{n = 0}^{\infty}6c_{n}x^{n + 1} = \sum_{k = 1}^{\infty}6c_{k -1}x^{k}$$

Ahora podemos escribir

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} + \sum_{n = 0}^{\infty}6c_{n}x^{n + 1} = 2c_{1} + \sum_{k = 1}^{\infty}2(k + 1)c_{k + 1}x^{k} + \sum_{k = 1}^{\infty}6c_{k -1}x^{k}$$

Observemos que ambas series ya comienzan con el mismo número $k = 1$ y la potencia de $x$ es $k$ para ambas, entonces ya podemos combinar las series en una sola, de tal manera que

$$f(x) = 2c_{1} + \sum_{k = 1}^{\infty} \left[ 2(k + 1)c_{k + 1} + 6c_{k -1} \right] x^{k}$$

$\square$

En el caso de una sola serie es mucho mas sencillo pues basta tomar a $k$ como la potencia de $x$ y evaluar el valor del primer número en la serie, por ejemplo para la serie

$$\sum_{n = 1}^{\infty}nc_{n}x^{n + 2}$$

Si queremos que el termino $x$ tenga potencia $k$ hacemos $k = n + 2$, de donde $n = k -2$, la serie comienza en $n = 1$, sustituyendo en $k$ obtenemos que $k = 3$, por lo tanto la serie en términos del índice $k$ se puede escribir de la siguiente manera.

$$\sum_{n = 1}^{\infty}nc_{n}x^{n + 1} = \sum_{k = 3}^{\infty}(k -2)c_{k -2}x^{k}$$

Puedes desglosar ambas sumas para convencerte de la igualdad.

Hasta aquí concluimos nuestro repaso de series de potencias, es momento de aplicarlo en la resolución de ecuaciones diferenciales.

Soluciones en series de potencias de ecuaciones diferenciales

Las ecuaciones diferenciales lineales de segundo orden con coeficientes variables tienen la forma

$$a_{2}(x)\dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{13} \tag{13}$$

Comenzaremos por considerar que $g(x) = 0$.

$$a_{2}(x)\dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = 0 \label{14} \tag{14}$$

Si dividimos la ecuación por $a_{2}(x) \neq 0$ y definimos

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{a_{0}(x)}{a_{2}(x)}$$

podemos escribir la ecuación (\ref{14}) en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0 \label{15} \tag{15}$$

En base a la ecuación estándar (\ref{15}) establecemos las siguientes definiciones.

De acuerdo a estas definiciones notamos que un punto singular $x_{0}$ es un punto no ordinario.

Realicemos un ejemplo.

Ejemplo: Hallar los puntos ordinarios y singulares de la ecuación diferencial

$$x^{2}(x -1)\dfrac{d^{2}y}{dx^{2}} + x^{3}(x^{2} -1)\dfrac{dy}{dx} + xy = 0$$

Solución: El primer paso es escribir a la ecuación diferencial en su forma estándar, para ello dividimos toda la ecuación por el coeficiente de la segunda derivada suponiendo que es distinto de cero.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + \dfrac{x^{3}(x^{2} -1)}{x^{2}(x -1)} \dfrac{dy}{dx} + \dfrac{x}{x^{2}(x -1)}y &= 0 \\
\dfrac{d^{2}y}{dx^{2}} + x(x + 1) \dfrac{dy}{dx} + \dfrac{1}{x(x -1)}y &= 0
\end{align*}

Identificamos que

$$P(x) = x(x + 1) \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{1}{x(x -1)}$$

Para el caso de la función $P(x)$ notamos que es analítica para toda $x \in \mathbb{R}$, mientras que la función $Q(x)$ no está definida en $x = 0$ ni $x = 1$, es decir, no es analítica en dichos puntos.

Por lo tanto, los puntos ordinarios de la ecuación diferencial son todas las $x \in \mathbb{R}$ excepto $x = 0$ y $x = 1$, éstos puntos corresponde a los puntos singulares de la ecuación.

$\square$

Una observación interesante es que la ecuación de Cauchy-Euler

$$ax^{2} \dfrac{d^{2}y}{dx^{2}} + bx \dfrac{dy}{dx} + cy = 0 \label{16} \tag{16}$$

en su forma estándar

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{b}{ax} \dfrac{dy}{dx} + \dfrac{c}{ax^{2}}y = 0 \label{17} \tag{17}$$

nos muestra que las funciones

$$P(x) = \dfrac{b}{ax} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{c}{ax^{2}}$$

no están definidas en $x = 0$, por tanto $x = 0$ es un punto singular y todos los demás puntos (reales o complejos) son puntos ordinarios, es por ello que toda la teoría realizada en la entrada correspondiente fue para $x > 0$.

De acuerdo al título de esta entrada, nos enfocaremos en soluciones respecto a puntos ordinarios, sin embargo, cabe mencionar que en la siguiente entrada estudiaremos soluciones respecto a puntos singulares y será necesario hacer una distinción entre dos tipos de puntos singulares que definiremos como punto singular regular y punto singular irregular. Estos conceptos los revisaremos en la siguiente entrada.

Como ya hemos mencionando, las soluciones de la ecuación diferencial (\ref{15}) son soluciones en forma de series de potencias. Si una ecuación diferencial es analítica en un punto $x_{0}$, entonces su solución también lo es en $x_{0}$, y como dicha solución será una función desarrollable en series de potencias, podemos suponer que, en forma general, tendrá la siguiente forma.

$$y(x) = \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{18} \tag{18}$$

donde $c_{n}$ cambia para cada función específica.

A continuación enunciamos el teorema que establece la existencia y forma de las soluciones de (\ref{15}).

Una solución en serie converge, por lo menos, en un intervalo definido por $|x -x_{0}| < R$, donde $R$ es la distancia desde $x_{0}$ al punto singular más cercano, es decir, es el valor mínimo o límite inferior del radio de convergencia de las soluciones en serie de la ecuación diferencial respecto a $x_{0}$.

La demostración a este teorema suele ser bastante larga pero intuitiva. En esta ocasión no lo demostraremos y en su lugar desarrollaremos varios ejemplos que ilustran el resultado. Sin embargo, en la sección de videos de este mismo curso se puede encontrar con todo detalle la demostración de este teorema, además del método para hallar el radio de convergencia de la solución en serie de potencias cerca de un punto ordinario.

Método de resolución

Si bien, en la demostración del teorema de existencia y forma de la solución en series de potencias se describe el método de resolución, nosotros vamos a describirlo de manera breve y realizaremos algunos ejemplos para que quede bastante claro.

Recordemos que el método de coeficientes indeterminados desarrollado para ecuaciones diferenciales lineales no homogéneas de segundo orden con coeficientes constantes ya involucraba soluciones en forma de series de potencias y lo que hacíamos al final del método era igualar los coeficientes de ambos lados de la ecuación para satisfacer la igualdad, la diferencia ahora es que el lado derecho de la ecuación es cero y no una función $g(x)$, sin embargo el procedimiento es bastante similar.

Debido a que se trata de un método bastante laborioso, por simplicidad encontraremos soluciones en series de potencias sólo con respecto al punto ordinario $x_{0} = 0$. Así, las soluciones serán de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n} \label{19} \tag{19}$$

La descripción del método se muestra a continuación:

  • El método de resolución implica considerar la solución (\ref{19}) y su primera y segunda derivada (\ref{7}) para sustituirlas en la ecuación diferencial (\ref{14}).

$$a_{2}(x) \left[ \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} \right] + a_{1}(x) \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + a_{0}(x) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

  • El siguiente paso es reescribir toda la ecuación en una sola serie lo que, en la mayoría de los casos, requerirá de hacer cambios de índices para que se tenga la misma potencia de $x$.
  • Como el resultado será idénticamente cero será necesario que el coeficiente de cada potencia de $x$ se iguale a cero. Como veremos más adelante, esto nos generará una ecuación general para los coeficientes de $y(x)$, dicha expresión se conoce como relación de recurrencia.
  • La tarea final será usar la relación de recurrencia para obtener el valor de los coeficientes $c_{n}$ de (\ref{19}) y con ello la forma de la solución de la ecuación diferencial en cuestión.

Es importante aclarar que la sola suposición de la solución (\ref{19}) conduce a dos conjuntos de coeficientes, de manera que se tendrán dos series de potencias distintas $y_{1}$ y $y_{2}$, ambas desarrolladas respecto al punto ordinario $x_{0}$. Se puede demostrar que la solución general de la ecuación diferencial (\ref{14}) es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{20} \tag{20}$$

en donde $C_{1} = c_{0}$ y $C_{2} = c_{1}$, es decir, los primeros coeficientes de la serie (\ref{19}).

Este método no solo es aplicable a ecuaciones de la forma (\ref{14}), sino que se puede aplicar a distintas ecuaciones que satisfagan las propiedades necesarias descritas a lo largo de la entrada.

Para comprender el método resolvamos una ecuación bastante sencilla de primer orden y veamos que resultado obtenemos.

Ejemplo: Determinar la solución de la ecuación diferencial

$$\dfrac{dy}{dx} -y = 0$$

usando series de potencias respecto al punto ordinario $x_{0} = 0$.

Solución: La solución debe ser de la forma

$$y = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

La derivada de esta función es

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1}$$

Sustituimos en la ecuación diferencial.

$$\sum_{n = 1}^{\infty}nc_{n}x^{n -1} -\sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

Hay que reescribir esta ecuación en una sola serie en la que la potencia de $x$ sea $k$.

Guiándonos en los exponentes de $x$, en la primer serie tomamos $k = n -1$, de donde $n = k + 1$, si la serie comienza en $n = 1$, entonces $k = 1 -1 = 0$. En el caso de la segunda serie basta hacer $k = n$, entonces tenemos que

$$\sum_{k = 0}^{\infty}(k + 1)c_{k + 1}x^{k} -\sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Ahora si podemos unir las series en una sola de acuerdo a (\ref{9})

$$\sum_{k = 0}^{\infty} \left[(k + 1)c_{k + 1} -c_{k} \right] x^{k} = 0$$

Como $x^{k}\neq 0$ por ser la solución propuesta, entonces necesariamente

$$(k + 1)c_{k + 1} -c_{k} = 0$$

Como $k$ es un número entero que comienza en cero hacía infinito, entonces $k$ no puede ser negativo, lo que significa que no hay valor de $k$, tal que $k + 1 = 0$, es así que podemos despejar a $c_{k + 1}$ de la expresión anterior sin problema.

$$c_{k + 1} = \dfrac{c_{k}}{k + 1}, \hspace{1cm} k = 0, 1, 2, 3, \cdots$$

Ésta última expresión corresponde a la relación de recurrencia, de la que se obtiene cada una de las constantes para cada uno de los términos de la serie solución.

Comencemos con $k = 0$.

$$c_{1} = \dfrac{c_{0}}{0 + 1} =c_{0}$$

Para $k = 1$, tenemos

$$c_{2} = \dfrac{c_{1}}{1 + 1} = \dfrac{c_{0}}{2}$$

$k = 2$.

$$c_{3} = \dfrac{c_{2}}{2 + 1} = \dfrac{c_{0}}{6}$$

$k = 3$.

$$c_{4} = \dfrac{c_{3}}{3 + 1} = \dfrac{c_{0}}{24}$$

Etcétera, entonces la solución va teniendo la siguiente forma.

\begin{align*}
y(x) &= c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + \cdots \\
&= c_{0} + c_{0}x + \dfrac{c_{0}}{2}x^{2} + \dfrac{c_{0}}{6}x^{3} + \dfrac{c_{0}}{24}x^{4} + \cdots \\
&= c_{0} \left[1 + x + \dfrac{x^{2}}{2} + \dfrac{x^{3}}{6} + \dfrac{x^{4}}{24} + \cdots \right] \\
&= c_{0} \left[ 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots \right]
\end{align*}

En algunas ocasiones las series de potencias resultan ser series conocidas, como lo es en este caso, pues sabemos que

$$e^{x} = \sum_{n = 0}^{\infty}\dfrac{x^{n}}{n!} = 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots$$

Por lo tanto, si definimos $c = c_{0}$, la solución de la ecuación diferencial es

$$y(x) = ce^{x}$$

Para asegurarnos del resultado se puede sustituir en la ecuación diferencial y ver que la satisface, o bien, podemos usar separación de variables para resolver la ecuación y verificar el resultado.

\begin{align*}
\dfrac{dy}{dx} -y &= 0 \\
\dfrac{dy}{dx} &= y \\
\dfrac{1}{y} \dfrac{dy}{dx} &= 1 \\
\int{\dfrac{dy}{y}} &= \int{dx} \\
\ln(y) &= x + k \\
y &= e^{x + k} \\
y &= e^{k}e^{x} \\
y(x) &= ce^{x}
\end{align*}

¡Verificado!. Interesante ¿no?.

$\square$

Con este ejemplo se espera que se comprenda la noción del método, como se puede notar es un proceso largo a pesar de ser una ecuación muy simple. Concluiremos esta entrada resolviendo dos ecuaciones diferenciales de las que si estamos interesados en resolver, es decir, de la forma (\ref{14}).

Ejemplo: Resolver la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + xy = 0$$

respecto al punto ordinario $x_{0} = 0$.

Solución: Debido a que no hay puntos singulares, el teorema garantiza dos soluciones en serie de potencias centradas en $x_{0} = 0$, convergentes para $|x|< \infty$.

Consideremos la solución

$$y = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

y su segunda derivada

$$\dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituyamos en la ecuación diferencial.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + xy &= \left[ \sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} \right] + x \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] \\
&= \sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} + \sum_{n = 0}^{\infty}c_{n}x^{n + 1}
\end{align*}

Para que practiques muestra que

$$\sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} + \sum_{n = 0}^{\infty}c_{n}x^{n + 1} = 2c_{2} + \sum_{k = 1}^{\infty} \left[ (k + 1)(k + 2)c_{k + 2} + c_{k -1} \right] x^{k}$$

Por lo tanto,

$$2c_{2}x^{0} + \sum_{k = 1}^{\infty} \left[ (k + 1)(k + 2)c_{k + 2} + c_{k -1} \right] x^{k} = 0$$

Para que esta igualdad se cumpla es necesario que el coeficiente de cada potencia de $x$ se iguale a cero. Para el caso de la potencia $k = 0$ tenemos que $2c_{2} = 0$, de donde $c_{2} = 0$, para el resto de potencias formamos la relación de recurrencia.

$$(k + 1)(k + 2)c_{k + 2} + c_{k -1} = 0, \hspace{1cm} k = 1, 2, 3, \cdots$$

Esta expresión determina los coeficientes $c_{k}$ que buscamos. Como $(k + 1)(k + 2) \neq 0$ para los valores de $k$, podemos escribir $c_{k + 2}$ en términos de $c_{k -1}$.

$$c_{k + 2} = -\dfrac{c_{k -1}}{(k + 1)(k + 2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Esta relación genera coeficientes consecutivos de la solución propuesta una vez que $k$ toma los valores enteros sucesivos indicados.

Comencemos con $k = 1$.

$$c_{3} = -\dfrac{c_{0}}{2\cdot 3}$$

Para $k = 2$, se tiene

$$c_{4} = -\dfrac{c_{1}}{3 \cdot 4}$$

Para $k = 3$ hacemos uso de que $c_{2} = 0$.

$$c_{5} = -\dfrac{c_{2}}{4 \cdot 5} = 0$$

A partir de $k = 4$ hacemos uso de los valores previos.

$$c_{6} = -\dfrac{c_{3}}{5 \cdot 6} = -\left( -\dfrac{c_{0}}{2\cdot 3} \right) \dfrac{1}{5 \cdot 6} = \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6} c_{0}$$

$k = 5$.

$$c_{7} = -\dfrac{c_{4}}{6 \cdot 7}=-\left( -\dfrac{c_{1}}{3 \cdot 4} \right) \dfrac{1}{6 \cdot 7} = \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}c_{1}$$

Para $k = 6$ recordamos que $c_{5} = 0$.

$$c_{8} = -\dfrac{c_{5}}{7 \cdot 8} = 0$$

$k = 7$.

$$c_{9} = -\dfrac{c_{6}}{8 \cdot 9} = \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}c_{0}$$

$k = 8$.

$$c_{10} = -\dfrac{c_{7}}{9 \cdot 10} = \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}c_{1}$$

$k = 9$.

$$c_{11} = -\dfrac{c_{8}}{10 \cdot 11} = 0$$

Podemos hacer estos cálculos para la $k$ que deseemos, el objetivo es intentar determinar que tipo de serie numérica es la que se logra formar. En este caso nos detendremos hasta $k = 9$, con ello hemos logrado obtener los primeros $11$ coeficientes de la solución que buscamos (recordemos que $c_{0}$ y $c_{1}$ tienen valores arbitrarios).

\begin{align*}
y(x) &= c_{0} + c_{1} x + c_{2}x^{2} + c_{3}x^{3} +c_{4}x^{4} + c_{5}x^{5} + c_{6}x^{6} \\
&+ c_{7}x^{7} + c_{8}x^{8} + c_{9}x^{9} + c_{10}x^{10} + c_{11}x^{11} + \cdots
\end{align*}

Sustituyamos los coeficientes obtenidos.

\begin{align*}
y(x) &= c_{0} + c_{1}x + 0 -\dfrac{c_{0}}{2 \cdot 3}x^{3} -\dfrac{c_{1}}{3 \cdot 4}x^{4} + 0 + \dfrac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} + \dfrac{c_{1}}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} + 0 \\
&-\dfrac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} -\dfrac{c_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + 0 + \cdots
\end{align*}

Para obtener la solución general

$$y(x) = c_{0}y_{1}(x) + c_{1}y_{2}(x)$$

agrupemos los términos que contienen $c_{0}$ y por otro lado los que tienen $c_{1}$.

\begin{align*}
y(x) &= c_{0} \left[ 1 -\dfrac{1}{2 \cdot 3}x^{3} + \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} -\dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} + \cdots \right] \\
&+ c_{1} \left[ x -\dfrac{1}{3 \cdot 4}x^{4} + \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} -\dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + \cdots \right]
\end{align*}

Por lo tanto,

\begin{align*}
y_{1}(x) &= 1 -\dfrac{1}{2 \cdot 3}x^{3} + \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} -\dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} + \cdots \\
&= 1 + \sum_{k = 1}^{\infty}\dfrac{(-1)^{k}}{2 \cdot 3 \cdots (3k -1)(3k)}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x -\dfrac{1}{3 \cdot 4}x^{4} + \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} -\dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + \cdots \\
&= x + \sum_{k = 1}^{\infty}\dfrac{(-1)^{k}}{3 \cdot 4 \cdots (3k)(3k + 1)}x^{3k + 1}
\end{align*}

Con esto hemos concluido el ejercicio. Los coeficientes $c_{0}$ y $c_{1}$ quedan completamente indeterminados de manera que se pueden elegir de forma arbitraria.

Por el teorema de existencia y forma de la solución también se puede deducir que las series que forman a $y_{1}$ y $y_{2}$ convergen para $|x|< \infty$.

$\square$

Como dato interesante, la ecuación diferencial que acabamos de resolver es una forma de lo que se conoce como ecuación de Airy y se encuentra en el estudio de la difracción de la luz, la difracción de ondas de radio alrededor de la superficie de la tierra, la aerodinámica y la deflexión de una columna vertical delgada uniforme que se curva bajo su propio peso.

Realicemos un ejemplo más en el que los coeficientes de la ecuación no sean polinomios, esto nos permitirá poner en práctica la multiplicación de dos series de potencias.

Ejemplo: Resolver la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + \cos (x) y = 0$$

respecto al punto ordinario $x_{0} = 0$.

Solución: Se puede comprobar que la función coseno es analítica en $x = 0$, esto verifica que efectivamente $x_{0} = 0$ es un punto ordinario. De hecho, al ser analítica en $x = 0$ su serie de Maclaurin es

\begin{align*}
\cos (x) &= 1 -\dfrac{x^2}{2!} + \dfrac{x^4}{4!} -\cdots + \dfrac{(-1)^kx^{2k}}{(2k)!} + \cdots \\
&= \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!}
\end{align*}

Resolvamos la ecuación. Consideremos la solución

$$y = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

y su segunda derivada

$$\dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituyamos en la ecuación diferencial.

$$\dfrac{d^{2}y}{dx^{2}} + \cos (x) y = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} + \left[ \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!} \right] \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En este caso no intentaremos reescribir la ecuación en una sola serie ya que puede ser más complicado al tratarse de un producto de series, en su lugar vamos a determinar el valor de los coeficientes de cada $x^{k}$, $k = 0, 1, 2, 3, \cdots$, realizando las operaciones correspondientes, para ello desglosemos las sumas para los primeros términos. Por un lado

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} = 2c_{2} + 6c_{3}x + 12c_{4}x^{2} + 20c_{5}x^{3} + \cdots$$

Por otro lado,

$$\left[ \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!} \right] \sum_{n = 0}^{\infty}c_{n}x^{n} = \left( 1 -\dfrac{x^{2}}{2!} + \dfrac{x^{4}}{4!} + \cdots \right) \left( c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + \cdots \right)$$

Si se hacen las cuentas correspondientes podremos obtener los coeficientes de cada $x^{k}$, $k = 0, 1, 2, 3, \cdots$.

Hasta $k = 3$ se obtiene lo siguiente.

$$(2c_{2} + c_{0}) + (6c_{3} + c_{1})x +\left( 12c_{4} + c_{2} -\dfrac{1}{2}c_{0} \right) x^{2} + \left( 20c_{5} + c_{3} -\dfrac{1}{2}c_{1} \right)x^{3} + \cdots = 0$$

Igualamos cada coeficiente a cero.

\begin{align*}
2c_{2} + c_{0} &= 0 \\
6c_{3} + c_{1} &= 0 \\
12c_{4} + c_{2} -\dfrac{1}{2}c_{0} &= 0 \\
20c_{5} + c_{3} -\dfrac{1}{2}c_{1} &= 0 \\
&\vdots
\end{align*}

etcétera. Esto nos da como resultados

\begin{align*}
c_{2} &= -\dfrac{1}{2}c_{0} \\
c_{3} &= -\dfrac{1}{6}c_{1} \\
c_{4} &= \dfrac{1}{12}c_{0} \\
c_{5} &= \dfrac{1}{30}c_{1} \\
&\vdots
\end{align*}

En este caso no se obtuvo una relación de recurrencia, pero $c_{0}$ y $c_{1}$ siguen siendo coeficientes indeterminados que pueden tomar valores arbitrarios. Sustituyendo los valores determinados en la solución propuesta se obtiene

\begin{align*}
y(x) &= c_{0} + c_{1}x -\dfrac{c_{0}}{2}x^{2} -\dfrac{c_{1}}{6}x^{3} + \dfrac{c_{0}}{12}x^{4} + \dfrac{c_{1}}{30}x^{5} + \cdots \\
&= c_{0} \left[ 1 -\dfrac{1}{2}x^{2} + \dfrac{1}{12}x^{4} + \cdots \right] + c_{1}\left[ x -\dfrac{1}{6}x^{3} + \dfrac{1}{30}x^{5} + \cdots \right]
\end{align*}

Recordando que la solución general es

$$y(x) = c_{0}y_{1}(x) + c_{1}y_{2}(x)$$

entonces,

$$y_{1}(x) = 1 -\dfrac{1}{2}x^{2} + \dfrac{1}{12}x^{4} + \cdots$$

y

$$y_{2}(x) = x -\dfrac{1}{6}x^{3} + \dfrac{1}{30}x^{5} + \cdots$$

Ambas series de potencias convergen para $|x| < \infty$.

$\square$

Con esto concluimos esta entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Determinar el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias.
  • $\sum_{n = 1}^{\infty}\dfrac{2^{n}}{n}x^{n}$
  • $\sum_{n = 1}^{\infty}\dfrac{n}{n + 2}x^{n}$
  • $\sum_{n = 1}^{\infty}\dfrac{(x -1)^{n}}{n!}$
  1. Reescribir la siguiente expresión como una sola serie de potencias cuyo término general tenga $x^{k}$.
  • $\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n} + 2 \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} + 3 \sum_{n = 1}^{\infty}nc_{n}x^{n}$
  1. Comprobar por sustitución directa que la siguiente serie de potencias es una solución particular de la ecuación diferencial dada.
  • $y(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{2^{2n}(n!)^{2}}x^{2n}, \hspace{1cm} x\dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} + xy = 0$
  1. Encontrar la solución general en series de potencias de las siguientes ecuaciones diferenciales respecto al punto ordinario $x_{0} = 0$.
  • $\dfrac{d^{2}y}{dx^{2}} + x^{2} \dfrac{dy}{dx} + xy = 0$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (x) y = 0$
  1. Usar el método de series de potencias para resolver el siguiente problema con valores iniciales.
  • $(x + 1) \dfrac{d^{2}y}{dx^{2}} -(2 -x) \dfrac{dy}{dx} + y = 0, \hspace{1cm} y(0) = 2, \hspace{0.5cm} y^{\prime}(0) = -1$

Más adelante…

En esta entrada aprendimos a resolver ecuaciones diferenciales de segundo orden con coeficientes variables respecto al punto ordinario $x_{0} = 0$.

En la siguiente entrada resolveremos ecuaciones diferenciales del mismo tipo, pero ahora con respecto a puntos singulares. El método de resolución es conocido como Método de Frobenius.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Oscilaciones mecánicas

Por Omar González Franco

Las matemáticas comienzan a parecerse demasiado a resolver un puzzle. La física también,
pero son puzzles creados por la naturaleza, no por la mente del hombre.
– Maria Goeppert Mayer

Introducción

En esta entrada estudiaremos algunos tipos de oscilaciones mecánicas con el propósito de poner en práctica los métodos desarrollados hasta este momento de la segunda unidad.

Consideraremos varios sistemas dinámicos lineales en los que cada modelo matemático será una ecuación diferencial de segundo orden con coeficientes constantes acompañada de condiciones iniciales especificadas en un tiempo que tomaremos como $t = 0$.

$$a \dfrac{d^{2}x}{dt^{2}} + b \dfrac{dx}{dt} + cx = g(t); \hspace{1cm} x(0) = x_{0}, \hspace{0.5cm} x^{\prime}(0) = x_{1} \label{1} \tag{1}$$

Con respecto a la notación, denotaremos con $x$ a la variable dependiente que físicamente representará la posición de un objeto, mientras que $t$ será la variable independiente y representara al tiempo, ya que nuestro propósito es describir el movimiento oscilatorio de un objeto a través del tiempo.

A la función $g(x)$ de (\ref{1}) la llamaremos entrada o función forzada del sistema. Una solución $x(t)$ de (\ref{1}) en un intervalo $\delta$ que contiene a $t = 0$ y satisface las condiciones iniciales se le llama salida o respuesta del sistema.

El sistema dinámico que estudiaremos será el de resorte – objeto y los tipos de movimiento que describiremos será el movimiento libre no amortiguado, el movimiento libre amortiguado y el movimiento forzado.

Movimiento libre no amortiguado

Consideremos un resorte de longitud $l$ suspendido verticalmente de un soporte rígido y en la parte inferior del resorte se encuentra un objeto de masa $m$, el peso del objeto hace que el resorte se elongue una distancia $s$. En la posición de equilibrio establecemos que $x = 0$, tal como se muestra en la siguiente figura.

Resorte sin objeto y resorte con el objeto de masa $m$ en la posición de equilibrio.

Es claro que la cantidad de alargamiento o elongación del resorte depende de la masa, además el resorte mismo ejerce una fuerza restauradora $F$ opuesta a la dirección de elongación y proporcional a la cantidad de elongación $s$, esta característica corresponde a la ley de Hooke y matemáticamente se expresa como

$$F = ks \label{2} \tag{2}$$

donde $k$ es una constante de proporcionalidad llamada constante de resorte.

Una vez colocado el objeto de masa $m$, el resorte se alarga una distancia $s$ y mantiene una posición de equilibrio en el que el peso $W$ del objeto se equilibra con la fuerza restauradora $F$ del resorte. Recordando que el peso de un objeto es

$$W = mg \label{3} \tag{3}$$

con $m$ la masa del objeto y $g$ la aceleración de la gravedad, podemos establecer que en el equilibrio ocurre que

$$W = F \label{4} \tag{4}$$

o bien,

$$mg -ks = 0 \label{5} \tag{5}$$

Si el objeto se desplaza una cantidad $x$ de su posición de equilibrio, la fuerza restauradora del resorte será

$$F_{x} = k(s + x) \label{6} \tag{6}$$

Objeto en reposo y objeto en movimiento desplazado una distancia $x$.

Como estamos analizando un movimiento no amortiguado, vamos a suponer que no hay fuerzas restauradoras que actúen sobre el sistema y que el objeto oscila libre de otras fuerzas externas. Entonces podemos igualar la segunda ley de Newton con la fuerza resultante de la fuerza restauradora y el peso.

$$m \dfrac{d^{2}x}{dt^{2}} = -k(s + x)+ mg = -kx + mg -ks$$

Considerando (\ref{5}) obtenemos que

$$m \dfrac{d^{2}x}{dt^{2}} = -kx \label{7} \tag{7}$$

El signo negativo indica que la fuerza restauradora del resorte actúa en dirección opuesta a la dirección del movimiento, además se toma la convención de que la dirección hacia abajo de la posición de equilibrio es positiva.

Si dividimos entre $m$ la ecuación (\ref{7}) y reordenamos obtenemos la ecuación diferencial

$$\dfrac{d^{2}x}{dt^{2}} + \dfrac{k}{m}x = 0 \label{8} \tag{8}$$

Veremos más adelante la razón por la que es conveniente definir la constante

$$\omega^{2} = \dfrac{k}{m} \label{9} \tag{9}$$

Usando esta definición podemos escribir la ecuación (\ref{8}) como

$$\dfrac{d^{2}x}{dt^{2}} + \omega^{2}x = 0 \label{10} \tag{10}$$

La ecuación diferencial (\ref{10}) se dice que describe el movimiento armónico simple o movimiento libre no amortiguado. Dos condiciones iniciales claras son el desplazamiento inicial

$$x(0) = x_{0}$$

y la velocidad inicial

$$x^{\prime}(0) = x_{1}$$

del objeto. Por ejemplo, si $x_{0} > 0$, entonces indica que el objeto parte de un punto por debajo de la posición de equilibrio lo que provocará una velocidad impartida hacia arriba, es decir, $x_{1} < 0$. Cuando $x^{\prime}(0) = 0$ el objeto se libera a partir del reposo. Y si por ejemplo $x_{0} < 0$ y $x_{1} = 0$, entonces indica que el objeto se libera desde el reposo pero desde una posición arriba de la posición de equilibrio.

La ecuación (\ref{10}) representa el modelo matemático que describe el fenómeno, pero ahora estamos interesados en conocer la ecuación de movimiento, así que es momento de aplicar lo aprendido y resolver la ecuación diferencial.

Se trata de una ecuación diferencial de segundo orden con coeficientes constantes, así que proponemos una solución de la forma

$$x(t) = e^{rt} \label{11} \tag{11}$$

Utilizamos la letra $r$ y no $k$ para no confundirnos con la constante de resorte. Al sustituir esta solución y su segunda derivada en (\ref{10}) se obtiene la ecuación auxiliar

$$r^{2} + \omega^{2} = 0 \label{12} \tag{12}$$

Las raíces son

$$r_{1} = i \omega \hspace{1cm} y \hspace{1cm} r_{2} = -i \omega$$

Identificamos que $\alpha = 0$ y $\beta = \omega$, Por lo tanto, la solución general es

$$x(t) = c_{1} \cos(\omega t) + c_{2} \sin(\omega t) \label{13} \tag{13}$$

Esta solución corresponde a la ecuación general de movimiento del objeto sujeto al resorte considerando que no hay amortiguación.

Si se aplican las condiciones iniciales y se determinan las constantes $c_{1}$ y $c_{2}$, entonces habremos encontrado la ecuación de movimiento del sistema en particular. Notemos que la solución efectivamente describe un movimiento oscilatorio ya que se encuentran presentes las funciones seno y coseno.

La constante

$$\omega = \sqrt{\dfrac{k}{m}} \label{14} \tag{14}$$

se llama frecuencia circular del sistema y nos permite definir algunas cantidades. $\omega$ se mide en radianes por segundo.

La cantidad

$$T = \dfrac{2 \pi}{\omega} \label{15} \tag{15}$$

determina el periodo del movimiento descrito por (\ref{13}), es decir, representa el tiempo que tarda el objeto en hacer un ciclo de movimiento. Un ciclo es una oscilación completa del objeto. Podemos decir que el periodo $T$ es el tamaño del intervalo de tiempo entre dos máximos sucesivos (o mínimos sucesivos) de $x(t)$. De acuerdo a nuestra convención, un máximo es el desplazamiento positivo del objeto en el que alcanza su distancia máxima debajo de la posición de equilibrio, mientras que un mínimo es el desplazamiento negativo en el que alcanza su altura máxima arriba de la posición de equilibrio. En cualquier caso decimos que hay un desplazamiento extremo del objeto.

La cantidad

$$f = \dfrac{1}{T} = \dfrac{\omega}{2 \pi} \label{16} \tag{16}$$

es la frecuencia de movimiento y representa el número de ciclos completados cada segundo.

Existe una forma alterna de la solución (\ref{13}) en la que se hace explícita la amplitud $A$ de las oscilaciones. Si en la solución (\ref{13}) $c_{1} \neq 0$ y $c_{2} \neq 0$, se define la amplitud como

$$A = \sqrt{c^{2}_{1} + c^{2}_{2}} \label{17} \tag{17}$$

y se define el ángulo de fase $\phi$, tal que

$$\sin(\phi) = \dfrac{c_{1}}{A}, \hspace{1cm} \cos(\phi) = \dfrac{c_{2}}{A} \hspace{1cm} \Rightarrow \hspace{1cm} \tan(\phi) = \dfrac{c_{1}}{c_{2}} \label{18} \tag{18}$$

Notemos lo siguiente

\begin{align*}
x(t) &= c_{1} \cos(\omega t) + c_{2} \sin(\omega t) \\
&= A \dfrac{c_{1}}{A} \cos(\omega t) + A \dfrac{c_{2}}{A} \sin(\omega t) \\
&= [A \sin(\phi)] \cos(\omega t) + [A \cos(\phi)] \sin(\omega t) \\
&= A \sin(\omega t) \cos(\phi) + A \cos(\omega t) \sin(\phi)
\end{align*}

Si en la última expresión aplicamos la identidad trigonométrica

$$\sin(a + b) = \sin(a) \cos(b) + \cos(a) \sin(b) \label{19} \tag{19}$$

entonces obtenemos la solución (\ref{13}) en una forma alterna más simple.

$$x(t) = A \sin(\omega t + \phi) \label{20} \tag{20}$$

En resumen, la ecuación que describe el movimiento armónico simple o movimiento libre no amortiguado es

$$\dfrac{d^{2}x}{dt^{2}} + \omega^{2}x = 0$$

Y las soluciones que representan el movimiento del objeto son

$$x(t) = c_{1} \cos(\omega t) + c_{2} \sin(\omega t)$$

o bien,

$$x(t) = A \sin(\omega t + \phi)$$

Movimiento libre amortiguado

Es claro que el movimiento libre no amortiguado es un movimiento ideal, pues el movimiento descrito por (\ref{13}) o (\ref{20}) supone que no hay fuerzas retardadoras actuando sobre el objeto y sabemos que, a menos que el objeto este suspendido en un vacío perfecto, siempre habrá por lo menos una fuerza de resistencia debido al medio circundante, por ejemplo la resistencia del aire.

El propósito ahora, al igual que antes, es determinar la ecuación diferencial o modelo matemático que describe al sistema cuando existen fuerzas de amortiguamiento, para posteriormente determinar la ecuación general de movimiento.

Consideremos nuevamente un objeto de masa $m$ suspendido sobre un resorte con constante $k$, pero en esta ocasión consideremos que existe una fuerza externa de amortiguamiento actuando sobre el objeto. En el estudio de la mecánica, las fuerzas de amortiguamiento que actúan sobre un cuerpo se consideran proporcionales a una potencia de la velocidad instantánea $\dfrac{dx}{dt}$. En nuestro caso supondremos que la fuerza de amortiguamiento esta dada por un múltiplo constante de la velocidad, esto es

$$F_{am} = \eta \dfrac{dx}{dt} \label{21} \tag{21}$$

donde $\eta$ es una constante de amortiguamiento positiva. De esta manera, cuando ninguna otra fuerza actúa sobre el sistema, de la segunda ley de Newton se tiene que

$$m \dfrac{d^{2}x}{dt^{2}} = -kx -\eta \dfrac{dx}{dt} \label{22} \tag{22}$$

El signo negativo en la fuerza de amortiguamiento indica que dicha fuerza actúa en dirección opuesta al movimiento.

Si dividimos la ecuación diferencial (\ref{22}) por $m$ y reordenamos, obtenemos

$$\dfrac{d^{2}x}{dt^{2}} + \dfrac{\eta}{m} \dfrac{dx}{dt} + \dfrac{k}{m}x = 0 \label{23} \tag{23}$$

Recordemos que

$$\omega^{2} = \dfrac{k}{m}$$

y por convención definimos

$$2\rho = \dfrac{\eta}{m} \label{24} \tag{24}$$

Así podemos reescribir la ecuación (\ref{23}) como

$$\dfrac{d^{2}x}{dt^{2}} + 2 \rho \dfrac{dx}{dt} + \omega^{2} x = 0 \label{25} \tag{25}$$

Esta ecuación corresponde al modelo matemático que describe al fenómeno. La utilidad de $2\rho$ se hace evidente al momento de intentar resolver la ecuación, pues si se considera la solución

$$x(x) = e^{rt}$$

y se sustituye en la ecuación (\ref{25}) junto con las derivadas correspondientes se obtiene la ecuación auxiliar

$$r^{2} + 2\rho r + \omega^{2} = 0 \label{26} \tag{26}$$

De donde se obtienen las siguientes dos raíces.

$$r_{1} = -\rho + \sqrt{\rho^{2} -\omega^{2}} \hspace{1cm} y \hspace{1cm} r_{2} = -\rho -\sqrt{\rho^{2} -\omega^{2}} \label{27} \tag{27}$$

Hay tres casos posibles dependiendo del valor del discriminante

$$\Delta = \rho^{2} -\omega^{2} \label{28} \tag{28}$$

Estudiemos cada caso.

Caso 1: $\rho^{2} -\omega^{2} > 0$

En este caso decimos que el sistema se encuentra sobreamortiguado porque el coeficiente de amortiguamiento $\rho$ es más grande que la constante del resorte $k$. Como las raíces son reales y distintas, la solución de la ecuación (\ref{25}), en este caso, es

$$x(t) = c_{1} e^{r_{1}t} + c_{2} e^{r_{2}t}$$

Si sustituimos los valores de (\ref{27}) podemos reescribir la solución como

$$x(t) = e^{-\rho t} \left( c_{1} e^{\sqrt{\rho^{2} -\omega^{2}}t} + c_{2} e^{ -\sqrt{\rho^{2} -\omega^{2}}t} \right) \label{29} \tag{29}$$

Esta ecuación representa un movimiento uniforme y no oscilatorio.

Caso 2: $\rho^{2} -\omega^{2} = 0$

En este caso cualquier ligera disminución en la fuerza de amortiguamiento daría como resultado un movimiento oscilatorio, decimos que el sistema está críticamente amortiguado. Como las raíces son reales e iguales, la solución de la ecuación (\ref{25}) es

$$x(t) = c_{1} e^{r_{1}t} + c_{2}t e^{r_{1}t}$$

Si sustituimos $r_{1} = -\rho$, la solución se puede reescribir como

$$x(t) = e^{-\rho t} \left( c_{1} + c_{2}t \right) \label{30} \tag{30}$$

Caso 3: $\rho^{2} -\omega^{2} < 0$

En este caso se dice que el sistema esta subamortiguado ya que el coeficiente de amortiguamiento es más pequeño que la constante del resorte. Las raíces son complejas y están dadas de la siguiente forma

$$r_{1} = -\rho + i\sqrt{\omega^{2} -\rho^{2}} \hspace{1cm} y \hspace{1cm} r_{2} = -\rho -i\sqrt{\omega^{2} -\rho^{2}} \label{31} \tag{31}$$

Identificamos que

$$\alpha = -\rho \hspace{1cm} y \hspace{1cm} \beta = \sqrt{\omega^{2} -\rho^{2}}$$

Entonces la solución está dada por

$$x(t) = e^{-\rho t} \left[ c_{1} \cos \left( \sqrt{\omega^{2} -\rho^{2}}t \right) + c_{2} \sin \left( \sqrt{\omega^{2} -\rho^{2}}t \right) \right] \label{32} \tag{32}$$

El movimiento descrito por (\ref{32}) es oscilatorio, pero debido al coeficiente $e^{-\rho t}$ las amplitudes de oscilación tienden a cero cuando $t \rightarrow \infty$.

En todos los casos la solución contiene el factor de amortiguamiento $e^{-\rho t}$, $\rho > 0$, lo que indica que los desplazamientos del objeto se vuelven despreciables conforme el tiempo $t$ aumenta.

De manera totalmente análoga que en el caso sin amortiguamiento, cualquier solución de la forma (\ref{32}) se puede escribir de forma alterna como

$$x(t) = Ae^{-\rho t} \sin \left( \sqrt{\omega^{2} -\rho^{2}} t + \phi \right) \label{33} \tag{33}$$

donde $A$ es la amplitud de las oscilaciones y el ángulo de fase $\phi$ se determina de las ecuaciones de (\ref{18}). El coeficiente $Ae^{-\rho t}$ se denomina amplitud amortiguada de oscilaciones y debido a que (\ref{33}) no es una función periódica, el número

$$T_{c} = \dfrac{2 \pi}{\sqrt{\omega^{2} -\rho^{2}}} \label{34} \tag{34}$$

se llama cuasi periodo y es el intervalo de tiempo entre dos máximos sucesivos de $x(t)$, así mismo, el número

$$f_{c} = \dfrac{\sqrt{\omega^{2} -\rho^{2}}}{2 \pi} \label{35} \tag{35}$$

se llama cuasi frecuencia.

En resumen, la ecuación que describe el movimiento libre amortiguado es

$$\dfrac{d^{2}x}{dt^{2}} + 2 \rho \dfrac{dx}{dt} + \omega^{2} x = 0$$

Y las soluciones que representan el movimiento del objeto, dependiendo del valor del discriminante de la ecuación auxiliar, son

  • Si $\rho^{2} -\omega^{2} > 0 \hspace{1cm} \rightarrow \hspace{1cm} x(t) = e^{-\rho t} \left( c_{1} e^{\sqrt{\rho^{2} -\omega^{2}}t} + c_{2} e^{ -\sqrt{\rho^{2} -\omega^{2}}t} \right)$
  • Si $\rho^{2} -\omega^{2} = 0 \hspace{1cm} \rightarrow \hspace{1cm} x(t) = e^{-\rho t} \left( c_{1} + c_{2}t \right)$
  • Si $\rho^{2} -\omega^{2} < 0 \hspace{1cm} \rightarrow \hspace{1cm} x(t) = Ae^{-\rho t} \sin \left( \sqrt{\omega^{2} -\rho^{2}} t + \phi \right)$

Movimiento forzado

Imaginemos que ahora, adicional a las situaciones anteriores, se ejerce una fuerza externa sobre el soporte del resorte. En los dos casos anteriores considerábamos al soporte fijo, pero en esta ocasión pensamos en una fuerza motriz que causa un movimiento vertical oscilatorio del soporte del resorte. Sea $F_{ext}(t)$ dicha fuerza externa, usando la segunda ley de Newton, la ecuación diferencial queda de la siguiente forma.

$$m \dfrac{d^{2}x}{dt^{2}} = -kx -\eta \dfrac{dx}{dt} + F_{ext}(t) \label{36} \tag{36}$$

Si dividimos la ecuación por $m$ y definimos

$$g(t) = \dfrac{F_{ext}(t)}{m} \label{37} \tag{37}$$

además de considerar las definiciones anteriores (\ref{9}) y (\ref{24}), podemos escribir la ecuación diferencial como

$$\dfrac{d^{2}x}{dt^{2}} + 2\rho \dfrac{dx}{dt} + \omega^{2}x = g(t) \label{38} \tag{38}$$

La ecuación (\ref{38}) representa el modelo matemático que describe al sistema con movimiento forzado. Esta ecuación es no homogénea, de manera que puede resolverse usando el método de coeficientes indeterminados o el de variación de parámetros.

Cuando $g$ es una función periódica, como

$$g(t) = g_{0} \sin(\lambda t) \hspace{1cm} o \hspace{1cm} g(t) = g_{0} \cos(\lambda t)$$

con $\lambda$ una constante, la solución general de (\ref{38}) para $\rho > 0$ es la suma de una función no periódica $x_{np}(t)$ (solución complementaria o solución de la ecuación homogénea asociada) y una función periódica $x_{p}(t)$ (solución particular de la ecuación no homogénea), en la que $x_{np}(t)$ se desvanece a medida que el tiempo incrementa, es decir,

$$\lim_{t \to \infty} x_{np}(t) = 0 \label{39} \tag{39}$$

Esta propiedad nos indica que para valores grandes de tiempo, los desplazamientos del objeto se aproximan mediante la solución particular $x_{p}(t)$.

La función complementaria $x_{np}(t)$ se denomina término transitorio o solución transitoria, mientras que la solución particular $x_{p}(t)$ se denomina término de estado estable o solución de estado estable.

Realicemos un ejemplo en el que apliquemos cada caso

Ejemplo: Considerar un resorte sujeto de manera vertical a un soporte. El resorte se estira $50 cm$ al aplicarle una fuerza de $4N$. En la parte inferior del resorte se coloca un objeto con peso de $19.6 N$. Al objeto se le aleja de su posición de equilibrio jalándolo $1 m$ hacia abajo, si se suelta sin aplicarle una velocidad inicial, estudiar el movimiento del objeto en los siguientes casos:

  • No hay resistencia del aire (movimiento libre no amortiguado).
  • Hay resistencia del aire y es de $F_{am} = 8\dfrac{dx}{dt}$ (movimiento libre amortiguado).
  • Además de la resistencia del aire, hay una fuerza aplicada al soporte de $F_{ext}(t) = 80\sin(2t)$ (movimiento forzado).

Solución: El peso del objeto es

$$W = 19.6 N$$

entonces su masa es

$$m = \dfrac{W}{g} = \dfrac{19.6}{9.8}$$

Es decir, $m = 2 kg$. Por otro lado, si el resorte se estira

$$s = 0.5 m$$

aplicando una fuerza de

$$F = 4N$$

por la ley de Hooke tenemos que la constante del resorte es

$$k = \dfrac{F}{s} = \dfrac{4}{0.5}$$

Es decir, $k = 8 N/m$. Las condiciones iniciales son $x(0) = 1$ (posición fuera de la posición de equilibrio) y $x^{\prime}(0) = 0$ (sin velocidad inicial).

Para la primera situación sabemos que

$$F_{am} = 0 \hspace{1cm} y \hspace{1cm} F_{ext} = 0$$

De manera que la ecuación que describe al sistema es (\ref{10}) con

$$\omega^{2} = \dfrac{k}{m} = \dfrac{8}{2} = 4$$

Así, la ecuación a resolver es

$$\dfrac{d^{2}x}{dt^{2}} + 4x = 0$$

La ecuación auxiliar es

$$r^{2} + 4 = 0$$

Las raíces son $r_{1} = i2$ y $r_{2} = -i2$. Identificamos que $\alpha = 0$ y $\beta = 2$. Por lo tanto, la solución general es

$$x(t) = c_{1} \cos(2t) + c_{2} \sin(2t)$$

Para aplicar las condiciones iniciales debemos conocer la expresión de la primera derivada de la solución, dicha expresión es

$$\dfrac{dx}{dt} = -2c_{1} \sin(2t) + 2c_{2} \cos(2t)$$

Aplicando las condiciones iniciales, tenemos

$$x(0) = c_{1} = 1 \hspace{1cm} y \hspace{1cm} x^{\prime}(0) = 2c_{2} = 0$$

De donde $c_{1} = 1$ y $c_{2} = 0$. Por lo tanto, la ecuación de movimiento es

$$x(t) = \cos(2t)$$

Esta solución representa un movimiento armónico de amplitud

$$A = 1 m$$

periodo

$$T = \dfrac{2 \pi}{2} = \pi seg$$

y frecuencia

$$f = \dfrac{1}{\pi } = 0.318 \dfrac{ciclos}{segundo}$$

A continuación se muestra una gráfica con el movimiento descrito por el objeto.

Función de movimiento del objeto.

De la gráfica observamos que el objeto siempre se mantendrá oscilando de la misma manera para $t \to \infty$ y tiene sentido ya que no existe ninguna fuerza exterior que lo amortigüe.

Consideremos ahora la resistencia del aire

$$F_{am} = 8 \dfrac{dx}{dt}$$

En este caso la ecuación a resolver es de la forma (\ref{22}) y es

$$m \dfrac{d^{2}x}{dt^{2}} + kx + 8\dfrac{dx}{dt} = 0$$

que adaptando a nuestros datos se tiene

$$\dfrac{d^{2}x}{dt^{2}} + 4 \dfrac{dx}{dt} + 4x = 0$$

La ecuación auxiliar es

$$r^{2} + 4r + 4 = 0$$

Las raíces son $r_{1} = r_{2}= -2$, como son iguales, entonces la solución es de la forma

$$x(t) = e^{-2t}(c_{1} + c_{2}t)$$

La derivada es

$$\dfrac{dx}{dt} = -2e^{-2t}(c_{1} + c_{2}t) + c_{2}e^{-2t}$$

Apliquemos las condiciones iniciales.

$$x(0) = c_{1} = 1 \hspace{1cm} y \hspace{1cm} x^{\prime}(0) = -2c_{1} + c_{2} = 0$$

de donde obtenemos que $c_{1} = 1$ y $c_{2} = 2$. Por lo tanto, la ecuación de movimiento es

$$x(t) = e^{-2t}(1 + 2t)$$

El factor de amortiguamiento es $e^{-2t}$.

A continuación se muestra una gráfica con el movimiento descrito por el objeto.

Función de movimiento del objeto.

De la gráfica observamos que no hay movimiento oscilatorio, sino que el objeto llega a la posición de equilibrio y se mantiene, esto se debe al factor de amortiguamiento.

Para la situación final tenemos un movimiento forzado con una fuerza externa

$$F_{ext}(t) = 80 \sin(2t)$$

La ecuación diferencial que tenemos en este caso es

$$m \dfrac{d^{2}x}{dt^{2}} = -kx -8 \dfrac{dx}{dt} + 80 \sin(2t)$$

o bien

$$\dfrac{d^{2}x}{dt^{2}} + 4 \dfrac{dx}{dt} + 4x = 40 \sin(2t)$$

La solución de la ecuación homogénea ya la conocemos, ya que corresponde a la solución transitoria obtenida anteriormente.

$$x_{np}(t) = e^{-2t}(c_{1} + c_{2}t)$$

Para el caso no homogéneo se puede aplicar variación de parámetros o coeficientes indeterminados, apliquemos el segundo método.

Estamos en condiciones del punto 3. Proponemos una solución de la forma

$$x(t) = A \cos(2t) + B \sin(2t)$$

La primera y segunda derivada están dadas de la siguiente forma.

$$\dfrac{dx}{dt} = -2A \sin(2t) + 2B \cos(2t) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}x}{dt^{2}} = -4A \cos(2t) -4B \sin(2t)$$

Sustituimos en la ecuación diferencial.

\begin{align*}
\left[ -4A \cos(2t) -4B \sin(2B) \right] &+ 4 \left[ -2A \sin(2t) + 2B \cos(2t) \right] + 4 \left[ A \cos(2t) + B \sin(2t) \right] \\
&= 40 \sin(2t)
\end{align*}

\begin{align*}
-8A \sin(2t) + 8B \cos(2t) &= 40 \sin(2t) \\
-A \sin(2t) + B \cos(2t) &= 5 \sin(2t)
\end{align*}

Para que se cumpla la igualdad debe ocurrir que $A = -5$ y $B = 0$, entonces la solución de estado estable es

$$x_{p}(t) = -5 \cos(2t)$$

Por lo tanto, la solución general es

$$x(t) = x_{np}(t) + x_{p}(t) = e^{-2t}(c_{1} + c_{2}t) -5 \cos(2t)$$

Vemos que

$$\dfrac{dx}{dt} = -2e^{-2t}(c_{1} + c_{2}t) + c_{2}e^{-2t} + 10 \sin(2t)$$

Apliquemos las condiciones iniciales.

$$x(0) = c_{1} -5 = 1 \hspace{1cm} y \hspace{1cm} x^{\prime}(0) = -2c_{1} + c_{2} = 0$$

de donde $c_{1} = 6$ y $c_{2} = 12$. Entonces la ecuación de movimiento es

$$x(t) = e^{-2t}(6 + 12t) -5 \cos(2t)$$

A continuación se muestra una gráfica con el movimiento descrito por el objeto.

Función de movimiento del objeto.

Inicialmente el resorte sufre un estiramiento muy grande generando un movimiento transitorio y procede a amortiguarse hasta llegar al equilibrio entre la fuerza externa y la fuerza amortiguadora describiendo un movimiento estable.

La parte $e^{-2t}(6 + 12t)$ representa el movimiento transitorio, mientras que $-5 \cos(2t)$ representa el movimiento estable.

También se puede observar que las amplitudes (el estiramiento del resorte) son bastante grandes comparado con las dos situaciones anteriores.

$\square$

Resonancia

Resolvamos un problema de valores iniciales que nos permitirá definir el concepto de resonancia.

Resolver la ecuación

$$\dfrac{d^{2}x}{dt^{2}} + \omega^{2}x = g_{0} \sin(\lambda t) \label{40} \tag{40}$$

donde $g_{0}$ y $\lambda \neq \omega$ son constantes y los valores iniciales son $x(0) = 0$ y $x^{\prime}(0) = 0$.

Solución: Resolviendo la ecuación homogénea puedes verificar que la solución complementaria es

$$x_{c}(t) = c_{1} \cos(\omega t) + c_{2} \sin(\omega t) \label{41} \tag{41}$$

Para obtener una solución particular proponemos una solución de la forma

$$x_{p}(t) = A \cos(\lambda t) + B \sin(\lambda t)$$

y aplicamos el método de coeficientes indeterminados. Vemos que

$$\dfrac{dx_{p}}{dt} = -A \lambda \sin(\lambda t) + B \lambda \cos(\lambda t) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}x_{p}}{dt^{2}} = -A \lambda^{2} \cos(\lambda t) -B \lambda^{2} \sin(\lambda t)$$

Sustituyamos en la ecuación diferencial.

\begin{align*}
\left[ -A \lambda^{2} \cos(\lambda t) -B \lambda^{2} \sin(\lambda t) \right] &+ \omega^{2} \left[A \cos(\lambda t) + B \sin(\lambda t) \right] \\
&= A (\omega^{2} -\lambda^{2}) \cos(\lambda t) + B (\omega^{2} -\lambda^{2}) \sin(\lambda t) \\
&= g_{0} \sin(\lambda t)
\end{align*}

Es claro que para que se cumpla la igualdad se debe satisfacer que

$$A = 0 \hspace{1cm} y \hspace{1cm} B = \dfrac{g_{0}}{\omega^{2} -\lambda^{2}}$$

Por tanto, la solución particular es

$$x_{p}(t) = \dfrac{g_{0}}{\omega^{2} -\lambda^{2}} \sin(\lambda t) \label{42} \tag{42}$$

Y la solución general es

$$x(t) = c_{1} \cos(\omega t) + c_{2} \sin(\omega t) + \dfrac{g_{0}}{\omega^{2} -\lambda^{2}} \sin(\lambda t) \label{43} \tag{43}$$

Verifica que aplicando las condiciones iniciales se obtiene que

$c_{1} = 0 \hspace{1cm} y \hspace{1cm} c_{2} = -\dfrac{\lambda g_{0}}{\omega (\omega^{2} -\lambda^{2})}$

Por lo tanto, para $\lambda \neq \omega$, la solución es

$$x(t) = \dfrac{g_{0}}{\omega (\omega^{2} -\lambda^{2})} \left[-\lambda \sin(\omega t) + \omega \sin(\lambda t) \right] \label{44} \tag{44}$$

Este resultado no esta definido para $\lambda = \omega$, sin embargo podemos obtener su valor límite conforme $\lambda \rightarrow \omega$, esto produciría en (\ref{44}) un incremento de forma sustancial de las amplitudes de oscilación.

Para $\lambda = \omega$ se define la solución como el límite $\lambda \to \omega$ de la ecuación (\ref{44}).

$$x(t) = \lim_{\lambda \to \omega} g_{0} \dfrac{-\lambda \sin(\omega t) + \omega \sin(\lambda t)}{\omega (\omega^{2} -\lambda^{2})} \label{45} \tag{45}$$

Para resolver el límite apliquemos la regla de L´Hôpital.

La derivada del numerador con respecto a $\lambda$ es

$$\dfrac{d}{d \lambda} \left[ -\lambda \sin(\omega t) + \omega \sin(\lambda t) \right] = -\sin(\omega t) + t \omega \cos(\lambda t)$$

Y la derivada del denominador con respecto a $\lambda$ es

$$\dfrac{d}{d \lambda} \left[ \omega^{3} -\omega \lambda^{2} \right] = -2 \omega \lambda$$

Sustituyendo en el límite (\ref{45}) obtenemos

\begin{align*}
x(t) &= g_{0} \lim_{\lambda \to \omega} \dfrac{-\sin(\omega t) + t \omega \cos(\lambda t)}{-2 \omega \lambda} \\
&= g_{0} \dfrac{-\sin(\omega t) + t \omega \cos(\omega t)}{-2 \omega^{2}} \\
&= \dfrac{g_{0}}{2 \omega^{2}} \sin(\omega t) -\dfrac{g_{0}}{2 \omega}t \cos(\omega t)
\end{align*}

Por lo tanto, para $\lambda = \omega$ la solución es

$$x(t) = \dfrac{g_{0}}{2 \omega^{2}} \left[ \sin(\omega t) -t \omega \cos(\omega t) \right] \label{46} \tag{46}$$


Conforme $t \to \infty$ los desplazamientos del objeto se vuelven más largos, de hecho, $|x(t_{n})| \to \infty$ cuando $t_{n} = \dfrac{n \pi}{\omega}$ para $n = 1, 2, 3, \cdots$.

Este fenómeno se conoce como resonancia pura.

Una gráfica que muestra el comportamiento de (\ref{46}) es la siguiente.

Resonancia pura.

No profundizaremos más en el concepto de resonancia, pero cabe mencionar que la resonancia pura es una situación ideal, pues físicamente las oscilaciones grandes del objeto forzarían en algún momento al resorte más allá de su límite elástico, además en el desarrollo realizado no se han toman en cuenta efectos retardadores de las fuerzas de amortiguamiento que siempre están presentes.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Resolver los siguientes problemas:

  1. Un resorte cuelga verticalmente; su extremo superior está fijo y del inferior pende una caja que pesa $196 N$. Una vez en equilibrio se tira de la caja hacia abajo haciéndola desplazar $0.25 m$ y se suelta. Sabiendo que $k = 80 N/m$ y que la resistencia del aire es despreciable, hallar:
  • La ecuación de movimiento de la caja.
  • El tiempo necesario para que la caja se mueva desde la posición inicial hasta $0.0625 m$ por debajo de la posición de equilibrio.
  1. Una masa de $98 N$ de peso se cuelga de un resorte con lo que éste interrumpe su estado de reposo. Sabiendo que $k = 4.9 N/m$, hallar el movimiento de la masa si al soporte del resorte se le imprime una fuerza $F_{ext}(t) = \sin(\sqrt{2g}t)$.
  1. Se suspende una masa de $10 kg$ de un resorte, el cual se alarga $0.6533 m$. La masa se pone en movimiento desde la posición de equilibrio con una velocidad inicial $1 m/s$, dirigida hacia arriba. Hallar el movimiento resultante si la fuerza debida al aire es $F_{am} = 80 \dfrac{dx}{dt}$.
  1. De un resorte que tiene una constante $k = 50$ se suspende un peso de $49 N$. El peso se pone en movimiento desde el reposo estirándolo $0.98 m$ hacia abajo de la posición de equilibrio y aplicando una fuerza externa $F_{ext}(t) = 10\sin(2t)$. Si no hay resistencia del aire, hallar el movimiento del peso.
  1. Se cuelga de un resorte una masa de $2 kg$, de tal manera que el resorte se alarga $0.6125 m$. A esta masa se le aleja de su posición de equilibrio jalándola $1 m$ hacia arriba y se suelta. Hallar el movimiento resultante de la masa sabiendo que hay una resistencia del aire de $F_{am} = 16 \dfrac{dx}{dt}$.

Más adelante…

Es momento de estudiar el caso en el que los coeficientes no son constantes, es decir, estudiaremos ecuaciones diferenciales de la forma

$$a(x) \dfrac{d^{2}y}{dx^{2}} + b(x) \dfrac{dy}{dx} + c(x) = g(x)$$

Donde $a(x)$, $b(x)$ y $c(x)$ son funciones de la variable independiente $x$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuación de Cauchy – Euler

Por Omar González Franco

Las matemáticas puras son, en su forma, la poesía de las ideas lógicas.
– Albert Einstein

Introducción

Más adelante en esta unidad estudiaremos las ecuaciones diferenciales de orden superior con coeficientes variables, éstas ecuaciones suelen ser mucho más difícil de resolver ya que no se resuelven en términos de funciones elementales, una estrategia usual es suponer una solución en forma de series infinitas y proceder de manera similar al método de coeficientes indeterminados. Sin embargo, existe una ecuación diferencial de coeficientes variables que es una excepción, pues su solución general siempre se puede expresar en términos de potencias de $x$, senos, cosenos y funciones logarítmicas, dicha ecuación es conocida como ecuación de Cauchy – Euler y dedicaremos esta entrada a estudiarla, así como su método de resolución.

Decidimos estudiar esta ecuación en este momento debido a que el método de resolución es bastante similar al de las ecuaciones con coeficientes constantes en los que se debe resolver una ecuación auxiliar.

Ecuación de Cauchy – Euler

Enseguida nos damos cuenta de que los coeficientes

$$b_{n}(x) = a_{n}x^{n}, \hspace{0.5cm} b_{n -1}(x) = a_{n -1}x^{n -1}, \hspace{0.5cm} \cdots, \hspace{0.5cm} b_{1}(x) = a_{1}x^{1}, \hspace{0.5cm} b_{0}(x) = a_{0}x^{0}$$

son dependientes de $x$, es decir, son coeficientes variables, además la característica importante de esta ecuación es que el grado $k = n, n -1, \cdots, 1, 0$ de los coeficientes monomiales $x^{k}$ coincide con el orden $k$ de la derivación $\dfrac{d^{k}y}{dx^{k}}$.

Como se ha hecho a lo largo de la unidad, desarrollaremos con todo detalle el método de resolución de la ecuación de Cauchy – Euler para el caso de segundo orden, recordando que es posible extender el método a cualquier orden $n$ siguiendo el mismo razonamiento.

Iniciaremos nuestro análisis con un estudio detallado de las formas de las soluciones generales de la ecuación homogénea de segundo orden

$$ax^{2} \dfrac{d^{2}y}{dx^{2}} + bx \dfrac{dy}{dx} + cy = 0 \label{2} \tag{2}$$

con $a$, $b$ y $c$ constantes. Para resolver la ecuación no homogénea

$$ax^{2} \dfrac{d^{2}y}{dx^{2}} + bx \dfrac{dy}{dx} + cy = g(x) \label{3} \tag{3}$$

con $g(x) \neq 0$, basta aplicar el método de variación de parámetros (o de coeficientes indeterminados) una vez que se ha determinado la función complementaria $y_{c}$, es decir, la solución general de la ecuación homogénea (\ref{2}).

Una consideración importante es que el coeficiente $ax^{2}$ de $\dfrac{d^{2}y}{dx^{2}}$ es cero en $x = 0$, para garantizar los resultados fundamentales del teorema de existencia y unicidad y sean aplicables a la ecuación de Cauchy – Euler debemos encontrar soluciones generales definidas en el intervalo $\delta = (0, \infty)$. Las soluciones en el intervalo $(-\infty, 0)$ se obtienen al sustituir $t = -x$ en la ecuación diferencial.

Método de resolución

En el caso de las ecuaciones diferenciales con coeficientes constantes propusimos como solución una función de la forma

$$y(x) = e^{kx}$$

De manera similar, en este caso se prueba una solución de la forma

$$y(x) = x^{k}$$

Donde $k$ es un valor que se debe determinar. Al sustituir $x^{k}$, cada término de una ecuación de Cauchy – Euler se convierte en un polinomio en $k$ veces $x^{k}$, puesto que

\begin{align*}
a_{n}x^{n}\dfrac{d^{n}y}{dx^{n}} &= a_{n}x^{n} \left[ k(k -1)(k -2) \cdots (k -n + 1)x^{k -n} \right] \\
&= \left[ a_{n} k(k -1)(k -2) \cdots (k -n + 1) \right] x^{k}
\end{align*}

Por ejemplo, cuando sustituimos $y = x^{k}$ y las respectivas derivadas en la ecuación de segundo orden (\ref{2}), se obtiene

\begin{align*}
ax^{2} \dfrac{d^{2}y}{dx^{2}} + bx \dfrac{dy}{dx} + cy &= ax^{2}[k(k -1)x^{k -2}] + bx[kx^{k -1}] + cx^{k} \\
&= ak(k -1)x^{k} + bkx^{k} + cx^{k} \\
&= \left[ ak(k -1) + bk + c \right] x^{k} \label{4} \tag{4}
\end{align*}

Así, $y = x^{k}$ es una solución de la ecuación diferencial homogénea siempre que $k$ sea una solución de la ecuación auxiliar

$$ak(k -1) + bk + c = 0$$

o bien,

$$ak^{2} + (b -a)k + c = 0 \label{5} \tag{5}$$

Hay tres casos distintos a considerar que dependen de si las raíces de esta ecuación auxiliar son reales y distintas, reales e iguales o complejas.

Caso 1: Raíces reales y distintas

Sean $k_{1}$ y $k_{2}$ las raíces reales de (\ref{5}), tales que $k_{1} \neq k_{2}$. Entonces

$$y_{1} = x^{k_{1}} \hspace{1cm} y \hspace{1cm} y_{2} = x^{k_{2}}$$

forman un conjunto fundamental de soluciones. El Wronskiano esta dado como

\begin{align*}
W(x^{k_{1}}, x^{k_{2}}) &= \begin{vmatrix}
x^{k_{1}} & x^{k_{2}} \\
k_{1}x^{k_{1} -1} & k_{2}x^{k_{2} -1} \end{vmatrix} \\
&= k_{2}x^{(k_{1} + k_{2} -1)} -k_{1}x^{(k_{2} + k_{1} -1)}
\end{align*}

Como

$$W(x^{k_{1}}, x^{k_{2}}) = (k_{2} -k_{1}) x^{k_{1} + k_{2} -1} \neq 0$$

$\forall x \in \delta$, entonces la solución general de la ecuación de Cauchy – Euler para $x > 0$, en el caso en el que las raíces son reales y distintas, es

$$y(x) = c_{1}x^{k_{1}} + c_{2}x^{k_{2}} \label{6} \tag{6}$$

Caso 2: Raíces reales repetidas

Si las raíces de (\ref{5}) son repetidas, es decir $k_{1} = k_{2}$, entonces se obtiene sólo una solución particular

$$y = x^{k_{1}} = x^{k_{2}} = x^{k}$$

Cuando las raíces de la ecuación auxiliar (\ref{5}) son iguales, el discriminante necesariamente es cero, es así que de (\ref{5}) se deduce que las raíces deben ser

$$k = -\dfrac{(b -a)}{2a}$$

Cuando estudiamos el método de reducción de orden vimos que conocida una solución no trivial $y_{1}$, una segunda solución $y_{2}$, tal que $y_{1}$ y $y_{2}$ formen un conjunto fundamental de soluciones, puede ser determinada por la expresión

$$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x) dx}}}{y^{2}_{1}(x)}} \label{7} \tag{7}$$

Para usar este resultado escribamos a la ecuación de Cauchy – Euler en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{b}{ax} \dfrac{dy}{dx} + \dfrac{c}{ax^{2}}y = 0 \label{8} \tag{8}$$

Identificamos que

$$P(x) = \dfrac{b}{ax} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{c}{ax^{2}}$$

Vemos que

$$\int{P(x) dx} = \int{\dfrac{b}{ax} dx} = \dfrac{b}{a} \ln(x)$$

Sustituyendo en (\ref{7}) obtenemos lo siguiente

\begin{align*}
y_{2}(x) &= x^{k} \int{\dfrac{e^{-(b/a) \ln(x)}}{x^{2k}} dx} \\
&= x^{k} \int{ \dfrac{x^{-b/a}}{x^{2k}} dx} \\
&= x^{k} \int{\dfrac{x^{-b/a}}{x^{-(b -a)/a}} dx} \\
&= x^{k} \int{ \dfrac{dx}{x}} \\
&= x^{k} \ln (x)
\end{align*}

En el proceso se ha considerado que

$$e^{-(b/a)}\ln (x) = e^{ \ln (x^{-b/a})} = x^{-b/a}$$

y

$$2k = -\dfrac{(b -a)}{a}$$

Entonces, la segunda solución es

$$y_{2}(x) = x^{k} \ln(x)$$

Vemos que

\begin{align*}
W(x^{k} ,x^{k} \ln (x)) &= \begin{vmatrix}
x^{k} & x^{k} \ln (x) \\
kx^{k -1} & kx^{k -1} \ln (x) + x^{k -1} \end{vmatrix} \\
&= kx^{2k -1} \ln (x) + x^{2k -1} -kx^{2k -1} \ln (x) \\
&= x^{2k -1}
\end{align*}

Como

$$W(x^{k} ,x^{k} \ln (x)) = x^{2k -1} \neq 0$$

$\forall x \in \delta$, entonces la solución general de la ecuación de Cauchy – Euler para $x > 0$, en el caso en el que las raíces son iguales, es

$$y(x) = c_{1}x^{k} + c_{2}x^{k} \ln(x) \label{9} \tag{9}$$

Para ecuaciones de orden superior, si $k$ es una raíz de multiplicidad $r$, entonces se puede demostrar que

$$x^{k}, \hspace{0.5cm} x^{k} \ln(x), \hspace{0.5cm} x^{k}(\ln(x))^{2}, \hspace{0.5cm} \cdots, \hspace{0.5cm} x^{k}(\ln(x))^{r -1}$$

son $r$ soluciones linealmente independientes. En correspondencia, la solución general de la ecuación diferencial debe contener una combinación lineal de estas $r$ soluciones.

Caso 3: Raíces complejas conjugadas

Si las raíces de (\ref{5}) son el par conjugado

$$k_{1} = \alpha + i \beta \hspace{1cm} y \hspace{1cm} k_{2} = \alpha -i \beta$$

Donde $\alpha$ y $\beta > 0$ son reales, entonces una solución es

$$y(x) = C_{1}x^{\alpha + i \beta} + C_{2}x^{\alpha -i \beta} \label{10} \tag{10}$$

De tarea moral muestra que

$$W(x^{\alpha + i \beta}, x^{\alpha -i \beta}) = -2i \beta x^{2\alpha -1} \neq 0$$

lo que indica que la solución (\ref{10}) está compuesta por las funciones del conjunto fundamental de soluciones de la ecuación diferencial de Cauchy – Euler.

Tal como lo hicimos en el caso de coeficientes constantes, se desea escribir la solución en términos de funciones reales. Consideremos la identidad

$$x^{i \beta} = (e^{\ln (x^{i \beta})}) = e^{i \beta \ln (x)} \label{11} \tag{11}$$

Usando la fórmula de Euler podemos escribir

$$x^{i \beta} = \cos \left( \beta \ln (x) \right) + i \sin \left( \beta \ln (x) \right) \label{12} \tag{12}$$

De forma similar,

$$x^{-i \beta} = \cos \left( \beta \ln (x) \right) -i \sin \left( \beta \ln (x) \right) \label{13} \tag{13}$$

Si se suman y restan los dos últimos resultados, se obtiene lo siguiente, respectivamente

$$x^{i \beta } + x^{-i \beta } = 2 \cos \left( \beta \ln (x) \right) \hspace{1cm} y \hspace{1cm} x^{i \beta } -x^{i \beta } = 2i \sin \left( \beta \ln (x) \right) \label{14} \tag{14}$$

Debido a que (\ref{10}) es una solución para cualquier valor de las constantes, podemos notar que si elegimos $C_{1} = C_{2} = 1$ y, por otro lado, $C_{1} = 1, C_{2} = -1$, obtenemos las siguientes dos soluciones, respectivamente

$$y_{1}(x) = x^{\alpha}(x^{i \beta} + x^{-i \beta}) \hspace{1cm} y \hspace{1cm} y_{2}(x) = x^{\alpha} (x^{i \beta} -x^{-i \beta}) \label{15} \tag{15}$$

Usando (\ref{14}) podemos escribir

$$y_{1}(x) = 2x^{\alpha} \cos \left( \beta \ln (x) \right) \hspace{1cm} y \hspace{1cm} y_{2}(x) = 2ix^{\alpha} \sin \left( \beta \ln (x) \right) \label{16} \tag{16}$$

De tarea moral muestra que

$$W(x^{\alpha} \cos \left( \beta \ln (x) \right), x^{\alpha } \sin \left(\beta \ln (x) \right) = \beta x^{2\alpha -1} \neq 0$$

Con esto se concluye que

$$y_{1}(x) = x^{\alpha} \cos \left( \beta \ln (x) \right) \hspace{1cm} y \hspace{1cm} y_{2}(x) = x^{\alpha} \sin \left( \beta \ln (x) \right) \label{17} \tag{17}$$

constituyen un conjunto fundamental de soluciones reales de la ecuación diferencial. Así, la solución general de la ecuación de Cauchy – Euler para $x > 0$, en el caso en el que las raíces son complejas conjugadas, es

$$y(x) = x^{\alpha} \left[ c_{1} \cos \left( \beta \ln (x) \right) + c_{2} \sin \left( \beta \ln (x) \right) \right] \label{18} \tag{18}$$

Realicemos algunos ejemplos en los que apliquemos cada caso.

Ejemplo: Resolver la ecuación de Cauchy – Euler

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + \dfrac{2}{3}x \dfrac{dy}{dx} -\dfrac{2}{9}y = 0$$

Solución: Consideremos la solución $y = x^{k}$, las respectivas derivadas son

$$\dfrac{dy}{dx} = kx^{k -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = k(k -1)x^{k -2}$$

Sustituimos en la ecuación diferencial.

$$x^{2} \left[ k(k -1)x^{k -2} \right] + \dfrac{2}{3} x \left[ kx^{k -1} \right] -\dfrac{2}{9}x^{k} = x^{k} \left[ k(k -1) + \dfrac{2}{3}k -\dfrac{2}{9} \right] = 0$$

Como $x \neq 0$, entonces la ecuación auxiliar es

$$k(k -1) + \dfrac{2}{3}k -\dfrac{2}{9} = 0$$

o bien,

$$k^{2} -\dfrac{1}{3}k -\dfrac{2}{9} = 0$$

Resolviendo para $k$ obtenemos las raíces $k_{1} = \dfrac{2}{3}$ y $k_{2} = -\dfrac{1}{3}$. Como las raíces son reales y distintas, de acuerdo a (\ref{6}), la solución de la ecuación de Cauchy – Euler es

$$y(x) = c_{1}x^{2/3} + c_{2}x^{-1/3}$$

$\square$

Ejemplo: Resolver la ecuación de Cauchy-Euler

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + 3x \dfrac{dy}{dx} + y = 0$$

Solución: Consideremos la solución $y = x^{k}$, las respectivas derivadas son

$$\dfrac{dy}{dx} = kx^{k -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = k(k -1)x^{k -2}$$

Sustituimos en la ecuación diferencial.

$$x^{2} \left[ k(k -1)x^{k -2} \right] + 3x \left[ kx^{k -1} \right] + x^{k} = x^{k} \left[ k(k -1) + 3k + 1 \right] = 0$$

Como $x \neq 0$, entonces la ecuación auxiliar es

$$k(k -1) + 3k + 1 = 0$$

o bien,

$$k^{2} + 2k + 1= 0$$

Resolviendo para $k$ obtenemos las raíces $k_{1} = k_{2} = -1$. Como las raíces son reales repetidas, por (\ref{9}) concluimos que la solución general de la ecuación de Cauchy – Euler es

$$y(x) = c_{1}x^{-1} + c_{2}x^{-1} \ln (x) = \dfrac{1}{x}[c_{1} + c_{2}\ln(x)]$$

$\square$

Ejemplo: Resolver la ecuación de Cauchy-Euler

$$3x^{2} \dfrac{d^{2}y}{dx^{2}} + 6x \dfrac{dy}{dx} + y = 0$$

Solución: Consideremos la solución $y = x^{k}$, las respectivas derivadas son

$$\dfrac{dy}{dx} = kx^{k -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = k(k -1)x^{k -2}$$

Sustituimos en la ecuación diferencial.

$$3x^{2} \left[ k(k -1)x^{k -2} \right] + 6x \left[ kx^{k -1} \right] + x^{k} = x^{k} \left[ 3k(k -1) + 6k + 1 \right] = 0$$

Como $x \neq 0$, entonces la ecuación auxiliar es

$$3k(k -1) + 6k + 1 = 0$$

o bien,

$$3k^{2} + 3k + 1 = 0$$

Resolviendo para $k$ obtenemos las raíces

$$k_{1} = -\dfrac{1}{2} + i \dfrac{1}{2 \sqrt{3}} \hspace{1cm} y \hspace{1cm} k_{2} = -\dfrac{1}{2} -i \dfrac{1}{2\sqrt{3}}$$

Identificamos que

$$\alpha = -\dfrac{1}{2} \hspace{1cm} y \hspace{1cm} \beta = \dfrac{1}{2\sqrt{3}}$$

Las raíces son complejas conjugadas, de manera que la solución esta dada por (\ref{18}). Así, la solución general de la ecuación de Cauchy – Euler es

$$y(x) = x^{-1/2} \left[ c_{1} \cos \left( \dfrac{1}{2 \sqrt{3}} \ln (x) \right) + c_{2} \sin \left( \dfrac{1}{2 \sqrt{3}} \ln (x) \right) \right]$$

$\square$

Caso no homogéneo

Para resolver la ecuación no homogénea (\ref{3}) podemos aplicar el método de variación de parámetros visto en la entrada anterior, pues basta encontrar el conjunto fundamental de soluciones $\{ y_{1}, y_{2}\}$ de la ecuación homogénea asociada y con ello aplicar la fórmula de la solución particular, esto es

$$y_{p}(x) = -y_{1}(x) \int{\dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} + y_{2}(x) \int{\dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{19} \tag{19}$$

Recordar que la función $g(x)$ se obtiene de la forma estándar de la ecuación diferencial.

Realicemos un ejemplo.

Ejemplo: Usando el método de variación de parámetros, resolver la ecuación de Cauchy – Euler

$$x^{2} \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + y = 2x$$

Solución: Debemos hallar el conjunto fundamental de soluciones, así que primero debemos resolver la ecuación homogénea asociada.

$$x^{2} \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + y = 0$$

Consideremos la solución $y = x^{k}$ y sus derivadas

$$\dfrac{dy}{dx} = kx^{k -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = k(k -1)x^{k -2}$$

Sustituimos en la ecuación homogénea asociada.

$$x^{2} \left[ k(k -1)x^{k -2} \right] -x \left[ kx^{k-1} \right] + x^{k} = x^{k} \left[ k(k -1) -k + 1 \right] = 0$$

La ecuación auxiliar es

$$k^{2} -2k + 1 = 0$$

De donde $k_{1} = k_{2} = 1$, así la solución complementaria es

$$y_{c}(x) = c_{1} x + c_{2} x \ln (x)$$

Las funciones

$$y_{1}(x) = x \hspace{1cm} y \hspace{1cm} y_{2}(x) = x\ln(x)$$

conforman al conjunto fundamental de soluciones. Para determinar el Wronskiano vamos a considerar la primer derivada de cada solución.

$$\dfrac{dy_{1}}{dx} = 1 \hspace{1cm} y \hspace{1cm} \dfrac{dy_{2}}{dx} = \ln(x) + 1$$

Sustituimos en el Wronskiano

$$W = \begin{vmatrix}
x & x \ln(x) \\
1 & \ln(x) + 1
\end{vmatrix} = x \ln(x) + x -x\ln(x) = x$$

El Wronskiano es

$$W(x) = x$$

Para determinar la función $g$ dividamos entre $x^{2}$ la ecuación diferencial y así escribirla en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{x} \dfrac{dy}{dx} + \dfrac{1}{x^{2}}y = \dfrac{2}{x}$$

Vemos que

$$g(x) = \dfrac{2}{x}$$

Ahora podemos sustituir en la solución particular (\ref{19}).

\begin{align*}
y_{p}(x) &= -x \int{ \dfrac{x \ln(x) \left( \dfrac{2}{x} \right)}{x} dx} + x \ln(x) \int{ \dfrac{x \left(\dfrac{2}{x} \right)}{x}dx} \\
&= -2x \int{ \dfrac{\ln(x)}{x} dx} + 2x \ln(x) \int{ \dfrac{dx}{x}} \\
&= -2x \dfrac{[\ln(x)]^{2}}{2} + 2x [\ln(x)]^{2} \\
&= x[\ln(x)]^{2}
\end{align*}

La solución particular es

$$y_{p}(x) = x[\ln (x)]^{2}$$

Por lo tanto, la solución general de la ecuación de Cauchy – Euler será la superposición de ambas soluciones, esto es

$$y(x) = c_{1}x + c_{2}x \ln(x) + x[\ln(x)]^{2}$$

$\square$

Reducción a coeficientes constantes

Las similitudes entre las formas de las soluciones de ecuaciones de Cauchy – Euler y soluciones de ecuaciones con coeficientes constantes no son una coincidencia.

Por ejemplo, cuando las raíces de las ecuaciones auxiliares para

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy =0$$

y

$$ax^{2} \dfrac{d^{2}y}{dx^{2}} + bx \dfrac{dy}{dx} + cy =0$$

son distintas y reales, las soluciones generales respectivas, para $x > 0$, son

$$y(x) = c_{1}e^{k_{1}x} + c_{2}e^{k_{2}x} \hspace{1cm} y \hspace{1cm} y(x) = c_{1}x^{k_{1}} + c_{2}x^{k_{2}} \label{20} \tag{20}$$

Usando la identidad

$$e^{\ln x} = x$$

Para $x> 0$, la segunda solución dada en (\ref{20}) puede expresarse en la misma forma que la primera solución.

$$y(x) = c_{1}e^{k_{1} \ln(x)} + c_{2}e^{k_{2} \ln (x)} = c_{1}e^{k_{1}t} + c_{2}e^{k_{2}t} \label{21} \tag{21}$$

donde $t = \ln (x)$. Este resultado ilustra que cualquier ecuación de Cauchy – Euler se puede escribir como una ecuación con coeficientes constantes haciendo la sustitución $x = e^{t}$ y con esto resolver la nueva ecuación diferencial en términos de la variable $t$, usando los métodos descritos en la entrada correspondiente y una vez obtenida la solución general, sustituir nuevamente $t = \ln (x)$. Este método requiere del uso de la regla de la cadena.

Si se hace la sustitución $x = e^{t}$, (o bien $t = \ln(x)$), aplicando la regla de la cadena obtenemos las siguientes expresiones para las derivadas.

$$\dfrac{dy}{dx} = \dfrac{dy}{dt} \dfrac{dt}{dx} = \dfrac{1}{x} \dfrac{dy}{dt} \label{22} \tag{22}$$

y

$$\dfrac{d^{2}y}{dx^{2}} = \dfrac{d}{dx} \left( \dfrac{1}{x} \dfrac{dy}{dt} \right) = -\dfrac{1}{x^{2}} \dfrac{dy}{dt} + \dfrac{1}{x^{2}} \dfrac{d^{2}y}{dt^{2}} = \dfrac{1}{x^{2}} \left( \dfrac{d^{2}y}{dt^{2}} -\dfrac{dy}{dt} \right) \label{23} \tag{23}$$

Sustituyendo en la ecuación de Cauchy – Euler obtenemos lo siguiente.

\begin{align*}
ax^{2} \dfrac{d^{2}y}{dx^{2}} + bx \dfrac{dy}{dx} + cy &= ax^{2} \left[ \dfrac{1}{x^{2}} \left( \dfrac{d^{2}y}{dt^{2}} -\dfrac{dy}{dt} \right) \right] + bx \left[ \dfrac{1}{x} \dfrac{dy}{dt} \right] + cy \\
&= a \dfrac{d^{2}y}{dt^{2}} + (b -a) \dfrac{dy}{dt} + cy
\end{align*}

Por lo tanto, haciendo la sustitución $x = e^{t}$ reducimos la ecuación de Cauchy – Euler a la ecuación

$$a\dfrac{d^{2}y(t)}{dt^{2}} + (b -a) \dfrac{dy(t)}{dt} + cy(t) = g(t) \label{24} \tag{24}$$

que corresponde a una ecuación diferencial con coeficientes constantes en donde la variable independiente es $t$.

Realicemos un ejemplo.

Ejemplo: Usar el cambio de variable $x= e^{t}$ para convertir la ecuación de Cauchy – Euler

$$x^{2} \dfrac{d^{2}y}{dx^{2}} -3x \dfrac{dy}{dx} + 13y = 4 + 3x$$

en una ecuación de coeficiente constantes y obtener la solución general.

Solución: Consideremos el cambio de variable $x = e^{t}$, usando los resultados (\ref{22}) y (\ref{23}), la ecuación de Cauchy – Euler queda como sigue

$$x^{2}\left[ \dfrac{1}{x^{2}} \left( \dfrac{d^{2}y}{dt^{2}} -\dfrac{dy}{dt} \right) \right] -3x \left[ \dfrac{1}{x} \dfrac{dy}{dt} \right] +13y = 4 + 3e^{t}$$

Esto es,

$$\dfrac{d^{2}y}{dt^{2}} -4 \dfrac{dy}{dt} + 13y = 4 + 3e^{t}$$

Ahora tenemos una ecuación no homogénea con coeficientes constantes. Comencemos por resolver la ecuación homogénea.

$$\dfrac{d^{2}y}{dt^{2}} -4 \dfrac{dy}{dt} + 13y = 0$$

La ecuación auxiliar es

$$k^{2} -4k + 13 = 0$$

Las raíces son

$$k_{1} = 2 + i3 \hspace{1cm} y \hspace{1cm} k_{2} = 2 -i3$$

Identificamos que $\alpha = 2 $ y $\beta = 3$, entonces la solución complementaria, en la variable $t$, es

$$y_{c}(t) = c_{1}e^{2t} \cos(3t) + c_{2}e^{2t} \sin(3t)$$

Las funciones correspondientes al conjunto fundamental de soluciones son

$$y_{1}(x) = e^{2t} \cos(3t) \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{2t} \sin(3t)$$

Las derivadas correspondientes son

$$\dfrac{dy_{1}}{dx} = 2e^{2t} \cos(3t) -3e^{2t} \sin(3t) \hspace{1cm} y \hspace{1cm} \dfrac{dy_{2}}{dx} = 2e^{2t} \sin(3t) + 3e^{2t} \cos(3t)$$

El Wronskiano esta dado por

$$W = \begin{vmatrix}
e^{2t} \cos(3t) & e^{2t} \sin(3t) \\
2e^{2t} \cos(3t) -3e^{2t} \sin(3t) & 2e^{2t} \sin(3t) + 3e^{2t} \cos(3t)
\end{vmatrix}$$

Calculando el determinante obtendremos

$$W(t) = 3e^{4t}$$

La ecuación diferencial ya se encuentra en su forma estándar, así que la función $g$ es

$$g(t) = 4 + 3e^{t}$$

Ahora podemos sustituir las funciones correspondientes en la solución particular (\ref{19}) para la variable $t$.

\begin{align*}
y_{p}(t) &= -e^{2t} \cos(3t) \int{ \dfrac{e^{2t} \sin(3t) (4 + 3e^{t})} {3e^{4t}} dt} + e^{2t} \sin(3t) \int{ \dfrac{e^{2t} \cos(3t) (4 + 3e^{t})}{3e^{4t}} dt} \\
&= -e^{2t} \cos(3t) \left[ \dfrac{4}{3} \int{ \dfrac{\sin(3t)}{e^{2t}} dt} + \int{ \dfrac{\sin(3t)}{e^{t}} dt }\right] \\
&+ e^{2t} \sin(3t) \left[ \dfrac{4}{3} \int{ \dfrac{\cos(3t)}{e^{2t}} dt} + \int{ \dfrac{\cos(3t)}{e^{t}} dt} \right]
\end{align*}


Las integrales se resuelven con integración por partes. De tarea moral desarrolla el cálculo de cada integral, los resultados correspondientes son

$$\int{ \dfrac{\sin(3t)}{e^{2t}} dt} = -\dfrac{2}{13}e^{-2t} \sin(3t) -\dfrac{3}{13}e^{-2t} \cos(3t)$$

$$\int{ \dfrac{\sin(3t)}{e^{t}} dt} = -\dfrac{3}{10}e^{-t} \cos(3t) -\dfrac{1}{10}e^{-t} \sin(3t)$$

$$\int{ \dfrac{\cos(3t)}{e^{2t}} dt} = -\dfrac{2}{13}e^{-2t} \cos(3t) + \dfrac{3}{13}e^{-2t} \sin(3t)$$

$$ \int{ \dfrac{\cos(3t)}{e^{t}} dt} = \dfrac{3}{10}e^{-t} \sin(3t) -\dfrac{1}{10}e^{-t} \cos(3t)$$

Sustituyendo estos resultados en $y_{p}(t)$ y reduciendo la expresión obtendremos la solución particular

$$y_{p}(t) = \dfrac{4}{13} + \dfrac{3}{10}e^{t}$$

Por tanto, la solución general en términos de la variable $t$ es

$$y(t) = c_{1}e^{2t} \cos(3t) + c_{2}e^{2t} \sin(3t) + \dfrac{4}{13} + \dfrac{3}{10}e^{t}$$

Si regresamos a la variable original $x = e^{t}$ obtenemos finalmente que la solución general de la ecuación de Cauchy – Euler es

$$y(x) = c_{1}x^{2} \cos[3 \ln(x)] + c_{2}x^{2} \sin[3 \ln(x)] + \dfrac{4}{13} + \dfrac{3}{10}x$$

$\square$

Con esto concluimos el estudio de la ecuación de Cauchy – Euler y en general con el estudio de las ecuaciones diferenciales lineales de orden superior con coeficientes constantes y ecuaciones sencillas con coeficientes variables.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones de Cauchy – Euler.
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} -12y = 0$
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} + 5x \dfrac{dy}{dx} + 4y = 0$
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} -3x \dfrac{dy}{dx} + 5y = 0$
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} + 4y = 0$
  • $25x^{2} \dfrac{d^{2}y}{dx^{2}} + 25x \dfrac{dy}{dx} + y = 0$
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} + 5x \dfrac{dy}{dx} -5y = 0$
  1. Resolver las siguientes ecuaciones de Cauchy – Euler usando el método de variación de parámetros.
  • $2x^{2} \dfrac{d^{2}y}{dx^{2}} + 5x \dfrac{dy}{dx} + y = x^{2} -x$
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} -y = \dfrac{1}{x + 1}$
  1. Usar el cambio de variable $x = e^{t}$ para convertir las ecuaciones de Cauchy – Euler en ecuaciones diferenciales con coeficientes constantes y resolver la ecuación.
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} + 10x \dfrac{dy}{dx} + 8y = x^{2}$
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} -4x \dfrac{dy}{dx} + 6y = \ln (x^{2})$
  1. Hacer una extensión a orden 3 de la teoría desarrollada en esta entrada y aplicando el método de variación de parámetros obtener la solución general de la siguiente ecuación de Cauchy – Euler.
  • $x^{3} \dfrac{d^{3}y}{dx^{3}} -3x^{2} \dfrac{d^{2}y}{dx^{2}} + 6x \dfrac{dy}{dx} -6y = 3 + \ln (x^{3})$

Más adelante…

Con esto concluimos la primera parte de la unidad dos. En la siguiente entrada abordaremos el tema de las oscilaciones mecánicas como ejemplo de aplicación de la teoría que hemos desarrollado hasta este momento.

En entradas posteriores haremos un estudio detallado sobre las ecuaciones diferenciales de orden superior con coeficientes variables y con ello cerraremos la segunda unidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones lineales no homogéneas de segundo orden – Método de variación de parámetros

Por Omar González Franco

Las matemáticas son un lugar donde puedes hacer
cosas que no puedes hacer en el mundo real.
– Marcus du Sautoy

Introducción

Con lo que hemos estudiado en las dos últimas entradas somos capaces de resolver ecuaciones diferenciales lineales de segundo orden homogéneas y no homogéneas con coeficientes constantes, es decir, ecuaciones de la forma

$$a \dfrac{d^{2}y}{dx^{2}} + b \dfrac{dy}{dx} + cy = g(x) \label{1} \tag{1}$$

Con $a, b, c$ constantes y $g(x) = 0$ en el caso homogéneo o $g(x) \neq 0$ en el caso no homogéneo, en éste último caso aún estamos limitados a la forma que puede tener la función $g$, pues sabemos resolver las ecuaciones diferenciales en el caso en el que la función $g$ es una constante, una función polinomial, una función exponencial, funciones seno o coseno, o una combinación entre ellas. La pregunta ahora es, ¿cómo resolver este tipo de ecuaciones para cualquier tipo de función $g(x)$?.

En esta entrada desarrollaremos un método que nos permite obtener la solución general independientemente de la forma que tenga la función $g(x)$. A dicho método se le conoce como variación de parámetros.

El nombre de este método resulta familiar. En la unidad anterior desarrollamos éste método para el caso de las ecuaciones diferenciales lineales de primer orden como método alterno al método por factor integrante. Lo que haremos en esta entrada es una adaptación del método de variación de parámetros para el caso en el que las ecuaciones diferenciales son de orden superior, en particular, de segundo orden.

Variación de parámetros

Consideremos la ecuación diferencial

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g_{0}(x) \label{2} \tag{2}$$

Si $a_{2}(x) \neq 0$ para toda $x$ en el intervalo $\delta$ en el que está definida la solución, entonces podemos definir las funciones

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)}, \hspace{1cm} Q(x) = \dfrac{a_{0}(x)}{a_{2}(x)} \hspace{1cm} y \hspace{1cm} g(x) = \dfrac{g_{0}(x)}{a_{2}(x)}$$

de manera que la ecuación (\ref{2}) la podemos escribir en su forma estándar como

$$\dfrac{d^{2}y}{dx^{2}} + P(x)\dfrac{dy}{dx} + Q(x)y = g(x) \label{3} \tag{3}$$

En el caso de primer orden se hizo la suposición de que la solución particular era de la forma

$$y_{p}(x) = k(x)y_{1}(x) = k(x) e^{-\int{P(x)dx}}$$

Manteniendo esta idea, en el caso de segundo orden se busca una solución de la forma

$$y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) \label{4} \tag{4}$$

Donde $y_{1}$ y $y_{2}$ forman un conjunto fundamental de soluciones en $\delta$ de la ecuación homogénea asociada a (\ref{3}). Determinemos la primera y segunda derivada de $y_{p}$ para sustituir los resultados en la ecuación diferencial (\ref{3}).

$$\dfrac{dy_{p}}{dx} = k_{1}\dfrac{dy_{1}}{dx} + y_{1}\dfrac{dk_{1}}{dx} + k_{2}\dfrac{dy_{2}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \label{5} \tag{5}$$

y

$$\dfrac{d^{2}y_{p}}{dx^{2}} = k_{1}\dfrac{d^{2}y_{1}}{dx^{2}} + 2\dfrac{dy_{1}}{dx}\dfrac{dk_{1}}{dx} + y_{1}\dfrac{d^{2}k_{1}}{dx^{2}} + k_{2}\dfrac{d^{2}y_{2}}{dx^{2}} + 2\dfrac{dy_{2}}{dx}\dfrac{dk_{2}}{dx} + y_{2}\dfrac{d^{2}k_{2}}{dx^{2}} \label{6} \tag{6}$$

Sustituyendo en (\ref{3}) y reorganizando los términos obtenemos lo siguiente.

\begin{align*}
k_{1} \left[ \dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Q y_{1} \right] + y_{1} \dfrac{d^{2}k_{1}}{dx^{2}} + \dfrac{dk_{1}}{dx} \dfrac{dy_{1}}{dx} + k_{2} \left[ \dfrac{d^{2}y_{2}}{dx^{2}} + P\dfrac{dy_{2}}{dx} + Q y_{2} \right] \\
+ y_{2} \dfrac{d^{2}k_{2}}{dx^{2}} + \dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx} + P \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x)
\end{align*}

Como $y_{1}$ y $y_{2}$ son soluciones de la ecuación homogénea asociada, entonces

$$\dfrac{d^{2}y_{1}}{dx^{2}} + P\dfrac{dy_{1}}{dx} + Q y_{1} = 0 \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} + P\dfrac{dy_{2}}{dx} + Q y_{2} = 0$$

y además notamos que

$$\dfrac{d}{dx} \left[ y_{1}\dfrac{dk_{1}}{dx} \right] = y_{1} \dfrac{d^{2}k_{1}}{dx^{2}} + \dfrac{dk_{1}}{dx} \dfrac{dy_{1}}{dx} \label{7} \tag{7}$$

y

$$\dfrac{d}{dx} \left[ y_{2}\dfrac{dk_{2}}{dx} \right] = y_{2} \dfrac{d^{2}k_{2}}{dx^{2}} + \dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx} \label{8} \tag{8}$$

Considerando lo anterior la ecuación diferencial queda como

$$\dfrac{d}{dx} \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + P \left[ y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \right] + \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x) \label{9} \tag{9}$$

Nuestro propósito es determinar a las funciones $k_{1}(x)$ y $k_{2}(x)$ de (\ref{4}), esto implica que debemos formar un sistema con dos ecuaciones que debemos resolver para obtener dichas funciones. De acuerdo al resultado obtenido vamos a establecer la restricción de que las funciones $k_{1}$ y $k_{2}$ satisfacen la relación

$$y_{1}\dfrac{dk_{1}}{dx} + y_{2}\dfrac{dk_{2}}{dx} = 0 \label{10} \tag{10}$$

Considerando esto la ecuación se reduce a

$$\dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = g(x) \label{11} \tag{11}$$

Las ecuaciones (\ref{10}) y (\ref{11}) corresponden al sistema de dos ecuaciones que debemos resolver.

Como podemos notar, es un sistema para determinar las derivadas de las funciones $k_{1}$ y $k_{2}$ y no las funciones mismas, esto implica que una vez que determinemos a las derivadas será necesario hacer una integración a cada una de ellas. Resolvamos el sistema.

Multipliquemos la ecuación (\ref{10}) por $\dfrac{dy_{2}}{dx}$ y la ecuación (\ref{11}) por $y_{2}$.

$$y_{1}\dfrac{dk_{1}}{dx} \dfrac{dy_{2}}{dx} + y_{2}\dfrac{dk_{2}}{dx} \dfrac{dy_{2}}{dx} = 0 \label{12} \tag{12}$$

$$y_{2} \dfrac{dy_{1}}{dx} \dfrac{dk_{1}}{dx} + y_{2} \dfrac{dy_{2}}{dx} \dfrac{dk_{2}}{dx} = y_{2} g(x) \label{13} \tag{13}$$

Si a la ecuación (\ref{12}) le restamos la ecuación (\ref{13}) obtenemos lo siguiente.

$$\dfrac{dk_{1}}{dx} \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2} \dfrac{dy_{1}}{dx} \right) = -y_{2}(x)g(x) \label{14} \tag{14}$$

Recordemos que el Wronskiano esta definido como

$$W(y_{1}, y_{2}) = y_{1} \dfrac{dy_{2}}{dx} -y_{2} \dfrac{dy_{1}}{dx} \label{15} \tag{15}$$

Entonces la ecuación (\ref{14}) la podemos escribir como

$$\dfrac{dk_{1}}{dx} \left[ W(y_{1}, y_{2}) \right] = -y_{2}(x)g(x) \label{16} \tag{16}$$

Como $y_{1}$ y $y_{2}$ forman un conjunto fundamental de soluciones de la ecuación homogénea asociada, entonces

$$W(y_{1}, y_{2}) \neq 0$$

Así, de la ecuación (\ref{16}) obtenemos que

$$\dfrac{dk_{1}}{dx} = -\dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} \label{17} \tag{17}$$

Hemos encontrado el valor de la derivada de la función $k_{1}(x)$, integrando obtenemos finalmente que

$$k_{1}(x) = -\int{ \dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{18} \tag{18}$$

En un proceso totalmente análogo, si multiplicamos a la ecuación (\ref{10}) por $\dfrac{dy_{1}}{dx}$ y a la ecuación (\ref{11}) por $y_{1}$ y realizamos los mismos pasos obtendremos la ecuación para la derivada de la función $k_{2}(x)$.

$$\dfrac{dk_{2}}{dx} = \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} \label{19} \tag{19}$$

Integrando obtendremos la función que buscamos

$$k_{2}(x) = \int{ \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{20} \tag{20}$$

Sustituyendo los resultados (\ref{18}) y (\ref{20}) en la solución particular (\ref{4}) obtenemos finalmente la solución que buscábamos

$$y_{p}(x) = -y_{1}(x) \int{ \dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} + y_{2}(x) \int{ \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \label{21} \tag{21}$$

El resultado (\ref{21}) corresponde a la solución particular de la ecuación diferencial (\ref{2}) que, a diferencial del método de coeficientes indeterminados, se aplica para cualquier función $g(x)$, aunque cabe mencionar que si la función $g$ es muy compleja, entonces nos resultará, en algunas ocasiones, complicado resolver las integrales involucradas.

A lo largo del curso hemos motivado a no memorizar las formulas y en su lugar desarrollar el procedimiento del método correspondiente, sin embargo, en esta ocasión se trata de un método muy largo y complicado para usarse cada vez que se intente resolver una ecuación diferencial, por lo que se recomienda seguir los siguientes pasos.

  • Primero se determina la solución complementaria $$y_{c} = c_{1}y_{1} + c_{2}y_{2}$$ de la ecuación diferencial homogénea asociada, esto nos permitirá determinar el conjunto fundamental de soluciones $\{y_{1}, y_{2}\}$.
  • Una vez conocido el conjunto fundamental de soluciones se procede a calcular el Wronskiano $W(y_{1}, y_{2})$.
  • Posteriormente se divide la ecuación diferencial por $a_{2}$ para escribir la ecuación es su forma estándar (\ref{3}) y así obtener la forma de la función $g(x)$.
  • Se sustituyen los valores correspondientes en (\ref{18}) y (\ref{20}) para obtener las funciones $k_{1}$ y $k_{2}$ respectivamente.
  • Finalmente se sustituyen los resultados en la solución particular $$y_{p} = k_{1}y_{1} + k_{2}y_{2}$$ y posteriormente en la solución general $$y = y_{c} + y_{p}$$

Cuando se calculan las integrales indefinidas (\ref{18}) y (\ref{20}) no es necesario considerar las constantes de integración. Para mostrar esto consideremos las constantes $c_{3}$ y $c_{4}$, tales que

\begin{align*}
y(x) &= y_{c}(x) + y_{p}(x) \\
&= c_{1}y_{1}(x) + c_{2}y_{2}(x) + \left[ k_{1}(x) + c_{3} \right] y_{1}(x) + \left[ k_{2}(x) + c_{4} \right] y_{2}(x) \\
&= \left[ c_{1} + c_{3} \right] y_{1}(x) + \left[ c_{2} + c_{4} \right] y_{2}(x) + k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) \\
&= C_{1}y_{1}(x) + C_{2}y_{2}(x) + k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x)
\end{align*}

Es decir, las constantes de la solución complementaria contienen todas las constantes que puedan aparecer en el método.

Realicemos algunos ejemplos.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$3 \dfrac{d^{2}y}{dx^{2}} -6 \dfrac{dy}{dx} + 6y = e^{x} \sec(x)$$

Solución: El primer paso es obtener la solución complementaria. La ecuación auxiliar es

$$3k^{2} -6k + 6 = 0$$

De donde $k_{1} = 1 + i$ y $k_{2} = 1 -i$, identificamos que $\alpha = \beta = 1$, entonces la forma de la solución complementaria es

$$y_{c}(x) = c_{1}e^{x} \cos(x) + c_{2}e^{x} \sin(x)$$

El conjunto fundamental de soluciones esta conformado por las funciones

$$y_{1}(x) = e^{x} \cos(x) \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{x} \sin(x)$$

La derivada de ambas soluciones son

$$\dfrac{dy_{1}}{dx} = e^{x} \cos(x) -e^{x} \sin(x) \hspace{1cm} y \hspace{1cm} \dfrac{dy_{2}}{dx} = e^{x} \sin(x) + e^{x} \cos(x)$$

Usando estos resultados calculemos el Wronskiano.

\begin{align*}
W &= \begin{vmatrix}
e^{x} \cos(x) & e^{x} \sin(x) \\
e^{x} \cos(x) -e^{x} \sin(x) & e^{x} \sin(x) + e^{x} \cos(x)
\end{vmatrix} \\
&= e^{2x} \cos(x) \sin(x) + e^{2x} \cos^{2}(x) -e^{2x} \cos(x) \sin(x) + e^{2x} \sin^{2}(x) \\
&= e^{2x}
\end{align*}

El Wronskiano es

$$W(x) = e^{2x}$$

¡Cuidado!, como en la ecuación diferencial la segunda derivada tiene un coeficiente, debemos dividir toda la ecuación por dicho coeficiente para obtener la forma estándar y así la función $g(x)$. La ecuación en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} -2 \dfrac{dy}{dx} + 2y = \dfrac{e^{x} \sec(x)}{3}$$

En este caso la función $g$ es

$$g(x) = \dfrac{e^{x} \sec(x)}{3}$$

Ahora que ya conocemos los valores que necesitábamos, recurrimos a las ecuaciones (\ref{18}) y (\ref{20}) para obtener las funciones que buscamos.

Para la función $k_{1}(x)$, tenemos lo siguiente.

\begin{align*}
k_{1}(x) &= -\int{ \dfrac{y_{2}(x)g(x)}{W(y_{1}, y_{2})} dx} \\
&= -\int{\dfrac{\left( e^{x} \sin(x) \right) \left( \dfrac{e^{x} \sec(x)}{3} \right)}{e^{2x}} dx} \\
&= -\int{\dfrac{e^{2x} \sin(x) \sec(x)}{3e^{2x}} dx} \\
&= -\dfrac{1}{3} \int{\tan(x) dx} \\
&= \dfrac{1}{3} \ln|\cos(x)|
\end{align*}

La integral de la tangente es común. Por tanto, la función $k_{1}$ es

$$k_{1}(x) = \dfrac{1}{3} \ln|\cos(x)|$$

Para el caso de la función $k_{2}(x)$, tenemos lo siguiente.

\begin{align*}
k_{2}(x) &= \int{ \dfrac{y_{1}(x)g(x)}{W(y_{1}, y_{2})} dx} \\
&= \int{\dfrac{\left( e^{x} \cos(x) \right) \left( \dfrac{e^{x} \sec(x)}{3} \right)}{e^{2x}} dx} \\
&= \int{\dfrac{e^{2x} \cos(x) \sec(x)}{3e^{2x}} dx} \\
&= \dfrac{1}{3} \int{dx} \\
&= \dfrac{1}{3}x
\end{align*}

La función $k_{2}$ es

$$k_{2}(x) = \dfrac{1}{3}x$$

Ya podemos establecer que la solución particular, de acuerdo a (\ref{4}), es

$$y_{p}(x) = \dfrac{1}{3} \ln|\cos(x)| \left[ e^{x} \cos(x) \right] + \dfrac{1}{3}x \left[ e^{x} \sin(x) \right]$$

Por lo tanto, la solución general de la ecuación diferencial

$$3 \dfrac{d^{2}y}{dx^{2}} -6 \dfrac{dy}{dx} + 6y = e^{x} \sec(x)$$

es

$$y(x) = c_{1}e^{x} \cos(x) + c_{2}e^{x} \sin(x) + \dfrac{1}{3}e^{x} \cos(x) \ln|\cos(x)| + \dfrac{1}{3}x e^{x} \sin(x)$$

$\square$

Con este ejemplo encontramos un buen momento para reflexionar y darnos cuenta de que ya hemos avanzado mucho, tan sólo observa el tipo de ecuación que acabamos de resolver y no sólo eso, observa que tan compleja es la solución general.

¡Sigamos adelante!.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 2\dfrac{dy}{dx} + y = \dfrac{e^{-x}}{x}$$

Solución: Como la ecuación ya está es su forma estándar la función $g$ es

$$g(x) = \dfrac{e^{-x}}{x}$$

Determinemos la solución complementaria, la ecuación auxiliar es

$$k^{2} + 2k + 1 = 0$$

De donde $k_{1} = k_{2} = -1$, la multiplicidad de la solución nos indica que la forma de la solución complementaria es

$$y_{c}(x) = c_{1}e^{-x} + c_{2}xe^{-x}$$

El conjunto fundamental de soluciones esta conformado por las funciones

$$y_{1}(x) = e^{-x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = xe^{-x}$$

Usando estas soluciones y sus derivadas calculemos el Wronskiano.

\begin{align*}
W &= \begin{vmatrix}
e^{-x} & xe^{-x} \\
-e^{-x} & e^{-x} -xe^{-x}
\end{vmatrix} \\
&= e^{-2x} -xe^{2x} + xe^{-2x} \\
&= e^{-2x}
\end{align*}

El Wronskiano es

$$W(x) = e^{-2x}$$

Sustituyamos estos resultados directamente en la ecuación (\ref{21}).

\begin{align*}
y_{p}(x) &= -e^{-x} \int {\dfrac{ \left( xe^{-x} \right) \left( \dfrac{e^{-x}}{x} \right) }{e^{-2x}}dx} + xe^{-x} \int {\dfrac{ \left( e^{-x} \right) \left( \dfrac{e^{-x}}{x} \right) }{e^{-2x}}dx} \\
&= -e^{-x}\int dx+xe^{-x}\int \dfrac{dx}{x} \\
&= -xe^{-x} + xe^{-x}\ln(x)
\end{align*}

La solución particular es

$$y_{p}(x) = -xe^{-x} + xe^{-x}\ln(x)$$

Por lo tanto, la solución general de la ecuación diferencial es

$$y(x) = c_{1}e^{-x} + c_{2}xe^{-x} -xe^{-x} + xe^{-x}\ln(x)$$

$\square$

Un ejemplo más.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -y = 4x^{3}e^{x}$$

Solución: La función $g$ es

$$g(x) = 4x^{3}e^{x}$$

y la ecuación auxiliar es

$$k^{2} -1 = 0$$

De donde $k_{1} = 1$ y $k_{2} = -1$. Entonces, la solución complementaria es

$$y_{c}(x) = c_{1}e^{x} + c_{2}e^{-x}$$

El conjunto fundamental de soluciones esta conformado por

$$y_{1}(x) = e^{x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{-x}$$

Usando estas funciones y sus derivadas calculemos el Wronskiano.

\begin{align*}
W &= \begin{vmatrix}
e^{x} & e^{-x} \\
e^{x} & -e^{-x} \end{vmatrix} = -2
\end{align*}

El Wronskiano es $W = -2$. Sustituyendo estos resultados directamente en la ecuación (\ref{21}), obtenemos lo siguiente.

\begin{align*}
y_{p}(x) &= -e^{x} \int {\dfrac{(e^{-x})(4x^{3}e^{x})}{-2} dx} + e^{-x} \int {\dfrac{(e^{x})(4x^{3}e^{x})}{-2} dx} \\
&= 2e^{x} \int {x^{3} dx} -2e^{-x} \int {x^{3}e^{2x} dx} \\
&= \dfrac{1}{2}x^{4}e^{x} -2e^{-x} \int {x^{3}e^{2x} dx}
\end{align*}

La integral que nos falta se puede resolver por partes tomando $u = x^{2}$ y $v^{\prime} = e^{2x}$. Resolviendo la integral obtendremos lo siguiente.

$$\int {x^{3}e^{2x} dx} = \dfrac{1}{2}e^{2x}x^{3} -\dfrac{3}{4}e^{2x}x^{2} + \dfrac{3}{4}e^{2x}x -\dfrac{3}{8}e^{2x}$$

Sustituyendo en la solución particular tenemos

\begin{align*}
y_{p}(x) &= \dfrac{1}{2}x^{4}e^{x} -2e^{-x} \left( \dfrac{1}{2}e^{2x}x^{3} -\dfrac{3}{4}e^{2x}x^{2} + \dfrac{3}{4}e^{2x}x -\dfrac{3}{8}e^{2x} \right) \\
&= \dfrac{1}{2}x^{4}e^{x} -x^{3}e^{x} + \dfrac{3}{2}x^{2}e^{x} -\dfrac{3}{2}xe^{x} + \dfrac{3}{4}e^{x}
\end{align*}

Finalmente obtenemos como solución particular a la función

$$y_{p}(x) = e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x + \dfrac{3}{4} \right)$$

Y por lo tanto, la solución general de la ecuación diferencial es

$$y(x) = c_{1}e^{x} + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x + \dfrac{3}{4} \right)$$

Este resultado es válido, sin embargo se puede simplificar más, ya que se puede reescribir a la solución como

$$y(x) = e^{x} \left( c_{1} + \dfrac{3}{4} \right) + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x \right)$$

y definir la constante $C_{1} = c_{1} + \dfrac{3}{4}$ para finalmente escribir la solución como

$$y(x) = C_{1} e^{x} + c_{2}e^{-x} + e^{x} \left( \dfrac{1}{2}x^{4} -x^{3} + \dfrac{3}{2}x^{2} -\dfrac{3}{2}x \right)$$

$\square$

Variación de parámetros en ecuaciones de orden superior

Este método se puede generalizar a ecuaciones de orden $n$ aunque, por su puesto, los cálculos se vuelven más extensos.

A continuación mostraremos el panorama general para ecuaciones diferenciales de orden $n$ y mostraremos los resultados para el caso $n = 3$ que nos mostrará la forma en que aumenta la complejidad de los cálculos.

La ecuación de orden $n$ es su forma estándar es

$$\dfrac{d^{n}y}{dx^{n}} + P_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + P_{1}(x) \dfrac{dy}{dx} + P_{0}(x) y = g(x) \label{22} \tag{22}$$

Si la solución complementaria de (\ref{22}) es

$$y_{c}(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) \label{23} \tag{23}$$

Entonces una solución particular debe ser

$$y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) + \cdots + k_{n}(x)y_{n}(x) \label{24} \tag{24}$$

Análogo a las ecuaciones (\ref{10}) y (\ref{11}), las derivadas $\dfrac{dk_{i}}{dx} = k^{\prime}_{i}$ con $i = 1, 2, \cdots, n$ se determinan del sistema de $n$ ecuaciones

\begin{align*}
y_{1}k^{\prime}_{1} + y_{2}k^{\prime}_{2} + \cdots + y_{n}k^{\prime}_{n} &= 0 \\
y^{\prime}_{1}k^{\prime}_{1} + y^{\prime}_{2}k^{\prime}_{2} + \cdots + y^{\prime}_{n}k^{\prime}_{n} &= 0 \\
\vdots \\
y^{(n -1)}_{1}k^{\prime}_{1} + y^{(n -1)}_{2}k^{\prime}_{2} + \cdots + y^{(n-1)}_{n}k^{\prime}_{n} &= g(x) \label{25} \tag{25}
\end{align*}

Al igual que el caso de segundo orden, las primeras $n -1$ ecuaciones del sistema son suposiciones que se hacen para simplificar la ecuación resultante de sustituir la solución (\ref{24}) en la ecuación (\ref{22}).

Usando la regla de Cramer para resolver el sistema se obtiene que

$$\dfrac{dk_{i}}{dx} = \dfrac{W_{i}}{W}; \hspace{1cm} i = 1, 2 , \cdots, n \label{26} \tag{26}$$

Donde $W$ es el Wronskiano del conjunto fundamental $\{ y_{1}(x), y_{2}(x), \cdots, y_{n}(x) \}$ y $W_{i}$ es el determinante que se obtiene de remplazar la $i$-ésima columna del Wronskiano por la columna formada por el lado derecho de (\ref{25}), es decir, la columna que consta de $(0, 0, \cdots, g(x))$.

Para que quede más claro lo anterior, en el caso $n = 3$ las $\dfrac{dk_{i}}{dx}$, $i = 1, 2, 3$ quedan como

$$\dfrac{dk_{1}}{dx} = \dfrac{W_{1}}{W}, \hspace{1cm} \dfrac{dk_{2}}{dx} = \dfrac{W_{2}}{W}, \hspace{1cm} \dfrac{dk_{3}}{dx} = \dfrac{W_{3}}{W} \label{27} \tag{27}$$

Donde

$$W = \begin{vmatrix}
y_{1} & y_{2} & y_{3} \\
y^{\prime}_{1} & y^{\prime}_{2} & y^{\prime}_{3} \\
y^{\prime \prime}_{1} & y^{\prime \prime}_{2} & y^{\prime \prime}_{3}
\end{vmatrix} \label{28} \tag{28}$$

y

\begin{align*}
W_{1} = \begin{vmatrix}
0 & y_{2} & y_{3} \\
0 & y^{\prime}_{2} & y^{\prime}_{3} \\
g(x) & y^{\prime \prime}_{2} & y^{\prime \prime}_{3}
\end{vmatrix}, \hspace{1cm} W_{2} = \begin{vmatrix}
y_{1} & 0 & y_{3} \\
y^{\prime}_{1} & 0 & y^{\prime}_{3} \\
y^{\prime \prime}_{1} & g(x) & y^{\prime \prime}_{3}
\end{vmatrix}, \hspace{1cm} W_{3} = \begin{vmatrix}
y_{1} & y_{2} & 0 \\
y^{\prime}_{1} & y^{\prime}_{2} & 0 \\
y^{\prime \prime}_{1} & y^{\prime \prime}_{2} & g(x)
\end{vmatrix}
\end{align*}

Habrá que integrar las ecuaciones de (\ref{27}) para obtener las funciones $k_{i}$, $i = 1, 2, 3$ y así obtener la solución particular

$$y_{p}(x) = k_{1}(x)y_{1}(x) + k_{2}(x)y_{2}(x) + k_{3}(x)y_{3}(x) \label{29} \tag{29}$$

Notemos que usando esta notación, los resultados (\ref{17}) y (\ref{19}) del caso $n = 2$ se pueden escribir como

$$\dfrac{dk_{1}}{dx} = \dfrac{W_{1}}{W} = -\dfrac{y_{2}g(x)}{W} \hspace{1cm} y \hspace{1cm} \dfrac{dk_{2}}{dx} = \dfrac{W_{2}}{W} = \dfrac{y_{1}g(x)}{W} \label{30} \tag{30}$$

Donde

\begin{align*} W = \begin{vmatrix}
y_{1} & y_{2} \\
y^{\prime}_{1} & y^{\prime}_{2}
\end{vmatrix}, \hspace{1cm} W_{1} = \begin{vmatrix}
0 & y_{2} \\
g(x) & y^{\prime}_{2}
\end{vmatrix} \hspace{1cm} y \hspace{1cm} W_{2} = \begin{vmatrix}
y_{1} & 0 \\
y^{\prime}_{1} & g(x)
\end{vmatrix} \label{31} \tag{31}
\end{align*}

Realicemos un ejemplo con una ecuación de orden $3$.

Ejemplo: Resolver la ecuación diferencial de tercer orden

$$\dfrac{d^{3}y}{dx^{3}} + \dfrac{dy}{dx} = \tan(x)$$

Solución: La función $g$ es

$$g(x) = \tan(x)$$

y la ecuación auxiliar es

$$k^{3} + k = k(k^{2} + 1) = 0$$

De donde $k_{1} = 0$, $k_{2} = i$ y $k_{3} = -i$. Dos raíces son complejas conjugadas con $\alpha = 0$ y $\beta = 1$. La primer raíz nos indica que la forma de una solución es

$$y_{1}(x) = e^{k_{1}x} = 1$$

mientras que las dos raíces restantes nos indican dos solución de la forma

$$y_{2}(x) = e^{\alpha x} \cos(\beta x) = \cos(x)$$

y

$$y_{3}(x) = e^{\alpha x} \sin(\beta x) = \sin(x)$$

Por lo tanto, la solución complementaria de la ecuación diferencial es

$$y_{c}(x) = c_{1} + c_{2} \cos(x) + c_{3} \sin(x)$$

Como vimos, el conjunto fundamental de soluciones es $\{ y_{1} = 1, y_{2} = \cos(x) , y_{3} = \sin(x) \}$, las primeras y segundas derivadas correspondientes son

$$\dfrac{dy_{1}}{dx} = 0, \hspace{1cm} \dfrac{dy_{2}}{dx} = -\sin(x), \hspace{1cm} \dfrac{dy_{3}}{dx} = \cos(x)$$

y

$$\dfrac{d^{2}y_{1}}{dx^{2}} = 0, \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} = -\cos(x), \hspace{1cm} \dfrac{d^{2}y_{3}}{dx^{2}} = -\sin(x)$$

Ahora calculemos los determinantes correspondientes, el primero de ellos es el Wronskiano

$$W = \begin{vmatrix}
1 & \cos(x) & \sin(x) \\
0 & -\sin(x) & \cos(x) \\
0 & -\cos(x) & -\sin(x)
\end{vmatrix} = \sin^{2}(x) + \cos^{2}(x) = 1$$

Para el resto de determinantes, tenemos

$$W_{1} = \begin{vmatrix}
0 & \cos(x) & \sin(x) \\
0 & -\sin(x) & \cos(x) \\
\tan(x) & -\cos(x) & -\sin(x)
\end{vmatrix} = \tan(x) \left[ \cos^{2}(x) + \sin^{2}(x) \right] = \tan(x)$$

$$W_{2} = \begin{vmatrix}
1 & 0 & \sin(x) \\
0 & 0 & \cos(x) \\
0 & \tan(x) & -\sin(x)
\end{vmatrix} = -\cos(x) \tan(x) = -\sin(x)$$

y

$$W_{3} = \begin{vmatrix}
1 & \cos(x) & 0 \\
0 & -\sin(x) & 0 \\
0 & -\cos(x) & \tan(x)
\end{vmatrix} = -\sin(x) \tan(x) = -\dfrac{\sin^{2}(x)}{\cos(x)}$$

Sustituyendo estos resultados en (\ref{27}), obtenemos

$$\dfrac{dk_{1}}{dx} = \tan(x), \hspace{1cm} \dfrac{dk_{2}}{dx} = -\sin(x), \hspace{1cm} \dfrac{dk_{3}}{dx} = -\dfrac{\sin^{2}(x)}{\cos(x)}$$

Procedemos a integrar cada ecuación (sin considerar constantes) para obtener las funciones que buscamos.

La primer integral es común,

$$k_{1}(x) = \int{\tan(x) dx} = -\ln|\cos(x)|$$

La segunda integral es directa

$$k_{2}(x) = -\int{\sin(x) dx} = \cos(x)$$

Mientras que para la tercer integral si se requiere de un mayor cálculo.

\begin{align*}
k_{3}(x) &= -\int{\dfrac{\sin^{2}(x)}{\cos(x)} dx} \\
&= -\int{\dfrac{1 -\cos^{2}(x)}{\cos(x)} dx} \\
&= -\int{\dfrac{1}{\cos(x)} dx} + \int{\cos(x) dx} \\
\end{align*}

Por un lado

$$-\int{\dfrac{1}{\cos(x)} dx} = -\int{\sec(x) dx} = -\ln|\tan(x) + \sec(x)|$$

por otro lado,

$$\int{\cos(x) dx} = \sin(x)$$

entonces

$$k_{3}(x) = -\ln|\tan(x) + \sec(x)| + \sin(x)$$

Ahora que conocemos las funciones incógnita concluimos que la solución particular de la ecuación diferencial es

\begin{align*}
y_{p}(x) &= -\ln|\cos(x)|(1) + \cos(x) [\cos(x)] + \left[ -\ln|\tan(x) + \sec(x)| + \sin(x) \right] (\sin(x)) \\
&= -\ln|\cos(x)| + \cos^{2}(x) -\sin(x) \ln|\tan(x) + \sec(x)| + \sin^{2}(x) \\
&= -\ln|\cos(x)| -\sin(x) \ln|\tan(x) + \sec(x)| \\
\end{align*}

Por lo tanto, la solución general de la ecuación diferencial de tercer orden es

$$y(x) = c_{1} + c_{2} \cos(x) + c_{3} \sin(x) -\ln|\cos(x)| -\sin(x) \ln|\tan(x) + \sec(x)|$$

$\square$

Como podemos notar, los cálculos se hacen más extensos, sin embargo los pasos a seguir son los mismos para cualquier orden.

El método de variación de parámetros, a diferencia del método de coeficientes indeterminados, tiene la ventaja de que siempre produce una solución de la ecuación diferencial independientemente de la forma de la función $g(x)$, siempre y cuando se pueda resolver la ecuación homogénea asociada. Además, el método de variación de parámetros es aplicable a ecuaciones diferenciales lineales con coeficientes variables.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener la solución general de las siguientes ecuaciones diferenciales.
  • $\dfrac{d^{2}y}{dx^{2}} -9\dfrac{dy}{dx} = 18x^{2}e^{9x}$
  • $\dfrac{d^{2}y}{dx^{2}} + 9y = 18e^{x} \sin(x)$
  • $4 \dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + y = e^{x/2}\sqrt{1 -x^{2}}$
  1. Resolver las siguientes ecuaciones diferenciales para las condiciones iniciales dadas.
  • $\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} = 12e^{4x}(x + 1); \hspace{1cm} y(0) = 0, \hspace{0.6cm} y^{\prime}(0) = 4$
  • $\dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} -6y = 10e^{x} \sin(x); \hspace{1cm} y(0) = \dfrac{2}{17}, \hspace{0.6cm} y^{\prime}(0) = 0$
  1. Obtener la solución general de las siguientes ecuaciones diferenciales de tercer orden. Simplificar la forma de la solución redefiniendo las constantes.
  • $\dfrac{d^{3}y}{dx^{3}} + 4 \dfrac{dy}{dx} = \sec(2x)$
  • $\dfrac{d^{3}y}{dx^{3}} + \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} -y = 2e^{-x}$

Más adelante…

Hemos concluido con el estudio de las ecuaciones diferenciales lineales de orden superior con coeficientes constantes.

Lo que sigue es estudiar este mismo tipo de ecuaciones, pero en el caso en el que los coeficientes no son constantes, es decir, son coeficientes variables. Estas ecuaciones suelen ser mucho más difícil de resolver, sin embargo existe un tipo de ecuación especial, conocida como ecuación de Cauchy – Euler, que contiene coeficientes variables, pero que su método de resolución es bastante similar a lo que hemos desarrollado en el caso de coeficientes constantes, pues su resolución involucra resolver una ecuación auxiliar. En la siguiente entrada estudiaremos dicha ecuación.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»