Archivo del Autor: Miguel Ángel Rodríguez García

Cálculo Diferencial e Integral II: Tangentes a curvas paramétricas

Por Miguel Ángel Rodríguez García

Introducción

En esta sección veremos como calcular derivadas a las ecuaciones paramétricas que vimos en la sección anterior.

Tangentes a curvas paramétricas

Las curvas paramétricas los podemos escribir como:

x=f(t)    y    y=g(t)

Sustituimos la expresión para x en la ecuación y=F(x), por lo que:

y=g(t)=F(f(t))

Si g, f, y F son derivables, entonces por la regla de la cadena tenemos que:

g(t)=F(f(t))f(t)=F(x)f(t)

Si f(t)0, entonces:

(1)F(x)=g(t)f(t)

Por lo que la relación (1) es la pendiente de la tangente de la curva y=F(x) en (x,F(x)). Si a la ecuación anterior empleamos la notación de Leibniz entonces se tiene que:

dydx=dydtdxdt

Donde:

dxdt0

Obteniendo la segunda derivada se obtiene que:

d2ydx2=ddx(dydx)=ddt(dydx)dxdt

Veamos unos ejemplos.

Ejemplos

  • Encuentre la tangente a la cicloide con ecuaciones paramétricas x=r(θsin(θ)), y=r(1cos(θ)) en el punto donde θ=π/3.

Calculemos la derivada como:

dydx=dydθdxdθ=rsin(θ)r(1cos(θ))=sin(θ)1cos(θ)

Evaluamos el punto θ=π/3 en x y y, entonces tenemos que:

x=r(π3sin(π3))=r(π332)

y=r(1cos(π3))=r2

Por otro lado, evaluando en la derivada:

dydx=sin(π/3)1cos(π/3)=23112=3

Por tanto, la pendiente de la tangente es 3.

  • Encuentre la segunda derivada de la siguiente ecuación paramétrica: x=t54t3 y y=t2

Calculemos la primera derivada:

dydt=2t

dxdt=5t412t2

dydx=2t5t412t2=25t312t

Ahora encontramos ddt(dydx):

ddt(dydx)=ddt(25t312t)=12(15t212)(5t312t)2=2430t2(5t312t)2

Por lo que:

d2ydx2=ddt(dydx)dxdt=2430t2(5t312t)25t412t2=2430t2(5t312t)2(5t412t2)

d2ydx2=2430t2t(5t312t)3

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Una curva C tiene como ecuaciones paramétricas x=t2 y y=t33t.
  1. Muestre que la curva C tiene dos tangentes en el punto (3,0).
  2. Determine los puntos en C donde la tangente es horizontal o vertical.
  3. Determine donde la curva es cóncava o convexa.
  4. Bosqueje una grafica.
  • Matemáticamente explique lo siguiente:

d2ydx2d2ydt2d2xdt2

Más adelante…

En esta sección vimos como calcular la curva tangente de las curvas paramétricas así como calcular la segunda derivada de estas, en la siguiente sección veremos una introducción a las coordenadas polares.

Entradas relacionadas

Cálculo Diferencial e Integral II: Curvas paramétricas

Por Miguel Ángel Rodríguez García

Introducción

En esta sección veremos curvas que se pueden representar por un sistema de ecuaciones llamadas ecuaciones paramétricas, ya que formalmente estas curvas no son funciones, es decir, no cumplen el criterio de la definición de función (y=f(x)), por lo que solo le llamamos curvas, denotado comúnmente por la letra C a estas curvas.

Curvas paramétricas

Figura 1: Curva paramétrica.

Sea C una curva en el plano como en la figura (1), las coordenadas de x y y son funciones de otra variable, generalmente denotada por la variable t, por tanto, podemos escribir:

x=f(t)    y    y=g(t)

A la variable t se le conoce como parámetro, y a las ecuaciones anteriores se le conocen como las ecuaciones paramétricas de la curva C. Notemos que cada valor de t determina un punto (x,y) por lo que cuando t va variando, el punto (x,y)=(f(t),g(t)) también va variando trazando la curva C.

Veamos un ejemplo.

Ejemplo

  • Grafica la curva definida por la siguientes ecuaciones paramétricas: x=t22t   y=t+1.

Para graficar este tipo de curvas tenemos que ir variando la variable t, por lo que obtenemos algunos valoras bajo las curvas paramétricas en la tabla siguiente:

txy
-28-1
-130
001
1-12
203
334
485
Tabla 1: Valores de x y y variando la variable t bajo las curvas paramétricas.

De los valores anteriores obtenemos la curva siguiente:

Figura 2: Curva paramétrica.

De la ecuación para y tenemos que:

t=y+1

Si sustituimos esta ecuación en la ecuación para x entonces tenemos que:

x=t22t=(y+1)22(y+1)=y24y+3

Por tanto, la curva representada por las ecuaciones paramétricas es una parábola.

  • Que curva representa las siguientes ecuaciones paramétricas: x=cos(t) y y=sin(t) con 0t2π

Podemos eliminar la variable t elevando al cuadrado las variables x y y, sumando estos términos obtenemos:

x2+y2=cos2(t)+sin2(t)=1

Por tanto, notamos que es la ecuación de una circunferencia de radio 1 como vemos en la siguiente figura (3).

Figura 3: Circunferencia de radio 1.

En algunos casos algunas curvas paramétricas forman algunas figuras espectaculares, por ejemplo, el hipocicloide definido como:

x=(ab)cos(t)+cos(t(ab)1)

y=(ab)sin(t)sin(t(ab)1)

Donde el radio del círculo más grande es a y el radio del círculo más pequeño es b, sea k=ab donde a k se le conoce como el número de cúspides, por lo que al variar estos valores obtenemos las curvas siguientes:

Figura 4: Hipocicloide al variar k [https://en.wikipedia.org/wiki/Parametric_equation].

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invito a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Grafique las siguientes curvas paramétricas en el intervalo indicado.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. x=sin(2t)  y=cos(2t),   0t2π
  2. x=2sin(t)  y=4+cos(t),   0t3π/2
  3. x=t  y=t2,   2t2
  • Elimine el parámetro para hallar la ecuación cartesiana de la curva dada como: x=t22  y=52t,   3t4
  • Encuentre las ecuaciones paramétricas de una circunferencia de radio r y centro (h,k).

Más adelante…

En esta sección vimos curvas paramétricas y como graficarlas, en la siguiente sección veremos como calcular la tangente de una curva paramétrica.

Entradas relacionadas

Cálculo Diferencial e Integral II: Forma exponencial de las series de Fourier

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series de Fourier para las funciones pares e impares, en esta sección veremos la forma exponencial de las series de Fourier por la fórmula reducida del matemático Jonhard Euler, aunque esta fórmula está dada en un plano complejo, se puede entender a este nivel utilizando unas cuantas propiedades sencillas de los números complejos.

Forma exponencial de las series de Fourier

La fórmula de Euler o relación de Euler esta dada como:

eix=cos(x)+isin(x)

Donde i es un número complejo o imaginario, aunque esta identidad se deducirá en el curso de variable compleja. De esta fórmula se puede deducir fácilmente las siguientes relaciones:

cos(x)=eix+eix2

(1)sin(x)=eixeix2i

De los coeficientes de Fourier, observamos los términos de las funciones trigonométricas seno y coseno y sustituimos en las fórmulas anteriores como sigue:

cos(2πnTx)=e2πnTix+e2πnTix2

y

sin(2πnTx)=e2πnTixe2πnTix2i

Así tenemos que:

ancos(2πnTx)+bnsin(2πnTx)=an[e2πnTix+e2πnTix2]+bn[e2πnTixe2πnTix2i]

Existe una propiedad en los números complejos que nos dice que:

i=1i

Aunque esta demostración se verá en el curso de variable compleja, utilizaremos solo esta propiedad de los números complejos, aplicando lo anterior en el segundo término como sigue:

=an[e2πnTix+e2πnTix2]ibn[e2πnTixe2πnTix2]

=an e2πnTix+an e2πnTix2+ibn e2πnTix+ibn e2πnTix2

=12[an e2πnTixibn e2πnTix+an e2πnTix+ibn e2πnTix]

=12[(anibn)e2πnTix+(an+bn)e2πnTix]

Sea cn=12(anibn)

Su respectivo complejo conjugado c¯n es aquel que intercambia el signo del número complejo, es decir: c¯n=12(an+ibn)

Entonces la serie de Fourier en la forma exponencial de f(x) está dada como:

f(x)=C0+n=1(cne2πnTixc¯ne2πnTix)

Cuyo coeficientes complejos están dados como

cn=1T0Tf(x)e2πnTixdx

y

c¯n=1T0Tf(x)e2πnTixdx

Con n ϵ Z

Veamos un ejemplo.

Ejemplo

Aproxime la siguiente función con una serie de Fourier en su forma exponencial.

  • f(x)=sin(x) en el intervalo [π,π]

Vemos que el periodo está dado como T=2π, ya que se repite en un intervalo de π a π Calculemos los coeficientes complejos como sigue:

c0=12πππsin(x)e0dx=12πππsin(x)dx=0

 c0=0

cn=12πππsin(x)e2πn2πixdx=12πππsin(x)enixdx

Resolvemos esta integral con el método de integración por partes el cual ya habíamos visto, tomamos como cambio de variable a u=inx, por lo que:

=12π(einx(cos(x)+insin(x)n21)|ππ=12π(ein(π)(cos(π)+insin(π))n21ein(π)(cos(π)+insin(π))n21)

=12π(einπ(1)n21einπ(1)n21)=12π1n21(einπ+einπ)

Podemos usar la relación (1) para reescribir el resultado anterior como:

cn=12πππsin(x)enixdx=12π(einπ+einπn21)=1π(isin(πn)n21)

Ahora para los coeficientes c¯n, se tiene que:

c¯n=12πππsin(x)enixdx

Por lo que solo cambia en el signo de la exponencial, lo cual se obtiene que la integral es:

12πππsin(x)enixdx==12π(einx(cos(x)insin(x)n21)|ππ

Como sin(±π)=0, por lo que el resultado de la integral solo cambia en el signo:

c¯n=12πππsin(x)enixdx=1π(isin(πn)1n2)

Por tanto, la serie de Fourier en términos exponenciales es:

f(x)=n=1[1π(isin(πn)n21)einx1π(isin(πn)1n2)einx]

=1πn=12isin(πn)n21(einx+einx)=1πn=12isen(πn)n212cos(nx)=4πn=1isin(πn)n21cos(nx)

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifique utilizando la relación de Euler las siguientes relaciones:

cos(x)=eix+eix2

sin(x)=eixeix2i

  • Aproxime las siguientes funciones con serie de Fourier utilizando la forma exponencial.
  1. f(x)=x en el intervalo [π,π]
  2. f(x)={2   si   0x<12   si   1x2
  3. f(x)={1   si   πx<01   si   0xπ

Más adelante…

En esta sección vimos la forma exponencial de las series de Fourier y aunque se vio un poco de variable compleja, realmente se vio las propiedades más básicas de los números complejos, por lo que no se tuvo que recurrir a un curso de variable compleja, en la siguiente sección veremos las curvas paramétricas así como ejemplo de estos.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series de Fourier de funciones pares e impares

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series y los coeficientes de Fourier para aproximar una función f(x), en esta sección veremos las series de Fourier para las funciones para e impares, para esto veremos la proposición siguiente.

Series de Fourier de funciones pares e impares

Proposición. Si f:[a,a]R es integrable, se puede asegurar que:

a) Si f es par entonces:

(1)aaf(x)dx=20af(x)dx

b) Si f es impar entonces:

(2)aaf(x)dx=0

Demostración:

a) Recordemos que las funciones pares se tiene la propiedad que: f(x)=f(x), así tenemos que:

aaf(x)dx=a0f(x)dx+0af(x)dx

Si hacemos el cambio de variable t=xdt=dx en la penúltima integral entonces:

a0f(t)dt+0af(x)dx=0af(t)dt+0af(x)dx=20af(x)dx

◻

b) Recordemos que las funciones impares se tiene la propiedad que f(x)=f(x), se tiene que:

aaf(x)dx=a0f(x)dx+0af(x)dx

Análogamente, hacemos el cambio de variable t=xdt=dx, tenemos que:

a0f(t)dt+0af(x)dx=0af(t)dt+0af(x)dx=0

◻

Recordando que la serie de Fourier de una función f(x) esta dada como:

f(x)=a02+n=1[ancos(2nπTx)+bnsin(2nπTx)]

Donde:

a0, an y bn se denomina coeficientes de Fourier que se definen como:

a0=2TT2T2f(x)dx

an=2TT2T2f(x)cos(2nπTx)dx

bn=2TT2T2f(x)sin(2nπTx)dx

Por tanto cuando f es par, al calcular los coeficientes de an, las funciones a integrar son funciones pares, ya que tanto f como las funciones coseno lo son y el producto de dos funciones pares es una función par, sin embargo, al calcular los coeficientes de bn las funciones a integrar es impar, porque f es par y las funciones seno son impares, puesto que el producto de una función par con una función impar da como resultado una función impar por lo que utilizando las relaciones (1) y (2), resulta que:

an=4T0T2f(x)cos(2πnxT)dx

y

bn=0

Por lo tanto, la serie de Fourier de una función f(x) par, es una serie cosenoidal:

f(x)=a02+n=1ancos(2πnxT)

Ahora, si f es impar, al calcular los coeficientes an las funciones a integrar son funciones impares, ya que f es impar y las funciones coseno son pares; sin embargo, al calcular bn las funciones a integrar son pares, ya que el producto de una función impar con otra función impar da como resultado una función par, por lo que:

an=0    n=0,1,2,3,..

y

bn=4T0T2f(x)sin(2πnxT)dx

Y la serie de Fourier de una función f(x) impar es una serie senoidal:

f(x)=n=1bnsin(2πnxT)

Ejemplo

Encuentre la serie de Fourier de la siguiente función:

f(x)={3   si   πx<03   si   0x<π

Figura 1: Gráfica de la función f(x).

De la gráfica (figura (1)), vemos que la función es periódica con T=2π y que la función es impar, por tanto, por lo visto anteriormente, tenemos que:

an=0

y

a0=0

Por lo que solo calculamos los coeficientes bn como sigue:

bn=4T0T2f(x)sin(2πnxT)dx=42π02π2f(x)sin(2πnx2π)dx=2π0πf(x)sin(nx)dx

=2π0π3sin(nx)dx=6π(cos(nx)n)|0π=6nπ(cos(nπ)1)

Vemos que para n par, cos(nπ)=0, por lo que:

bn=0

Para n impar, cos(nπ)=1, por lo que:

bn=12nπ

  f(x)=n=112nπsin(2πnxT)

Para n impar.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invito a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Aproxime las siguientes funciones con serie de Fourier.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. f(x)=x2 en el intervalo [2,2].
  2. f(x)=x3 en el intervalo [1,1].
  3. f(x)=e|x| en el intervalo [π,π].
  4. f(x)=xcos(x) en el intervalo [2,2].
  5. f(x)={x+5   si   2x<0x5   si   0x2

Más adelante…

En esta sección vimos las series de Fourier con funciones pares e impares en los cuales se obtienen series cosenoidales y senoidales respectivamente como resultado de las propiedades de las funciones pares e impares, en la siguiente sección veremos la forma exponencial de las series de Fourier.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series de Fourier

Por Miguel Ángel Rodríguez García

Introducción

En esta última unidad del curso veremos algunos temas que nos serán útiles en otros cursos, comenzando estudiando las series de Fourier, por lo que empezaremos a ver la definición de las series de Fourier.

Series de Fourier

Habíamos visto que las series de Taylor se pueden utilizar para aproximar a una función f(x) por medio de polinomios, en caso contrario, las series de Fourier utilizan una combinación lineal de funciones sin(x) y cos(x) para aproximar una función f(x) como se muestra en la figura (1), por lo que estas series son muy útiles al analizar funciones periódicas como son señales de radio, corrientes alternas, etc., veamos la siguiente definición.

Figura 1: Aproximación a la función f(x) mediante series de Fourier para valores de n distintas (https://es.wikipedia.org/wiki/Serie_de_Fourier).

Definición. Sea una función f(x) integrable en el intervalo [x0T2,x0+T2], donde T es el periodo de la función, entonces se puede aproximar en series de Fourier a f(x) como:

f(x)=a02+n=1[ancos(2nπTx)+bnsin(2nπTx)]

Donde n toma valores n=1,2,3,...

a0, an y bn se denominan los coeficientes de Fourier que se definen como sigue:

a0=2TT2T2f(x)dx

an=2TT2T2f(x)cos(2nπTx)dx

bn=2TT2T2f(x)sin(2nπTx)dx

Como recordatorio, una función periódica es una función f(x) que tiene un patrón que se repite en un dado intervalo [a,b], como por ejemplo, las funciones sin(x) y cos(x) que tienen el mismo periodo T=2π.

Veamos unos ejemplos de como calcular la serie de Fourier de una función.

Ejemplos

Calcule las series de Fourier de las siguientes funciones en el intervalo dado.

  • f(x)=x para π<x<π repitiéndose con periodo T=2π

En este caso, primero calculamos los coeficientes de Fourier, de la definición tenemos que:

a0=2TT2T2f(x)dx=1πππxdx=0

an=2TT2T2f(x)cos(2nπTx)dx=1πππxcos(2nπ2πx)dx=1πππxcos(nx)dx

Utilizando la integración por partes, el resultado de la integral se tiene que:

1πππxcos(nx)dx=1π(nπsin(nπ)+cos(nπ)n2n(π)sin(n(π))+cos(n(π))n2)

=1π(nπsin(nπ)+cos(nπ)nπsin(nπ)cos(nπ)n2)=0

an=0

bn=2TT2T2f(x)sin(2nπTx)dx=1πππxsin(2nπ2πx)dx=1πππxsin(nx)dx

Utilizando nuevamente la integración por partes, se tiene que:

1πππxsin(nx)dx=1π(sin(nπ)nπcos(nπ)n2sin(n(π))n(π)cos(n(π))n2)

=1π(sin(nπ)nπcos(nπ)+sin(nπ)nπcos(nπ)n2)=1π(2sin(nπ)2nπcos(nπ)n2)

Como n ϵ Zsin(nπ)=0

bn=1π(02nπcos(nπ)n2)=2ncos(nπ)

Por lo que la serie de Fourier de f(x) está dado como:

f(x)=2n=1cos(nπ)nsin(nx)

Para xπ2πZ.

Una aplicación de las series de Fourier en física es el análisis vibratorio de las ondas en el área de la acústica o de la óptica, también es útil en el procesamiento de señales digitales, facilitando las series de Fourier, el manejo de señales expresando una señal como una combinación lineal de varias ondas. Un ejemplo es una onda cuadrada dada por la siguiente función.

  • f(x)={1   si   0xπ2   si   π<x2π

Calculamos los coeficientes de Fourier como sigue:

a0=12π02πf(x)dx=1π(0π1dx+π2π2dx)=32

an=1π(0πcos(nx)dx+π2π2cos(nx)dx)=1π([sin(nx)n]|0π+[2sin(nx)n]|π2π)

=1π(sin(nπ)nsin(0)n+2sin(2nπ)n2sin(nπ)n)=0

an=0

bn=1π(0πsin(nx)dx+π2π2sin(nx)dx)=1π([cos(nx)n]|0π+[2cos(nx)n]|π2π)

=1π(cos(nπ)n+cos(0)n+2cos(2nπ)n2cos(nπ)n)=cos(nπ1)nπ

Vemos en este caso que:

b1=2π

b2=0

b3=23π

b4=0

b5=25π

Por tanto, la serie de Fourier de la función escalonada es:

342πn=1(sin(x)+sin(3x)3+sin(5x)5+.)

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Aproxime las siguientes funciones con la definición de serie de Fourier.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. f(x)=1   si   0x2π
  2. f(x)={1   si   0xπ2   si   π<x2π
  3. f(x)={x   si   0xπx2π   si   π<x2π
  4. f(x)={x2   si   0xπ0   si   π<x2π
  5. f(x)=ex   si   0x2π

Más adelante…

En esta sección vimos las series de Fourier y los coeficientes de Fourier que aproximan a una función f en series de combinación lineal de funciones trigonométricas sin(x) y cos(x), en la siguiente sección veremos las series de Fourier de funciones pares e impares.

Entradas relacionadas