Álgebra Lineal II: Formas cuadráticas hermitianas

Por Diego Ligani Rodríguez Trejo

Introducción

El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades.

Al final enunciaremos una versión compleja del teorema de Gauss.

Formas cuadráticas hermitianas

Definición Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\varphi$ una forma sesquilineal hermitiana de $V$. La forma cuadrática hermitiana correspondiente a $\varphi$ es la función $\Phi: V\to \mathbb{C}$ tal que para cualquier $x$ en $V$ se tiene que

\begin{align*} \Phi(x)=\varphi (x,x) \end{align*}

Observa que aquí, de entrada, estamos pidiendo que $\varphi$ sea sesquilineal. Esto entra en contraste con el caso real, en donde no nos importaba si la forma bilineal que tomábamos inicialmente era simétrica o no. Como veremos un poco más abajo, dada la forma cuadrática hermitiana $\Phi$, hay una única forma sesquilineal hermitiana de la que viene. Por esta razón, llamaremos a la función $\varphi$ la forma polar de $\Phi$.

Problema 1. Sea $V=\mathbb{C}^n$ y $\Phi : V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(x_1, \ldots, x_n)= |x_1|^2 + \cdots + |x_n|^2.\end{align*} Muestra que $\Phi$ es una forma cuadrática.

Solución. Recordemos que para cualquier $z \in \mathbb{C}$ se tiene $|z|^2=z \overline{z}$. Así propongamos $\varphi$ como sigue:

\begin{align*}
\varphi(x,y):= (\overline{x_1})(y_1) + \cdots + (\overline{x_n})(y_n).
\end{align*}

Es sencillo mostrar que $\varphi$ así definida es una forma sesquilineal hermitiana, y queda como ejercicio.

$\square$

Problema 2. Sea $V$ el espacio de funciones continuas del intervalo $[0,1]$ a $\mathbb{C}$ y $\Phi: V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(f)= \int_0^1|f(t)|^2 dt.\end{align*} Muestra que $\Phi$ es una forma cuadrática.

Solución. La solución es muy parecida. Proponemos $\varphi$ como sigue:

\begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt \end{align*}

Es sencillo mostrar que $\varphi(f,f)=\Phi(f)$ y que $\varphi$ es forma sesquilineal hermitiana. Ambas cosas quedan como ejercicio.

$\square$

Propiedades básicas de formas cuadráticas hermitianas

Veamos algunas propiedades de las formas cuadráticas hermitianas.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{C}$, $\varphi$ una forma sesquilinear hermitiana y $\Phi(x)$ su forma cuadrática asociada.

  1. Para todo $x\in V$, se tiene que $\Phi(x)=\varphi(x,x)$ siempre es un número real.
  2. Para todo $x\in V$ y $a\in \mathbb{C}$ se tiene que $\Phi(ax)=|a|\Phi(x)$.
  3. Para cualesquiera $x,y$ en $V$ se tiene que $\Phi(x+y)=\Phi(x)+\Phi(y)+2\text{Re}(\varphi(x,y))$.

Demostración. Los incisos 1) y 2) son consecuencia inmediata de los ejercicios de la entrada anterior. Para el inciso 3) usamos que la suma de un número con su conjugado es el doble de su parte real para obtener la siguiente cadena de igualdades:

\begin{align*}
\Phi(x+y)&=\varphi(x+y,x+y)\\
&=\varphi(x,x)+ \varphi(y,y)+ \varphi(x,y)+\varphi(y,x)\\
&=\varphi(x,x)+ \varphi(y,y)+ \varphi(x,y)+\overline{\varphi(x,y)}\\
&=\Phi(x) + \Phi(y) + 2\text{Re}(\varphi(x,y)).
\end{align*}

$\square$

Identidad de polarización compleja

Para demostrar que una función es una forma cuadrática hermitiana, usualmente necesitamos a una función que sea la candidata a ser la forma sesquilineal hermitiana que la induzca. Es decir, necesitamos un método para proponer la forma polar. Podemos hacer esto mediante la identidad de polarización compleja.

Proposición (Identidad de polarización). Sea $\Phi: V \rightarrow \mathbb{C}$ una forma cuadrática hermitiana. Existe una única forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{C}$ tal que $\Phi(x)=\varphi(x,x)$ para todo $x \in V$.

Más aún, ésta se puede encontrar de la siguiente manera:

\begin{align*} \varphi(x,y)= \frac{1}{4}\sum_{k=0}^4 i^k \Phi (y+i^kx)\end{align*}

Aquí $i$ es el complejo tal que $i^2=-1$. Esta suma tiene cuatro sumandos, correspondientes a las cuatro potencias de $i$: $1,i,-1,-i$.

Demostración. Por definición, como $\Phi$ es una forma cuadrática hermitiana, existe $s:V\times V\to \mathbb{C}$ una forma sesquilineal hermitiana tal que $\Phi(x)=s(x,x)$. Veamos que la fórmula propuesta en el enunciado coincide con $s$. La definición en el enunciado es la siguiente:

\begin{align*} \varphi(x,y)=\frac{1}{4}\sum_{k=0}^4 i^k \Phi (y+i^kx)\end{align*}

Como $\Phi(x)=s(x,x)$ podemos calcular $\varphi$ como sigue
\begin{align*} \varphi(x,y)=\frac{1}{4}\sum_{k=0}^4 i^k s(y+i^kx,y+i^kx)\end{align*}

Desarrollando los sumandos correspondientes a $k=0$ y $k=2$, y simplificando, se obtiene

\begin{align*}2s(y,x) + 2s(x,y).\end{align*}

Del mismo modo, los sumandos para $k=1$ y $k=3$ quedan como

\begin{align*} 2s(x,y) – 2s(y,x) \end{align*}

Sustituyendo esto en la definición original de $\varphi$ tenemos que

\begin{align*} \varphi(x,y)&=\frac{ 2s(y,x) + 2s(x,y) + 2s(x,y) – 2s(y,x) }{4}\\&=s(x,y). \end{align*}

De esta igualdad podemos concluir que $\varphi = s$, por lo que 1) $\varphi$ es forma sesquilineal hermitiana y 2) la forma cuadrática hermitiana de $\varphi$ es $\Phi$. Esta forma debe ser única pues si hubiera otra forma sesquilineal hermitiana tal que $s'(x,x)=\Phi(x)$, los pasos anteriores darían $s'(x,x)=\varphi(x,y)$ nuevamente.

$\square$

En particular, esta identidad nos dice que formas sesquilineales hermitianas distintas van a formas cuadráticas hermitianas distintas. Es por ello que podemos llamar a la función $\varphi$ dada por la fórmula en el enunciado la forma polar de $\Phi$.

Teorema de Gauss complejo

Enunciamos a continuación la versión compleja del teorema de Gauss.

Teorema. Sea $\Phi$ una función cuadrática hermitiana $\mathbb{C}^n$. Existen $\alpha_1, \cdots , \alpha_r$ números complejos y formas lineales $l_1, \cdots l_r$ linealmente independiente de $\mathbb{C}^n$ tales que para todo $x$ en $\mathbb{C}^n$ se tiene:

\begin{align*} \Phi(x_1, \cdots , x_n ) = \sum_{i=1}^r \alpha_i |l_i(x)|^2. \end{align*}

Observa que en la expresión de la derecha no tenemos directamente a las formas lineales, sino a las normas de éstas.

Más adelante…

Ya hablamos de formas bilineales y de formas sesquilineales. ¿Habrá una forma alternativa de representarlas? Cuando teníamos transformaciones lineales entre espacios vectoriales, podíamos representarlas por matrices. Resulta que a las formas bilineales también podemos representarlas por matrices. Veremos cómo hacer esto (y cuáles son las ventajas de hacer eso) en las siguientes dos entradas. En una veremos los resultados correspondientes a formas bilineales y en la otra los resultados correspondientes a formas sesquilineales.

Un poco más adelante aprovecharemos esta representación matricial para retomar el estudio de los productos interiores.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{C}^n$ y definamos $\varphi:V\times V \to \mathbb{C}$ como sigue:
    \begin{align*} \varphi(x,y)= \overline{x_1}y_1 + \cdots + \overline{x_n}y_n, \end{align*}
    para cualquier par $x,y \in V$ con $x=(x_1, \cdots x_n)$ y $y=(y_1, \cdots y_n)$. Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  2. Sea $V$ el espacio de funciones continuas del intevalo $[0,1]$ a $\mathbb{C}$ y $\varphi: V\times V \to \mathbb{C}$ definida como sigue:
    \begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt,\end{align*}
    para cualquier par $f_1, f_2 \in V$. Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  3. Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\Phi$ una forma cuadrática hermitiana. Prueba la siguiente identidad (identidad del paralelogramo)
    \begin{align*} \Phi(x+y) + \Phi(x-y) = 2(\Phi(x) + \Phi(y)).\end{align*} ¿Cómo se compara con la identidad del paralelogramo real?
  4. Compara la identidad de polarización real con la identidad de polarización compleja. ¿Por qué son tan distintas entre sí?
  5. Demuestra el Teorema de Gauss para formas cuadráticas hermitianas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

1 comentario en “Álgebra Lineal II: Formas cuadráticas hermitianas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.