Teoría de los Conjuntos I: Pares ordenados y producto cartesiano

Por Gabriela Hernández Aguilar

Introducción

En esta nueva entrada hablaremos de pares ordenados. Esto nos llevará a muchas ideas importantes en teoría de conjuntos como el producto cartesiano, las relaciones, las funciones y los órdenes.

En estra entrada comenzaremos definiendo qué es un par ordenado. Estudiaremos cuándo dos pares ordenados son iguales. Veremos algunas definiciones alternativas de par ordenado que tienen la misma propiedad crucial. A partir de la idea de par ordenado, definiremos al producto cartesiano y daremos algunos ejemplos sobre este concepto.

Par ordenado

Anteriormente vimos el concepto de par no ordenado. Dados $a$ y $b$ conjuntos , podíamos construir un conjunto cuyos elementos son solamente $a$ y $b$. Sin embargo, el orden de los elementos no es importante. Si $a,b$ son conjuntos, el par no ordenado $\set{a,b}$ resulta ser igual al par no ordenado $\set{b,a}$ por el axioma de extensión.

Pero en matemáticas muchas veces necesitamos poder distiguir cuándo «$a$ va en la primera posición y $b$ va en la segunda». A continuación daremos una definición que nos permitirá hacer esto.

Definición. Sean $a$ y $b$ conjuntos. Definimos al par ordenado $(a, b)$ como el conjunto:

$(a,b)=\set{\set{a}, \set{a,b}}$.

Esta definición fue dada por Kazimierz Kuratowski en 1921. Lo que permite tener una expresión matemática que nos deja «darle orden» a las parejas. Esto es lo que enuncia de manera más precisa el siguiente resultado.

Teorema. Sean $a, b, c, d$ conjuntos, entonces $(a,b)=(c, d)$ si y sólo si $a=c$ y $b=d$.

Demostración.

$\leftarrow$] Supongamos que $a=c$ y $b=d$. Resulta que $(a,b)=\set{\set{a},\set{a,b}}=\set{\set{c}, \set{c,d}}=(c,d)$.

$\rightarrow$] Supongamos que $(a,b)=(c,d)$. Veamos que $a=c$ y $b=d$.

Caso 1: $a=b$

Si $a=b$, entonces $(a,b)=\set{\set{a}, \set{a,b}}=\set{\set{a},\set{a,a}}=\set{\set{a},\set{a}}=\set{\set{a}}$. Dado que $(a,b)=(c,d)=\set{\set{c},\set{c,d}}$ tenemos que $\set{a}=\set{c}$ y $\set{a}=\set{c,d}$, por lo que $a=c=d$. Por lo tanto, $a=c$ y $b=d$.

Caso 2: $a\not=b$

Como $\set{a}\in \set{\set{a},\set{a,b}}=\set{\set{c},\set{c,d}}$, entonces $\set{a}\in \set{\set{c}, \set{c,d}}$. Así, $\set{a}=\set{c}$ o $\set{a}=\set{c,d}$.

El caso en el que $\set{a}=\set{c, d}$ no puede ocurrir, pues de ser así $c=d=a$, de donde $(c, d)=\set{\set{c}, \set{c,d}}=\set{\set{c}}$. Además, como $(a,b)=\set{\set{a}, \set{a,b}}$ y $a\not=b$, se tiene que $(a,b)$ tiene dos elementos y $(c, d)$ tiene un elemento, por lo que no es posible que $(a,b)=(c,d)$. Así, este caso no puede ocurrir. Por lo tanto, $\set{a}=\set{c}$ y así $a=c$.

Por otro lado, como $\set{a,b}\in \set{\set{a},\set{a,b}}=\set{\set{c}, \set{c,d}}$ entonces $\set{a,b}=\set{c}$ o $\set{a,b}=\set{c,d}$.

No puede ocurrir que $\set{a,b}=\set{c}$, pues de ser así $a=b=c$, pues contradice el hecho de que $a\not =b$. Así, debe ocurrir que $\set{a,b}=\set{c,d}$. Como $a=c$, entonces $b=d$.

$\square$

La definición de Hausdorff de par ordenado

Aunque la definición que dio Kuratowski es la más conocida y es la que usaremos en nuestro curso, no es la única definición de par ordenado que existe, en el sentido de que la teoría de conjuntos nos permite dar otras definiciones que también cumplen con la propiedad crucial que demostramos en el teorema anterior. La siguiente definición fue dada por Felix Hausdorff en su texto Grundzüge der Mengenlehre de1914.

Definición. Sean $a,b$ conjuntos. Definimos

$(a,b)_{H}=\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}$.

Ejemplo.

El siguiente ejemplo muestra cómo el orden sí importa.

$(\set{\emptyset,\set{\emptyset}},\set{\set{\emptyset}})_{H}=\set{\set{\set{\emptyset,\set{\emptyset}},\emptyset}, \set{\set{\set{\emptyset}},\set{\emptyset}}}$ y $(\set{\set{\emptyset}},\set{\emptyset,\set{\emptyset}})_{H}=\set{\set{\set{\set{\emptyset}},\emptyset}, \set{\set{\emptyset,\set{\emptyset}}, \set{\emptyset}}}$.

Se puede observar que los conjuntos $(\set{\emptyset,\set{\emptyset}},\set{\set{\emptyset}})_{H}\not=(\set{\set{\emptyset}},\set{\emptyset,\set{\emptyset}})_{H}$.

$\square$

Teorema. Se cumple que $(a,b)_{H}=(c,d)_{H}$ si y sólo si $a=c$ y $b=d$.

Demostración.

Supongamos que $(a,b)_{H}=(c,d)_{H}$, esto es $\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}= \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}}$. Luego, $\set{a,\emptyset}\in \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}}$, por lo que $\set{a,\emptyset}= \set{c,\emptyset}$ o $\set{a,\emptyset}=\set{d,\set{\emptyset}}$.

Hagamos primero el caso en el que $\{a,\emptyset\}=\{d,\{\emptyset\}\}$. En este caso, $\{b,\{\emptyset\}\}=\{c,\emptyset\}$. Como $\emptyset\neq \{\emptyset\}$, entonces la primera igualdad implica $a=\{\emptyset\}$ y $d=\emptyset$. La segunda igualdad implica $b=\emptyset$ y $c=\{\emptyset\}$. Así, en efecto tenemos $a=c$ y $b=d$.

El otro caso es que $\set{a,\emptyset}= \set{c,\emptyset}$ y $\set{b,\set{\emptyset}}= \set{d,\set{\emptyset}}$. En la primera igualdad, debemos tener entonces $a=c$, y en la segunda $b=d$.

Por lo tanto, en cualquier caso si $(a,b)_{H}=(c,d)_{H}$ entonces $a=c$ y $b=d$.

Por otro lado, si $a=c$ y $b=d$ se cumple que $(a,b)_{H}=\set{\set{a,\emptyset}, \set{b,\set{\emptyset}}}= \set{\set{c,\emptyset}, \set{d,\set{\emptyset}}} =(c,d)_{H}$.

$\square$

La definición de Wiener de par ordenado

Veamos una tercera posible definición. Esta fue dada por Norbert Wiener en 1914, en su texto A simplification of the logic of relations.

Definición. Sean $a$ y $b$ conjuntos. Definimos

$(a,b)_{W}=\set{\set{\set{a},\emptyset},\set{\set{b}}}$.

Ejemplo.

En el siguiente ejemplo mostraremos que el orden de las parejas según la definición de Wiener importa:

$(\emptyset,\set{\emptyset})_{W}=\set{\set{\set{\emptyset}, \emptyset}, \set{\set{\set{\emptyset}}}}$

y $(\set{\emptyset},\emptyset)_{W}=\set{\set{\set{\set{\emptyset}}, \emptyset}, \set{\set{\emptyset}}}$.

Dado que los conjuntos $\set{\set{\set{\emptyset}, \emptyset}, \set{\set{\set{\emptyset}}}}$ y $\set{\set{\set{\set{\emptyset}}, \emptyset}, \set{\set{\emptyset}}}$ son distintos, tenemos que $(\emptyset,\set{\emptyset})_{W}\not=(\set{\emptyset},\emptyset)_{W}$.

$\square$

Como te imaginarás, esta tercera definición también cumple que dos parejas serán iguales si y sólo si son iguales en cada entrada. La verificación de esto queda como uno de los ejercicios.

Producto cartesiano

Si tenemos conjuntos $A$ y $B$, podemos construir muchos pares ordenados $(a,b)$ tomando $a\in A$ y $b\in B$. ¿Qué obtenemos cuando consideramos a todos estos posibles pares?

Definición. Sean $A$ y $B$ conjuntos arbitrarios. Definimos al producto cartesiano de $A$ y $B$, como el conjunto:

$A\times B= \set{(x,y):x\in A\ y\ y\in B}$.

Por supuesto, para que esta definición sea correcta, debemos primero demostrar que en efecto la colección que estamos considerando es un conjunto. Esto está garantizado por la siguiente proposición.

Proposición. Si $A$, $B$ son conjuntos, entonces $A\times B$ es un conjunto.

Demostración.

Sean $A$ y $B$ conjuntos. Se sigue por axioma de la unión que $A\cup B$ es conjunto y por axioma del conjunto potencia tenemos que $\mathcal{P}(A\cup B)$ es conjunto. Y de nuevo, por axioma del conjunto potencia tenemos que $\mathcal{P}(\mathcal{P}(A\cup B))$ es conjunto.

Sean $a\in A$ y $b\in B$ arbitrarios. Veamos que $(a,b)\subseteq \mathcal{P}(\set{a,b})$ y $\mathcal{P}(\set{a,b})\subseteq \mathcal{P}(A\cup B)$.

En efecto, $(a,b)=\set{\set{a},\set{a,b}}$ y $\mathcal{P}(\set{a,b})=\set{\emptyset, \set{a},\set{b},\set{a,b}}$, por lo que se verifica que $(a,b)\subseteq \mathcal{P}(\set{a,b})$. La contención $\mathcal{P}(\set{a,b})\subseteq \mathcal{P}(A\cup B)$ se deduce de la propiedad más general de la potencia que dice que si $X\subseteq Y$, entonces $\mathcal{P}(X)\subseteq \mathcal{P}(Y)$.

Así, $(a,b)\subseteq \mathcal{P}(A\cup B)$, o bien $(a, b)\in \mathcal{P}(\mathcal{P}(A\cup B))$.

Luego por el esquema de comprensión, tenemos que

$$\set{x\in \mathcal{P}(\mathcal{P}(A\cup B)): \exists a\in A\exists b\in B (x=(a,b))}$$

es conjunto, pero esto es precisamente la colección $A\times B$.

$\square$

Ejemplo.

Sean $A=\set{\emptyset, \set{\emptyset}}$ y $B=\set{\set{\emptyset},\set{\set{\emptyset}}}$ conjuntos. Tenemos que:

\begin{align*}
A\times B&=\set{ \emptyset, \set{\emptyset}}\times \set{\set{\emptyset},\set{\set{\emptyset}}}\\
&=\set{(\emptyset,\set{\emptyset}), (\emptyset, \set{\set{\emptyset}}),(\set{\emptyset}, \set{\emptyset}), (\set{\emptyset},\set{\set{\emptyset}}) }.
\end{align*}

$\square$

Tarea moral

  1. Calcula el producto cartesiano de $A\times B$, $B\times A$ y $A\times C$ si $A=\set{\emptyset}$, $B=\set{\emptyset, \set{\emptyset}}$ y $C=\emptyset$.
  2. Justifica por qué para $a$ y $b$ conjuntos se tiene que $(a,b)$, $(a,b)_H$ y $(a,b)_W$ son conjuntos.
  3. Demuestra que $(a,b)_{W}=(c,d)_{W}$ si y sólo si $a=c$ y $b=d$.
  4. Si usáramos las definiciones $(a,b)_H$ y $(a,b)_W$, podríamos de manera análoga a la que creamos $A\times B$, también crear productos cartesianos $A\times_H B$ y $A\times_W B$. Justifica que en este caso también estas colecciones serían conjuntos.

Más adelante…

En la siguiente entrada demostraremos algunas de las propiedades del producto cartesiano. Veremos si para el caso de esta nueva operación para conjuntos se da la conmutatividad, la asociatividad y algunas de las propiedades que tratamos para la unión y la intersección.

Entradas relacionadas

Entradas relacionadas:

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.