Introducción
En esta entrada hablaremos acerca del axioma de buena fundación. Este axioma nos permitirá decir cuándo un conjunto está bien fundado, es decir, bien construido. Además daremos otro argumento para probar que la colección de todos los conjuntos no es un conjunto.
Acerca del axioma
Axioma de buena fundación. Para cualquier conjunto $X$ no vacío, existe $u\in X$ tal que $u\cap X=\emptyset$.
En los siguiente ejemplos no será necesario invocar al axioma de buena fundación pues tendremos a todos sus elementos escritos de manera explícita. Sin embargo, ayudarán a entender qué es lo que el axioma de buena fundación siempre garantiza que existe.
Ejemplos.
- Sea $A=\set{\emptyset}$, el único elemento que tiene $A$ es $\emptyset$ y en efecto, $A\cap \emptyset=\emptyset$. Esto último ocurre pues no existe ningún conjunto $x$ tal que $x\in \set{\emptyset}$ y $x\in \emptyset$.
- Consideremos al conjunto $B=\set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}$. Veamos que existe $u\in B$ tal que $u\cap B=\emptyset$. Dado que $B$ es un conjunto pequeño podemos explorar qué ocurre con cada uno de sus elementos:
– Para $\emptyset\in B$ tenemos que $\emptyset\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\emptyset$.
– Ahora, para $\set{\emptyset}\in B$ ocurre que $\set{\emptyset}\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\set{\emptyset}\not=\emptyset$. Por lo tanto, $\set{\emptyset}$ no es el conjunto que nos funciona.
– Si consideramos $\set{\set{\emptyset}}\in B$ ocurre que $\set{\set{\emptyset}}\cap \set{\emptyset, \set{\emptyset},\set{\set{\emptyset}}}=\set{\set{\emptyset}}\not=\emptyset$. Por lo tanto, $\set{\set{\emptyset}}$ tampoco funciona.
Por lo tanto, existe $u=\emptyset\in B$ tal que $u$ y $B$ no tienen elementos en común. Por el análisis de casos, este $u$ es único. - Tomemos $C=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}$. Haciendo un análisis de los elementos del conjunto $C$ tenemos lo siguiente:
– Para $\set{\emptyset}\in C$ tenemos que $\set{\emptyset}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}=\emptyset$ pues $\emptyset\in\set{\emptyset}$ pero $\emptyset\notin \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}$.
– Ahora, para $\set{\emptyset,\set{\emptyset}}\in C$ ocurre que $\set{\emptyset,\set{\emptyset}}\cap \set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}}= \set{\set{\emptyset}}\not=\emptyset$. Por lo tanto, $\set{\emptyset}$ no es el conjunto que nos funciona.
Por lo tanto, existe $u=\emptyset\in C$ tal que $u$ y $C$ no tienen elementos en común. Una vez más, este elemento es único.
$\square$
Conjuntos que no existen
El axioma de buena fundación juega un papel importante para decir qué conjuntos no pueden existir. Veamos los siguientes resultados:
Teorema. Para cualquier conjunto $x$, no es cierto que $x\in x$. Es decir, ningún conjunto puede pertenecer a sí mismo.
Demostración.
Supongamos que sí existe un conjunto $x$ tal que $x\in x$. Luego, $\set{x}$ es un conjunto por el axioma de par y es tal que $x\in \set{x}$.
De lo anterior, tenemos que $x\cap \set{x}\not=\emptyset$ pues $x\in x\cap\set{x}$. Esto último contradice al axioma de buena fundación. Dado que la contradicción vino de suponer que existe $x$ tal que $x\in x$, resulta que no existe un conjunto que haga tal cosa.
$\square$
Teorema. Sean $a$ y $b$ conjuntos no vacíos. No existen ciclos de la forma $a\in b\in a$.
Demostración.
Supongamos que sí existe algún ciclo de la forma $a\in b\in a$. Luego, por el axioma de par podemos considerar al conjunto $\set{a,b}$. Dado que $\set{a,b}$ es un conjunto pequeño podemos analizar qué pasa con cada uno de sus elementos:
– Para $a\in\set{a,b}$ tenemos que $a\cap\set{a,b}\not=\emptyset$ pues $b\in a$ y $b\in \set{a,b}$,
– Si tomamos a $b\in\set{a,b}$ tenemos que $b\cap\set{a,b}\not=\emptyset$ pues $a\in b$ y $a\in \set{a,b}$.
Sin embargo, en todas las posibilidades obtenemos una contradicción al axioma de buena fundación. Así, no existen ciclos de la forma $a\in b\in a$.
$\square$
Diferencias entre la pertencia y contención
Vistos estos teoremas, nos tomaremos el tiempo para establecer las diferencias que hay entre la contención y la pertenencia.
Por un lado, $a\subseteq a$ siempre ocurre para cualquier conjunto $a$, mientras que $a\in a$ ya vimos que es imposible.
Vimos que la contención es transitiva (ver Teoría de los Conjuntos I: Axioma de conjunto potencia), es decir, si $a\subseteq b$ y $b\subseteq c$, entonces $a\subseteq c$. Resulta que si $a\in b$ y $b\in c$, entonces $a\in c$ no siempre ocurre, es decir, la pertenencia no es transitiva.
Ejemplo.
Consideremos $a=\set{\emptyset}$, $b= \set{\set{\emptyset}}$ y $c=\set{\emptyset, \set{\set{\emptyset}}}$. Tenemos que $a\in b$ y $b\in c$, sin embargo, $a\notin c$.
$\square$
La colección de todos los conjuntos
Anteriormente, probamos con ayuda de la paradoja de Rusell que la colección que tiene como elementos a todos los conjuntos no es un conjunto. En esta sección, reforzaremos esta afirmación utilizando el axioma de buena fundación para demostrar una vez más que está colección no es un conjunto.
Proposición. Para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.
Demostración.
Supongamos que $\mathcal{P}(x)\subseteq x$, entonces para cualquier $y\in \mathcal{P}(x)$, $y\in x$. Dado que $x\subseteq x$, entonces $x\in \mathcal{P}(x)$. Así, $x\in x$, lo cual contradice el primer teorema de la sección anterior. Por lo tanto, para cualquier conjunto $x$, $\mathcal{P}(x)\not\subseteq x$.
$\square$
Teorema. La colección de todos los conjuntos no es conjunto.
Demostración.
Supongamos que existe un conjunto $V$ tal que para todo conjunto $x$, $x\in V$. Por axioma de conjunto potencia tenemos que $\mathcal{P}(V)$ es un conjunto. Veamos que $\mathcal{P}(V)\subseteq V$. Si $x\in\mathcal{P}(V)$, entonces, por definición del conjunto potencia, $x$ es un conjunto tal que $x\subseteq V$. En particular, $x$ es un conjunto y, por tanto, $x\in V$. Lo anterior muestra que $\mathcal{P}(V)\subseteq V$, lo cual contradice la proposición anterior.
Por lo tanto, la colección de todos los conjuntos no es un conjunto.
$\square$
La intersección del conjunto vacío
Si bien la definición de la intersección de un conjunto se hizo únicamente para conjuntos no vacíos, ocurre un hecho interesante sí aplicamos esta definición al conjunto vacío. Al contrario de un conjunto no vacío, la intersección del conjunto vacío no es un conjunto y en realidad describe a la colección de todos los conjuntos. Dejamos plasmado esto en la siguiente afirmación.
Afirmación. $\bigcap \emptyset$ no es un conjunto.1
Demostración.
Recordemos que $x\in \bigcap\emptyset$ si y sólo si para cualquier $y$ tal que $y\in \emptyset$, $x\in y$. Sea $x$ un conjunto. Luego, por vacuidad, para todo $y\in\emptyset$ se cumple $x\in y$. Consecuentemente, $x\in\bigcap\emptyset$. De acuerdo al último teorema que probamos en esta entrada podemos concluir que $\bigcap\emptyset$ no es un conjunto.
$\square$
Tarea moral
- Prueba que para $A_0,A_1, A_2,\cdots A_n$ conjuntos, el ciclo $A_0\in A_1\in A_2\in\cdots\in A_n\in A_0$ no existe (Estrictamente hablando, esta demostración requerirá que formalicemos estos «puntos suspensivos». De cualquier forma, intenta dar una demostración inductiva con lo que sabes de este tipo de demostraciones.)
- Sea $A=\set{\set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in A$ tal que $u\cap A=\emptyset$.
- Sea $B=\set{\emptyset, \set{\emptyset}, \set{\emptyset,\set{\emptyset}}, \set{\emptyset, \set{\emptyset, \set{\emptyset}}}}$. Exhibe $u\in B$ tal que $u\cap B=\emptyset$.
- Da otro ejemplo de una propiedad que describa a la clase de todos los conjuntos.
- Prueba que para cualquier conjunto $X$, se tiene que $X\cap \emptyset=\emptyset$.
Más adelante…
En la siguiente entrada hablaremos acerca de los axiomas débiles de la teoría de los conjuntos. Asimismo veremos cómo dichos axiomas junto con el esquema de comprensión implican los axiomas que hemos visto hasta ahora. De modo que la siguiente entrada nos servirá para hacer un recordatorio sobre todo lo que hemos visto hasta este momento.
Entradas relacionadas
- Ir a Teoría de los Conjuntos I
- Entrada anterior: Teoría de los Conjuntos: Operaciones entre conjuntos
- Siguiente entrada: Teoría de los Conjuntos I: Axiomas débiles
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»
- Puedes encontrar una justificación similar de este hecho en: Gómez L. C, Introducción a la teoría intuitiva de conjuntos (cardinales y ordinales). Las prensas de ciencias, 2011, p. 4. ↩︎
Buenos días, Gabriela.
He estado siguiendo las clases de Teoría d los Conjuntos I, pero al buscarla en “El Blog de LEO” no la encuentro y no encuentro el temario de la misma, así como bibliografía.
Por otras parte me ha gustado muchísimo tu presentación, y la seguiré muy atento. Solo te pido de favor si me puedes enviar los datos que observé que faltan.
Sin más por el momento me despido con un cordial saludo.
Hola Hiram. Gracias por los comentarios. Como las notas de Teoría de Conjuntos I están en una etapa inicial de elaboración, aún no tienen su propia sección en la parte de Docencia. Pero pronto aparecerán. Saludos.