Archivo de la etiqueta: valor propio

Ecuaciones Diferenciales I – Videos: Método de valores y vectores propios para calcular la exponencial de una matriz diagonalizable

Por Eduardo Vera Rosales

Introducción

En entradas anteriores definimos la exponencial de una matriz cuadrada con coeficientes constantes $\textbf{A}$, que denotamos por $\textbf{e}^{\textbf{A}}$, y demostramos sus principales propiedades. Entre ellas, vimos que la exponencial $\textbf{e}^{t\textbf{A}}$ es una matriz fundamental de soluciones para el sistema lineal homogéneo $\dot{\textbf{X}}=\textbf{A}\textbf{X}$.

Ahora, calcular $\textbf{e}^{t\textbf{A}}$ mediante la pura definición puede resultar bastante difícil si tomamos en cuenta que esta matriz esta conformada por $n\times n$ series convergentes. Es por eso que buscamos alguna alternativa para calcular esta exponencial que no resulte tan complicada.

Afortunadamente, para algunos casos particulares en la forma de la matriz $\textbf{A}$, calcular $\textbf{e}^{t\textbf{A}}$ puede resultar relativamente sencillo. El caso más simple resulta cuando $\textbf{A}$ es una matriz diagonal, en cuyo caso $\textbf{e}^{t\textbf{A}}$ es también diagonal, cuyas entradas son de la forma $e^{ta_{ii}}$ donde $a_{ii}$ es el $i$-ésimo elemento de la diagonal en la matriz $\textbf{A}$.

El siguiente caso más sencillo es cuando la matriz $\textbf{A}$ es diagonalizable, es decir, cuando existe una matriz $\textbf{M}$ invertible, tal que $\textbf{D}=\textbf{M}^{-1}\textbf{A}\textbf{M}$ es una matriz diagonal. Probaremos que $$\textbf{e}^{t\textbf{A}}= \textbf{M}\textbf{e}^{t\textbf{D}} \textbf{M}^{-1}.$$ El problema se reduce al de encontrar precisamente las matrices $\textbf{M}$, $\textbf{M}^{-1}$ y $\textbf{D}$. Es decir, debemos diagonalizar a la matriz $\textbf{A}$.

Para esto, utilizaremos el método de valores y vectores propios para diagonalizar una matriz. Definiremos los conceptos necesarios, y desarrollaremos el método de manera muy breve. Toda la teoría que estudiaremos es propia de un curso de Álgebra Lineal, pero vale la pena darle un vistazo en este curso. Además, no nos desviaremos del camino y conectaremos los conceptos con nuestro propósito principal: encontrar soluciones al sistema lineal homogéneo con coeficientes constantes $\dot{\textbf{X}}=\textbf{A}\textbf{X}$.

Si quieres profundizar más en la teoría de valores y vectores propios y diagonalización, te dejo el enlace correspondiente a dichos temas al final de la entrada.

La exponencial de una matriz diagonalizable. Valores y vectores propios y el polinomio característico de una matriz

Definimos los conceptos necesarios para desarrollar el método de vectores y valores propios, y los relacionamos con el problema de calcular $\textbf{e}^{t\textbf{A}}$.

Método de valores y vectores propios para diagonalizar una matriz con valores propios distintos

En el primer video desarrollamos el método de valores y vectores propios considerando una matriz $\textbf{A}$ diagonalizable, cuyo polinomio característico asociado tiene $n$ raíces distintas.

En el segundo video, ponemos en práctica el método, diagonalizando una matriz en particular.

Método de valores y vectores propios para diagonalizar una matriz con valores propios repetidos

Desarrollamos nuevamente el método de valores y vectores propios, pero ahora considerando una matriz $\textbf{A}$ diagonalizable en particular con raíces repetidas. Además, mencionamos brevemente el problema de calcular $\textbf{e}^{t\textbf{A}}$ cuando $\textbf{A}$ no es diagonalizable.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que si $\textbf{v}$ es un vector propio para una matriz $\textbf{A}$, entonces cualquier múltiplo de $\textbf{v}$ es también vector propio de $\textbf{A}$. ¿Cuál es el valor propio asociado a este nuevo vector propio?
  • Verifica que efectivamente $$\begin{pmatrix} \frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & -\frac{1}{2}\end{pmatrix}\begin{pmatrix} 1 & 1\\ 1 & 1\end{pmatrix}\begin{pmatrix} 1 & 1\\ 1 & -1\end{pmatrix}=\textbf{D}$$ donde $\textbf{D}$ es la matriz diagonal conformada por los valores propios de $$\textbf{A}=\begin{pmatrix} 1 & 1\\ 1 & 1\end{pmatrix}.$$ Recuerda que revisamos este ejemplo en el tercer video de la entrada.
  • Encuentra $\textbf{e}^{t\textbf{A}}$ y la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 3 & -2\\ 1 & 0\end{pmatrix}\textbf{X}$$ (La matriz $\textbf{A}$ es diagonalizable).
  • Calcula $\textbf{e}^{t\textbf{A}}$ y encuentra la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 0 & -2 & -3\\ 1 & 3 & 3 \\ 0 & 0 & 1\end{pmatrix}\textbf{X}.$$ Recuerda que diagonalizamos la matriz asociada en el último video de esta entrada.
  • Encuentra $\textbf{e}^{t\textbf{A}}$ la solución general al sistema $$\dot{\textbf{X}}=\begin{pmatrix} 3 & 0 & 0\\ -2 & 4 & 2 \\ -2 & 1 & 5\end{pmatrix}\textbf{X}.$$ (La matriz $\textbf{A}$ es diagonalizable).

Más adelante

Ahora que conocemos un poco del proceso acerca de diagonalizar una matriz, vamos a utilizar el mismo método para encontrar la solución general a un sistema lineal homogéneo con coeficientes constantes suponiendo que la matriz asociada al sistema sea diagonalizable. En particular, en la siguiente entrada revisaremos el caso cuando las raíces del polinomio característico asociado al sistema son todas reales y distintas.

Entradas relacionadas

Las siguientes entradas pertenecen a un curso de Álgebra Lineal. Si deseas conocer más acerca de la teoría utilizada en esta entrada no dudes en revisarlas.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Eigenvalores y eigenvectores de transformaciones y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya establecimos los fundamentos para hablar de determinantes. Dimos su definición para el caso de vectores y el caso de matrices/transformaciones lineales. Enunciamos y demostramos varias de sus propiedades. Luego dedicamos toda una entrada a ver formas de calcularlos. Finalmente, vimos que nos pueden ayudar para entender mucho mejor a los sistemas de ecuaciones lineales. Entender bien estos conceptos te será de gran utilidad en tu formación matemática.

Además, los determinantes son un paso natural en uno de nuestros objetivos del curso: entender por qué las matrices simétricas reales son diagonalizables. Recuerda que una matriz $A$ en $M_n(F)$ es diagonalizable si existe una matriz diagonal $D$ y una matriz invertible $P$, ambas en $M_n(F)$, de modo que $$A=P^{-1}DP.$$

Lo que haremos en esta entrada es hablar de esos valores que aparecen en la matriz diagonal $D$ en el caso de que $A$ sea diagonalizable. Resulta que estos valores están relacionados con una pregunta muy natural en términos de lo que le hace la matriz a ciertos vectores. Y mejor aún, como veremos, hay un método para encontrar estos valores por medio de un determinante. Vamos poco a poco.

Eigenvalores y eigenvectores para transformaciones lineales

Sea $V$ un espacio vectorial sobre un campo $F$ y sea $T:V\to V$ una transformación lineal. Para fijar ideas, pensemos en $\mathbb{R}^n$ por el momento. A veces, $T$ simplemente la cambia la magnitud a un vector, sin cambiarle la dirección. Es decir, hay algunos vectores para los cuales $T$ se comporta simplemente como la multiplicación por un escalar. En símbolos, hay vectores $v$ tales que existe un valor $\lambda$ tal que $T(v)=\lambda v$.

Por supuesto, al vector $0$ siempre le pasa esto, pues como $T$ es lineal, se tiene que $T(0)=0=\lambda\cdot 0$ para cualquier escalar $\lambda$. Resulta que cuando se estudian estos vectores y escalares especiales, lo más conveniente es quitar al vector $0$ de la discusión. Estas ideas llevan a la siguiente definición.

Definición. Un eigenvalor de una transformación lineal $T:V\to V$ es un escalar $\lambda$ tal que $\lambda \text{id} – T$ no es invertible. En otras palabras, $\lambda$ es un escalar tal que existe un vector no cero en el kernel de $\lambda \text{id} – T$. A un vector $v\neq 0$ en $V$ tal que $$(\lambda \text{id} – T)v=0,$$ se le conoce como un eigenvector de $T$.

En otras palabras, $v$ es un eigenvector correspondiente a $T$ si $v$ no es cero y $T(v)=\lambda v$. A los eigenvalores y eigenvectores de $T$ también se les conoce en la bibliografía como valores propios y vectores propios de $T$.

Observa que si al conjunto de eigenvectores para un eigenvalor $\lambda$ le agregamos el vector $0$, entonces obtenemos el kernel de una transformación lineal, que sabemos que es un subespacio vectorial.

Veamos un par de ejemplos para que queden más claras las ideas.

Ejemplo 1. Consideremos a la transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $$T(x,y,z)=(-2x+15y+18z,3y+10z,z).$$

Observa que
\begin{align*}
T(1,0,0)&=(-2,0,0)\\
&=-2(1,0,0),
\end{align*}

que
\begin{align*}
T(-19,-5,1)&=((-2)(-19)+15(-5)+18,3(-5)+10, 1)\\
&=(28+75-18,-15+10,1)\\
&=(-19,-5,1),
\end{align*}

y que

\begin{align*}
T(3,1,0)&=(-6+15,3,0)\\
&=(9,3,0)\\
&=3(3,1,0).
\end{align*}

Estas igualdades muestran que $(1,0,0)$ es un eigenvector de $T$ con eigenvalor $-2$, que $(-19,-5,1)$ es un eigenvector de $T$ con eigenvalor $1$ y $(3,1,0)$ es un eigenvector de $T$ con eigenvalor $3$.

$\triangle$

Ejemplo 2. Consideremos al espacio vectorial $\mathbb{R}[x]$ de polinomios con coeficientes reales. Tomemos la transformación lineal $T$ que manda a un polinomio a su segunda derivada. ¿Quiénes son los eigenvalores y eigenvectores de $T$?

Para que $p$ sea un eigenvector con eigenvalor $\lambda$, tiene que suceder que $$p»=T(p)=\lambda p.$$

Como $p$ no es el vector cero, tiene un cierto grado. Si $\lambda \neq 0$, entonces la igualdad anterior no puede suceder, pues si $p$ es de grado mayor o igual a $2$, entonces el grado de $p»$ es menor al de $\lambda p$, y si el grado de $p$ es $0$ ó $1$, su segunda derivada es $0$, y no puede pasar $\lambda p = 0$. Así, el único eigenvalor que puede tener $T$ es $\lambda = 0$. Observa que sí es válido que los eigenvalores sean cero (los eigenvectores no).

Cuando $\lambda = 0$, tiene que pasar que $p»$ sea $0\cdot p$, es decir, el polinomio cero. Los únicos polinomios tales que su derivada es cero son los constantes y los lineales. Pero el polinomio cero por definición no es eigenvector.

Así, la respuesta final es que el único eigenvalor de $T$ es $0$, y sus eigenvectores correspondientes son los polinomios constantes distintos de cero, y los polinomios lineales.

$\triangle$

Eigenvalores y eigenvectores para matrices

Tenemos una definición similar para matrices. Sea $A$ una matriz en $M_n(F)$.

Definición. Un escalar $\lambda$ en $F$ es un eigenvalor de $A$ si la matriz $\lambda I_n – A$ no es invertible. En otras palabras, si existe un vector no cero $X$ en $F^n$ tal que $AX=\lambda X$. A un tal vector $X$ se le conoce como un eigenvector correspondiente al eigenvalor $\lambda$.

En otras palabras, los eigenvalores y eigenvectores de $A$ son exactamente los eigenvalores y eigenvectores de la transformación $T_A:\mathbb{F}^n\to \mathbb{F}^n$ dada por $T_A(v)=Av$.

Además, si elegimos cualquier base $B$ de un espacio de dimensión finita $V$ y $A$ es la matriz de $T$ con respecto a la base $B$, entonces para cualquier escalar $\lambda$ se tiene que $\lambda I_n – A$ es la matriz de $\lambda \text{id} – T$ con respecto a esta misma base. De aquí se deduce que los eigenvalores de $T$ son los mismos que los eigenvalores de $A$. Dos matrices que representan a $T$ difieren sólo en un cambio de base, así que obtenemos el siguiente resultado fundamental.

Proposición. Si $A$ es una matriz en $M_n(F)$ y $P$ es una matriz invertible, entonces $A$ y $P^{-1}AP$ tienen los mismos eigenvalores. En otras palabras, matrices similares tienen los mismos eigenvalores.

En el primer ejemplo tomamos la transformación lineal $T:\mathbb{R}^3\to \mathbb{R}^3$ tal que $$T(x,y,z)=(-2x+15y+18z,3y+10z,z).$$ Su matriz en la base canónica de $\mathbb{R}^3$ es $$A=\begin{pmatrix} -2 & 15 & 18\\ 0 & 3 & 10\\ 0 & 0 & 1 \end{pmatrix}.$$ En el ejemplo vimos que los eigenvalores eran $-2$, $1$ y $3$, que precisamente conciden con las entradas en la diagonal de $A$. Esto no es casualidad. El siguiente resultado muestra esto, y es una primer evidencia de la importancia de los determinantes para encontrar los eigenvalores de una matriz.

Proposición. Si $A$ es una matriz triangular (superior o inferior) en $M_n(F)$, entonces sus eigenvalores son exactamente las entradas en su diagonal principal.

Demostración. Haremos el caso para cuando $A$ es triangular superior. El otro caso queda de tarea moral.

Queremos encontrar los valores $\lambda$ para los cuales la matriz $\lambda I_n – A$ no sea invertible. La matriz $A$ es triangular superior, así que la matriz $\lambda I_n – A$ también, pues las entradas de $A$ se vuelven negativas, y luego sólo se altera la diagonal principal.

Si las entradas diagonales de $A$ son $a_{11},\ldots,a_{nn}$, entonces las entradas diagonales de $\lambda I_n -A$ son $$\lambda – a_{11},\ldots,\lambda-a_{nn}.$$

La matriz $\lambda I_n – A$ no es invertible si y sólo si su determinante es igual a cero. Como es una matriz triangular superior, su determinante es el producto de sus entradas diagonales, es decir, $$\det(\lambda I_n – A) = (\lambda – a_{11})\cdot\ldots\cdot(\lambda – a_{nn}).$$

Este producto es $0$ si y sólo si $\lambda$ es igual a alguna entrada $a_{ii}$. De esta forma, los únicos eigenvalores de $A$ son las entradas en su diagonal.

$\square$

Si $A$ es una matriz diagonalizable, entonces es semejante a una matriz diagonal $D$. Por la proposición anterior, los eigenvalores de $A$ serían entonces las entradas en la diagonal principal de $D$. Esto nos da una intuición muy importante: si acaso pudiéramos encontrar todos los eigenvalores de $A$, entonces eso podría ser un paso parcial hacia diagonalizarla.

Encontrar eigenvalores es encontrar las raíces de un polinomio

La siguiente proposición conecta eigenvalores, polinomios y determinantes.

Proposición. Sea $A$ una matriz en $M_n(F)$. Entonces la expresión $$\det(\lambda I_n – A)$$ está en $F[\lambda]$, es decir, es un polinomio en la variable $\lambda$ con coeficientes en $F$. Además, es de grado exactamente $n$.

Demostración. La fórmula para el determinante
\begin{align*}
\begin{vmatrix}
\lambda – a_{11} & -a_{12} & \ldots & -a_{1n}\\
-a_{21} & \lambda – a_{22} & \ldots & -a_{1n}\\
\vdots & & \ddots & \\
-a_{n1} & -a_{n2} & \ldots & \lambda – a_{nn}
\end{vmatrix}
\end{align*}

en términos de permutaciones nos dice que el determinante es sumas de productos de entradas de $A$. Cada una de las entradas es un polinomio en $F[\lambda]$, ya sea constante, o lineal. Como $F[\lambda]$ es cerrado bajo sumas y productos, esto prueba la primer parte de la afirmación.

Para probar que el grado es exactamente $n$, notemos que cada sumando de la expresión multiplica exactamente $n$ entradas. Como las entradas a lo mucho son de grado uno en $F[\lambda]$, entonces cada sumando es un polinomio de grado a lo más $n$. Hay una única forma que el grado sea $n$: cuando se elige la permutación identidad y entonces se obtiene el sumando $$(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).$$

Esto termina la prueba.

$\square$

La proposición anterior nos asegura entonces que la siguiente definición tiene sentido.

Definición. Para $A$ una matriz en $M_n(F)$, el polinomio característico de $A$ es el polinomio $\chi_A(\lambda)$ en $F[\lambda]$ dado por $$\chi_A(\lambda) = \det(\lambda I_n – A).$$

De esta forma, $\lambda$ es un eigenvalor de $A$ si y sólo si es una raíz del polinomio $\chi_A(\lambda)$. Esto son buenas y malas noticias. Por un lado, nos cambia un problema de álgebra lineal a uno de polinomios, en donde a veces tenemos herramientas algebraicas que nos ayudan a encontrar raíces. Sin embargo, como se ve en cursos anteriores, también hay otros polinomios para los cuales es muy difícil encontrar sus raíces de manera exacta. Lo que salva un poco esa situación es que sí existen métodos para aproximar raíces numéricamente de manera computacional.

A pesar de la dificultad de encontrar raíces, sin duda tenemos consecuencias interesantes de esta conexión. Consideremos como ejemplo el siguiente resultado.

Proposición. Una matriz $A$ en $M_n(F)$ tiene a lo más $n$ eigenvalores distintos. Lo mismo es cierto para una transformación lineal $T:V\to V$ para $V$ un espacio vectorial de dimensión $n$.

Demostración. La matriz $A$ tiene tantos eigenvalores como raíces en $F$ tiene su polinomio característico. Como el polinomio característico es de grado exactamente $n$, tiene a lo más $n$ raíces en $F$.

La parte de transformaciones queda de tarea moral.

$\square$

Ya que encontramos los eigenvalores de una matriz o transformación, es posible que queramos encontrar uno o más eigenvectores correspondientes a ese eigenvalor. Observa que eso corresponde a encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo de la forma $$(I_n-A) X = 0.$$ Para ello ya tenemos muchas herramientas, como hacer reducción Gaussiana.

Terminamos esta entrada con un ejemplo de cómo encontrar los valores propios y vectores propios en un caso concreto.

Problema. Encuentra los eigenvalores de la matriz $$A=\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$ considerándola como:

  • Una matriz en $M_3(\mathbb{R})$
  • Una matriz en $M_3(\mathbb{C})$.

En el caso de $M_n(\mathbb{R})$, encuentra un eigenvector para cada eigenvalor.

Solución. Para encontrar los eigenvalores, tenemos que encontrar el determinante $$\begin{vmatrix}\lambda – 1 & 0 & 0\\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \end{vmatrix}.$$

Usando expansión de Laplace en la primer columna y haciendo las operaciones, obtenemos que el determinante de $\lambda I_3 – A$ es el polinomio $$(\lambda-1)(\lambda^2+1).$$

Aquí es importante la distinción de saber en qué campo estamos trabajando. Si estamos en $M_3(\mathbb{R})$, la única raíz del polinomio es $1$. Si estamos en $M_3(\mathbb{C})$, obtenemos otras dos raíces: $i$ y $-i$.

Ahora, para cuando $A$ es matriz en $M_3(\mathbb{R})$, necesitamos encontrar un eigenvector para el eigenvalor $1$. Esto equivale a encontrar una solución al sistema de ecuaciones $$(I_3-A)X=0,$$ es decir, a $$\begin{pmatrix}0 & 0 & 0\\ 0 & 1 & 1 \\ 0 & -1 & 1\end{pmatrix}X=0.$$

Una solución para este sistema es $X=(1,0,0)$. Y en efecto, $(1,0,0)$ es eigenvector de $A$ para el eigenvalor $1$ pues no es el vector cero y $$\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + 0 + 0 \\ 0 + 0 + 0 \\ 0 + 0 + 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

$\triangle$

Observa que la matriz anterior no es diagonalizable en $M_n(\mathbb{R})$, pues si lo fuera tendría que ser semejante a una matriz diagonal $D$ con entradas $i$ y $-i$ en la diagonal, pero entonces $D$ no sería una matriz en $M_n(\mathbb{R})$. Esto nos da otra intuición con respecto a la diagonalización de una matriz: si acaso una matriz en $M_n(F)$ es diagonalizable, entonces su polinomio característico debe tener puras raíces en $F$. Esta es una condición necesaria, pero aún no es suficiente.

Más adelante…

En esta entrada definimos el concepto de eigenvalor y eigenvector para una transformación lineal y para una matriz; y vimos algunas de las propiedades que cumplen. En la siguiente entrada estudiaremos el concepto de polinomio característico utilizando los conceptos que hemos visto en esta entrada y enunciaremos (sin demostración) dos teoremas muy importantes. Luego, pondremos en práctica lo que hemos estudiado resolviendo algunos ejercicios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • En la entrada vimos que los eigenvalores de una transformación $T$ son los eigenvalores de cualquier matriz que la represente. ¿Es cierto que los eigenvectores de $T$ son los eigenvectores de cualquier matriz que lo represente?
  • Muestra que una transformación lineal $T:V\to V$ para $V$ un espacio vectorial de dimensión $n$ tiene a lo más $n$ eigenvalores distintos.
  • Encuentra los eigenvalores de las matrices de permutación.
  • Para un real $\theta\in[0,2\pi)$ se define la matriz $$A(\theta):=\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$ Muestra que $A(\theta)$ tiene eigenvalores reales si y sólo si $\theta=0$ \o $\theta=\pi$. Sugerencia: Encuentra el polinomio característico (que es cuadrático) y calcula su discrimintante. Si es negativo, no tiene soluciones reales.
  • Sea $A$ una matriz en $M_n(F)$. Muestra que la matriz transpuesta $^t A$ tiene los mismos eigenvalores que $A$, y de hecho, el mismo polinomio característico que $A$. Sugerencia. Recuerda que una matriz y su transpuesta tienen el mismo determinante.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»