Archivo de la etiqueta: sucesiones periódicas

Seminario de Resolución de Problemas: Sucesiones recursivas y recursiones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada estudiaremos aquellas sucesiones en las que un término está definido mediante términos anteriores. Estas son las sucesiones recursivas. Dentro de ellas hay unas muy especiales, que son las que satisfacen una recursión lineal. También hablaremos de eso.

En entradas anteriores ya hemos visto ejemplos de sucesiones recursivas. Por un lado, las sucesiones aritméticas y geométricas cumplen una recursión sencilla. Las sucesiones periódicas también se pueden poner en términos de una recursión.

Vimos otros ejemplos en la entrada de sucesiones monótonas y acotadas, en donde la recursion nos ayuda a demostrar algunas de estas propiedades.

Sucesiones recursivas

Una sucesión recursiva es una sucesión $\{x_n\}$ en la que, intuitivamente, cada término depende de los anteriores. La regla que dice cómo está relacionado cada término con los de antes le llamamos la regla o fórmula recursiva. Usualmente los primeros términos de la sucesión están dados, y se les conoce como los términos iniciales.

Las sucesiones aritméticas son recursivas. Si $\{x_n\}$ es aritmética de término inicial $a$ y diferencia $d$, se comienza con $x_0=a$ y para $n\geq 0$ se satisface la recursión $x_{n+1}=x_n+d$. Similarmente, una sucesión geométrica $\{y_n\}$ de término inicial $s$ y razón $r$ se puede poner en términos recursivos: $y_0=s$ y para $n\geq 0$, se tiene $y_{n+1}=ry_n$.

Una sucesión periódica $\{z_n\}$ de periodo $p$ también satisface una recursión. Los términos iniciales $z_0,\ldots,z_{p-1}$ están dados y para $n\geq 0$ se tiene que $z_{n+p}=z_n$.

Las sucesiones recursivas pueden aparecer como parte del enunciado de un problema, o bien pueden aparecer de manera natural como parte de la solución de un problema.

Problema. Para un triángulo $T$ del plano se define otro triángulo $f(T)$ como sigue:

  • Se nombran los vértices $A,B,C$ de modo que $|BC|\leq |AC|\leq |AB|$.
  • Al punto medio de $BC$ se le nombra $M$.
  • Se rota el punto $A$ alrededor de $M$ en $180^\circ$ para obtener un punto $A’$.
  • Se define $f(T)$ como el triángulo $ACA’$.

Definimos una sucesión de triángulos como sigue. Se toma $T_0=T$. Luego, para $n\geq 0$ se define $T_{n+1}=f(T_n)$. ¿Es posible que esta sucesión tenga dos triángulos congruentes?

Sugerencia pre-solución. Es difícil estudiar las ternas de lados bajo la operación. Modifica el problema a entender otro parámetro que puedas estudiar fácilmente bajo las reglas dadas.

Solución. La respuesta es que en la sucesión no hay dos triángulos congruentes. De hecho, la observación clave es mostrar algo más fuerte: en la sucesión no hay dos triángulos con el mismo perímetro.

Tomemos un triángulo $T$. En el primer paso se nombran los vértices $ABC$ de modo que $BC$ el lado más chico del triángulo, y por lo tanto el ángulo en $A$ es menor estrictamente a $90^\circ$. Por esta razón, $A$ está fuera del círculo con diámetro $BC$, y por lo tanto la mediana $AM$ tiene longitud mayor a $\frac{|BC|}{2}$. El nuevo triángulo tiene lados de longitudes $|AB|$, $|AC|$ y $2|AM|>|BC|$.

Así, la sucesión de perímetros de los triángulos es estrictamente creciente. Por lo tanto, en la sucesión no puede haber dos triángulos con el mismo perímetro, y entonces no hay dos congruentes.

$\square$

Sucesiones recursivas y conteo

Las sucesiones recursivas aparecen también en problemas de combinatoria o de algoritmos, en donde ciertos casos o cierta cantidad de pasos se puede poner en términos de versiones más pequeñas del problema. Además, es posible que en un problema interactúen dos o más sucesiones de manera recursiva. Veamos un ejemplo.

Problema. Se tienen palabras de $10$ letras que usan los símbolos $a$, $b$ y $c$. ¿Cuántas de ellas no tienen dos $a$ consecutivas, ni dos $b$ consecutivas?

Sugerencia pre-solución. En vez de resolver el problema directamente, generalízalo a cuando se tienen palabras de $n$ letras. Para contar cuántas son, divide en casos de acuerdo a en qué símbolo terminan y plantea una recursión en términos de valores anteriores. Hay cierta simetría en $a$ y $b$. Aprovéchala.

Solución. Vamos a resolver un problema más general. Contemos las sucesiones sin dos $a$ ni dos $b$ consecutivas. Dividamos en los siguientes casos:

  • $\{x_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $a$.
  • $\{y_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $b$.
  • $\{z_n\}$ será la sucesión que cuenta cuántas de $n$ letras hay que terminen en $c$.

Por ejemplo, $x_1=y_1=z_1=1$, pues con una letra y con la letra final definida sólo hay una opción. Tenemos que $x_2=2$, que son $$ba,ca,$$ que $y_2=2$, que son $$ab,cb,$$ y que $z_3=3$, que son $$ac,bc,cc.$$ El problema nos pregunta por $x_{10}+y_{10}+z_{10}$.

La razón para partir en estos casos es que si sabemos en qué letra termina una sucesión, entonces sabemos exactamente cómo encontrar las que tienen una letra más de manera recursiva. Por ejemplo, para $n\geq 1$ tenemos que $x_{n+1}=y_n+z_n$, pues una palabra buena de $n+1$ letras que termina en $a$ se forma por una palabra buena de $n$ letras que no termina en $a$, y luego al final se le pone una $a$. Las tres recursiones que obtenemos son
\begin{align*}
x_{n+1}&=y_n+z_n\\
y_{n+1}&=x_n+z_n\\
z_{n+1}&=x_n+y_n+z_n.
\end{align*}

Ahora sí podemos hacer las cuentas únicamente haciendo operaciones, sin la dificultad que implica llevar el conteo de casos en el problema original. La siguiente tabla se puede llenar fácilmente, llenando renglón a renglón de arriba a abajo. Además, la simetría del problema en $a$ y $b$ hace que las sucesiones $x_n$ y $y_n$ sean iguales, así que también podemos aprovechar esto al momento de hacer las cuentas:

$n$$x_n$$y_n$$z_n$
$1$$1$$1$$1$
$2$$2$$2$$3$
$3$$5$$5$$9$
$4$$14$$14$$19$
$5$$33$$33$$47$
$6$$80$$80$$113$
$7$$193$$193$$273$
$8$$466$$466$$659$
$9$$1125$$1125$$1591$
$10$$2716$$2716$$3841$
Tabla de valores de las sucesiones

De esta manera, la cantidad total de palabras que pide el problema es $$2716+2716+3841=9273.$$

$\square$

Recursiones lineales

Hay un tipo de sucesiones recursivas especiales, que cumplen que cada término depende de pocos términos anteriores y de manera lineal.

Por ejemplo, la sucesión de Fibonacci satisface $F_0=0$, $F_1=1$ y para $k\geq 0$ se tiene que $$F_{k+2}=F_k+F_{k+1}.$$ Aquí la recursión depende de los dos términos inmediatos anteriores, y cada uno de ellos aparece linealmente. Por ello, decimos que es una recursión lineal de orden 2.

La definición general es la siguiente.

Definición. Una sucesión $\{x_n\}$ de reales satisface una recursión lineal de orden $m$ si los primeros $m$ términos $x_0,\ldots,x_{m-1}$ están dados, y además existen reales $a_0,\ldots,a_{m-1}$ tales que para $k\geq 0$ se satisface la recursión lineal $$x_{m+k}=a_0x_k+a_1x_{k+1}+\ldots+a_{m-1}x_{m+k-1}.$$

El siguiente método nos ayuda en varios casos a pasar una sucesión que satisface una recursión lineal a una fórmula cerrada.

Primero, tomamos una sucesión $\{x_n\}$ como la de la definición. Luego, consideramos el siguiente polinomio de grado $m$: $$P(x)=x^m-a_{m-1}x^{m-1}-\ldots-a_0.$$

Supongamos que $r$ es una raíz de $P$. Afirmamos que la sucesión $\{r^n\}$ satisface la recursión. En efecto, como $r$ es raíz de $P$, tenemos que $$r^m=a_{m-1}r^{m-1}+\ldots+a_0,$$ y multiplicando ambos lados por $r^k$ tenemos que $$r^{m+k}=a_{m-1}r^{m+k-1}+\ldots+a_0r^k,$$ que es justo la recursión lineal (con los sumandos de derecha a izquierda).

Ahora, nota que si $\{x_n\}$ y $\{y_n\}$ satisfacen la recursión lineal, entonces para cualesquiera reales $c$ y $d$ tenemos que $\{cx_n+dy_n\}$ también. Entonces si hacemos combinaciones lineales de potencias de raíces de $P$ también tendremos sucesiones que satisfacen la recursión lineal. Resulta que en varios casos «todas las soluciones se ven así».

La discusión hasta aquí es un poco abstracta, así que hagamos un ejemplo concreto.

Problema. Determina una fórmula cerrada para la sucesión $\{A_n\}$ tal que $A_0=1$, $A_1=5$ y que satisface la recursión lineal de orden 2 $$A_{n+2}=-6A_n+5A_{n+1}.$$

Sugerencia pre-solución. Encuentra el polinomio asociado a la recursión. Si tiene raíces $\alpha$ y $\beta$, muestra que para cualesquiera reales $c$ y $d$ se tiene que $B(c,d)=\{c\alpha^n+d\beta^n\}$ satisface la recursión. Ya que nos dan los dos primeros términos, se puede encontrar los únicos $c$ y $d$ que funcionan para $\{A_n\}$.

Solución. El polinomio asociado a la recursión es $x^2-5x+6$, que tiene raíces $2\,\text{ y }\, 3$. Entonces, para cualesquiera reales $c$ y $d$ se tiene que la sucesión $B(c,d)=\{c2^n+d3^n\}$ satisface la recursión.

Además, necesitamos que los primeros términos sean $1\,\text{ y }\,5$ respectivamente, de donde obtenemos el sistema de ecuaciones para $c$ y $d$ siguiente:

\begin{align*}
1&=c2^0+d3^0=c+d\\
5&=c2^1+d3^1=2c+3d.
\end{align*}

La solución a este sistema es $c=-2$, $d=3$. De esta forma, la fórmula cerrada para $\{A_n\}$ es $$A_n=-2\cdot 2^n+3\cdot 3^n=3^{n+1}-2^{n+1}.$$

$\square$

Todos los pasos que hicimos en el problema anterior son reversibles, pero si quieres asegurarte de que todo va marchando bien, puedes mostrar por inducción que la fórmula dada es correcta.

Teorema para recursiones lineales de orden $m$

Resulta que cuando el polinomio asociado tiene $m$ raíces distintas, entonces el método anterior siempre funciona.

Teorema. Supongamos que la sucesión $\{x_n\}$ satisface la recursión lineal de orden $m$ $$x_{m+k}=a_0x_k+a_1x_{k+1}+\ldots+a_{m-1}x_{m+k-1}$$ para ciertos reales $a_0,\ldots,a_{m-1}$, y que las raíces del polinomio $$P(x)=x^m-a_{m-1}x^{m-1}-\ldots-a_0$$ son todas distintas y son $r_0,\ldots,r_{m-1}$. Entonces, existen únicos números $c_0,\ldots,c_{m-1}$ tales que para todo $n\geq 0$ se tiene $$x_n=c_0r_0^n+\ldots+c_{m-1}r_{m-1}^n,$$ y ellos se pueden encontrar mediante el sistema de $m$ ecuaciones lineales que queda al tomar $n=0,1,\ldots,m-1$.

No veremos la demostración de este teorema, pero aquí abajo lo usaremos para resolver algunos problemas.

Problema. La sucesión $\{B_n\}$ satisface que para toda $n\geq 0$ se tiene que $$B_{n+5}+B_n=-2(B_{n+4}+B_{n+1})-3(B_{n+3}+B_{n+2}).$$ Demuestra que esta sucesión es acotada.

Sugerencia pre-solución. Calcula el polinomio asociado. Factorízalo y muestra que todas sus raíces son diferentes.

Solución. Reacomodando los términos en la hipótesis, obtenemos que $\{B_n\}$ satisface una recursión lineal con polinomio asociado $$P(x)=x^5+2x^4+3x^3+3x^2+2x+1,$$ que se puede factorizar como $$(x^2+x+1)(x^3+x^2+x+1).$$

Las raíces del primer factor son las dos raíces cúbicas de la unidad que no sean uno digamos $w$ y $z$. Las del segundo factor son las $3$ raíces cuartas de la unidad que no sean uno, es decir $i$, $-1$ y $-i$.

Todos estos complejos tienen norma uno y además son distintos. De esta forma, por el teorema de recursiones lineales, existen únicos complejos $a,b,c,d,e$ tales que para toda $n$ se cumple $$B_n=aw^n+bz^n+ci^n+d(-1)^n+e(-i)^n.$$

De aquí podemos proceder de dos formas distintas. Una es simplemente tomando norma de ambos lados y usando la desigualdad del triángulo:

\begin{align*}
|B_n|&=\norm{aw^n+bz^n+ci^n+d(-1)^n+e(-i)^n}\\
&\leq \norm{aw^n}+\norm{bz^n}+\norm{ci^n}+\norm{d(-1)^n}+\norm{e(-i)^n}\\
&= \norm{a}+\norm{b}+\norm{c}+\norm{d}+\norm{e},
\end{align*}

lo cual muestra que $B_n$ está acotada.

La otra es usar que para cada raíz $m$-ésima de la unidad $\alpha$ y cualquier constante $r$ se tiene que $\{r\alpha^n\}$ es periódica de periodo $m$. De esta forma, $\{B_n\}$ es suma de sucesiones periódicas, y por lo tanto es periódica. Como es periódica, entonces es acotada.

$\square$

Existe una forma sistemática para lidiar con recursiones lineales cuando las raíces del polinomio anterior no son diferentes. Sin embargo, ella requiere de un buen entendimiento de matrices y diagonalización, que es un tema no trivial en álgebra lineal. De cualquier forma, el método anterior funciona en una gran variedad de situaciones.

Recursiones lineales y sumas de potencias

Quizás lo más importante del método anterior es que da la siguiente intuición:

«Las sucesiones $\{x_n\}$ que satisfacen una recursión lineal de orden $m$ y las expresiones del estilo $$S_n=c_0r_0^n+\ldots+c_{m-1}r_{m-1}^n$$ están fuertemente relacionadas.»

Así, cuando se tiene una combinación lineal de potencias $n$-ésimas, una de las primeras cosas que hay que hacer es ver si la recursión lineal que satisface nos ayuda para el problema. El siguiente problema es el Problema 1 de la primer Competencia Iberoamericana Interuniversitaria de Matemáticas

Problema. Muestra que para todo entero positivo $n$ se tiene que la expresión $\left(\frac{3+\sqrt{17}}{2}\right)^n+\left(\frac{3-\sqrt{17}}{2}\right)^n $ es un entero impar.

Sugerencia pre-solución. Ya discutimos cómo pasar de una recursión lineal a una suma de potencias. Ahora tienes que trabajar al revés para encontrar una recursión lineal que satisfaga la expresión del problema.

Solución. Sean $\alpha=\frac{3+\sqrt{17}}{2}$ y $\beta=\frac{3-\sqrt{17}}{2}$. El problema pide mostrar que para $n$ entero positivo se tiene que $x_n:=\alpha^n+\beta^n$ es un entero impar.

Como $\alpha$ y $\beta$ son raíces del polinomio
\begin{align*}
P(x)&=(x-\alpha)(x-\beta)\\
&=x^2-(\alpha+\beta)x+\alpha\beta\\
&=x^2-3x-2,
\end{align*}

se tiene que $x_n$ satisface la recursión lineal de orden dos siguiente: $$x_{n+2}=3x_{n+1}+2x_n.$$

Con esto, estamos listos para mostrar inductivamente que $x_n$ es impar para todo entero positivo $n$. Se tiene que $x_0=2$ y $x_1=\alpha+\beta=3$, de modo que por la recursión, $x_2=13$, así que la afirmación es cierta para $n=1,2$.

Si la afirmación es cierta hasta un entero positivo $n-1$, usamos la recursión para mostrar que $x_n=3x_{n-1}+2x_{n-2}$ es la suma de un entero impar y un entero par, de modo que $x_n$ es impar. Esto termina la demostración.

$\square$

Más problemas

Esta entrada es una extensión de la sección 7 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica:

Seminario de Resolución de Problemas: Sucesiones periódicas y pre-periódicas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior, comenzamos a hablar de sucesiones. Dimos las definiciones básicas y vimos sucesiones aritméticas y geométricas. Aunque una sucesión tenga una cantidad infinita de términos, las sucesiones aritméticas y geométricas son «sencillas», pues en realidad sólo dependen de dos parámetros: un término inicial y una diferencia (o razón). Ahora veremos otro tipo de sucesiones que también tienen cierta «finitud». Estudiaremos las sucesiones periódicas y pre-periódicas.

La intuición detrás de las sucesiones periódicas y pre-periódicas es que «se repiten y se repiten» después de un punto. Así, estas sucesiones sólo pueden tomar un número finito de valores, y de hecho después de un punto los empiezan a tomar «de manera cíclica».

Sucesiones periódicas

Las siguientes sucesiones tienen una característica peculiar:

  • $1,2,3,4,1,2,3,4,1,2,3,4,1,2,\ldots$
  • $7,8,7,11,7,7,8,7,11,7,7,\ldots$
  • Para $\omega$ una raíz cúbica de la unidad en $\mathbb{C}$: $1,\omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega ^6,\ldots$

Dicho de manera informal, estas sucesiones se «repiten y se repiten».

Definición. Una sucesión es periódica si existe un entero positivo $p$ tal que $x_{n+p}=x_n$ para todo entero $n\geq 0$. A $p$ se le conoce como un periodo y al mínimo $p$ que satisface esto se le llama un periodo mínimo.

Las sucesiones ejemplo tienen periodo $4$, $5$ y $3$ respectivamente.

Cuando una sucesión $\{x_n\}$ es periódica de periodo $p$, se puede mostrar inductivamente que $x_{n+p}=x_{n+mp}$ para todo entero positivo $m$. También, se puede mostrar que cualquier término es igual a alguno de los términos $x_0,\ldots,x_{p-1}$. Concretamente, si usamos el algoritmo de la división para expresar $n=qp+r$ con $r$ el residuo de la división de $n$ entre $q$, tenemos que $x_n=x_r$. Esto hace que trabajar con sucesiones periódicas de periodo $p$ se parezca a trabajar con los enteros módulo $p$.

Problema. La sucesión $\{x_n\}$ es periódica de periodo $91$ y tiene un número irracional. La sucesión $\{y_n\}$ es periódica de periodo $51$. Muestra que si la sucesión $\{x_n+y_n\}$ tiene puros números racionales, entonces la sucesión $\{y_n\}$ tiene puros números irracionales.

Sugerencia pre-solución. Recuerda cómo se resuelven las ecuaciones diofantinas lineales en enteros, o bien usa el teorema chino del residuo.

Solución. Como $\{x_n\}$ tiene periodo $91$, podemos suponer que su término irracional es $x_k$ con $k$ en $\{0,\ldots,90\}$. Ya que $\{y_n\}$ es periódica de periodo $51$, basta con que probemos que $y_r$ es irracional para cada $r$ en $\{0,\ldots,50\}$. Tomemos una de estas $r$.

Como $91$ y $51$ son primos relativos, por el teorema chino del residuo existe un entero $m$ tal que
\begin{align*}
m&\equiv k \pmod {91}\\
m&\equiv r \pmod {51}.
\end{align*}

Sumando múltiplos de $91\cdot 51$ a $m$, podemos suponer que $m$ es positivo. Para esta $m$ tenemos que $x_m=x_k$ y que $y_m=y_r$. De esta forma,
\begin{align*}
y_r&=y_m\\
&=(y_m+x_m)-x_m\\
&=(y_m+x_m)-x_k.
\end{align*}
A la derecha, tenemos una resta de un número racional, menos uno irracional, el cual es un número irracional. Esto muestra que $y_r$ es irracional, como queríamos.

$\square$

Veamos otro ejemplo, que toca un poco el tema de sucesiones recursivas, del cual hablaremos con más profundidad más adelante.

Problema. Considera la sucesión $\{a_n\}$ en $\mathbb{Z}_{13}$ (los enteros módulo $13$, con su aritmética modular), en donde los primeros tres términos son $a_0=[0]_{13}$, $a_1=[1]_{13}$ y $a_2=[2]_{13}$ y para todo entero $n\geq 0$ se tiene que $$a_{n+3}=[a_n+a_{n+1}+a_{n+2}+n]_{13}.$$ Muestra que la sucesión $\{a_n\}$ es periódica.

Sugerencia pre-solución. El residuo al dividir entre $13$ de cada término de la sucesión depende de cuatro enteros entre $0$ y $12$. ¿Cuáles? Usa el principio de las casillas y luego trabaja hacia atrás.

Solución. Para simplificar la notación, no usaremos el subíndice $13$, con el entendido de que siempre se deben simplificar los números de los que hablemos módulo $13$. Para cada $n\geq 0$, consideremos el vector $$v_n=(a_n,a_{n+1},a_{n+2},n).$$

Visto módulo $13$, este vector puede tomar $13^4$ posibles valores, y define el valor de $a_{n+3}$. Por principio de las casillas, debe haber dos enteros $m$ y $p$ tales que $v_m=v_{m+p}$. Afirmamos que $p$ es un periodo para $\{a_n\}$.

Vamos a probar esto. Primero lo haremos para los enteros $n\geq m$. Esto lo haremos mostrando que $v_{m+k}=v_{m+k+p}$ por inducción sobre $k$.

El caso $k=0$ es la igualdad $v_m=v_{m+p}$ de arriba. Si suponemos que $v_{m+k}=v_{m+p+k}$, entonces automáticamente tenemos la igualdad de las primeras dos entradas de $v_{m+k+1}$ y $v_{m+p+k+1}$, y como $a_{m+k+3}$ y $a_{m+k+p+3}$ quedan totalmente determinados por $v_{m+k}=v_{m+p+k}$, entonces también las terceras entradas son iguales. Para la cuarta entrada, usamos que $$m+k\equiv m+p+k\pmod {13},$$ de donde $$m+k+1\equiv m+p+k+1\pmod {13}.$$ Esto termina la inducción. En particular, tenemos que $a_{m+k}=a_{m+k+p}$ para todo $k\geq 0$.

Falta mostrar que la sucesión también es periódica antes de $a_m$. Pero este se hace con un argumento análogo al anterior, pero trabajando hacia atrás, notando que $a_{n-1}$ queda totalmente determinado mediante la ecuación $$a_{n-1}=a_{n+2}-a_n-a_{n+1}-(n-1).$$

$\square$

Sucesiones pre-periódicas

A veces una sucesión puede ser casi periódica, a excepción de sus primeros términos. Estas sucesiones comparten muchas propiedades con las sucesiones periódicas, así que vale la pena definirlas.

Definición. Una sucesión es pre-periódica si existen enteros positivos $N$ y $p$ tales que $x_{n+p}=x_p$ para todo entero $n \geq N$. Si tomamos $N$ como el menor entero para el que se cumpla la propiedad, a los términos $$(x_0,x_1,\ldots,x_{N-1})$$ se les conoce como la parte pre-periódica. La sucesión $\{x_{n+N}\}$ es una sucesión periódica y se le conoce como la parte periódica de $\{x_n\}$.

Las sucesiones pre-periódicas juegan un papel importante en la clasificación de los números racionales.

Teorema. Sea $x$ un real. Las siguientes tres afirmaciones son equivalentes:

  • $x$ es racional
  • Los dígitos después del punto decimal de $x$ en alguna base entera $b\geq 2$ forman una sucesión pre-periódica.
  • Los dígitos después del punto decimal de $x$ en toda base entera $b\geq 2$ forman una sucesión pre-periódica.

Problema. Demuestra que el número $$X:\sum_{j=1}^\infty \frac{1}{10^{j^2}}$$ es un número irracional.

Sugerencia pre-solución. Escribe las primeras sumas parciales de la serie para encontrar un patrón de cómo se ven los dígitos de $X$ después del punto decimal. Procede por contradicción.

Solución. Otra forma de escribir a $X$ es en base $10$: $$X=0.a_1a_2a_3a_4\ldots,$$ en donde $\{a_n\}$ es la sucesión de dígitos después del punto decimal. Nota que $a_i=1$ si y sólo si $i$ es un número cuadrado.

Si $X$ fuera racional, $\{a_n\}$ sería pre-periódica, de periodo, digamos $p$. Pero en $\{a_n\}$ podemos encontrar $p$ ceros consecutivos, incluso después del pre-periodo, ya que hay bloques tan largos como se quiera de enteros que no son números cuadrados. Esto mostraría que el periodo sería de puros ceros, y que por lo tanto a partir de un punto $\{a_n\}$ es constantemente cero. Esto es imposible pues hay números cuadrados arbitrariamente grandes.

$\square$

Combinando tipos de sucesiones

Hasta ahora, hemos hablado de sucesiones aritméticas, geométricas, periódicas y pre-periódicas. Seguiremos hablando de otros tipos de sucesiones en entradas posteriores. Una cosa sistemática que te puede ayudar a entender estos conceptos mejor es preguntarte cuándo una sucesión satisface más de una de estas propiedades.

Problema. Determina todas las sucesiones en $\mathbb{C}$ que sean simultáneamente geométricas y periódicas.

Sugerencia pre-solución. Elige una notación adecuada para trabajar en este problema.

Solución. El primer término $a$ de una sucesión así tiene que ser igual a otro. Como la sucesión es geométrica, eso otro término es de la forma $r^ma$ para $m$ un entero positivo.

Si $a=0$, la sucesión es la sucesión constante $0$, que es geométrica y periódica de periodo $1$. Si $a\neq 0$, entonces $r^m=1$, de modo que $r$ es una raíz $m$-ésima de la unidad.

Y en efecto, para $r$ una raíz $m$-ésima de la unidad y $a$ cualquier complejo, tenemos que $\{ar^n\}$ es una sucesión geométrica y de periodo $m$.

$\square$

Más problemas

Esta entrada es una extensión de las secciones 5 y 6 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica: