Archivo de la etiqueta: propiedades de funciones continuas

Cálculo Diferencial e Integral I: Teorema del valor intermedio

Por Juan Manuel Naranjo Jurado

Introducción

En la entrada anterior se revisó el concepto de continuidad en un punto, así como algunas de sus propiedades. Además, se definió la continuidad en un intervalo, concepto que se empleará en esta entrada para probar uno de los resultados más relevantes para las funciones continuas: el teorema del valor intermedio.

Idea intuitiva

Este teorema nos dice que para una función continua en determinado intervalo [a,b], si el valor de f al evaluarla en a cambia de signo con respecto al valor que se obtiene al evaluarla en b, entonces existe algún punto x tal que al evaluar la función en dicho punto, toma el valor de cero.

Recordemos la idea intuitiva de continuidad, una función es continua si puedes dibujarla sin soltar el lápiz; pensemos en el caso particular que f(a)<0 y f(b)>0. En la siguiente imagen se muestra una función continua que pasa por ambos.

¿Podrías dibujar una función continua que pase por ambos puntos sin pasar por 0 en el eje horizontal? Probaremos que esto no es posible en el siguiente teorema; pero antes desarrollemos la intuición de lo que debe suceder. Para ello, recordemos el último teorema revisado en la entrada anterior.

Teorema. Supongamos que f es continua en x0 y f(x0)>0. Entonces f(x)>0 para todo x en un intervalo que contiene a x0, es decir, existe δ>0 tal que f(x)>0 para todo x tal que |xx0|<δ.

De forma análoga, si f(x0)<0, entonces existe δ>0 tal que f(x)<0 para todo x tal que |xx0|<δ.

Es decir, si una función continua toma un valor positivo en un punto x0, entonces debe suceder que es positiva en todo un intervalo: (x0δ,x0+δ). Análogamente, si la función es negativa en determinado punto, entonces debe suceder que es negativa en todo un intervalo. Así, podemos pensar en el intervalo más grande que captura el comportamiento negativo (o positivo), ¿en qué punto se termina? Para responder esta pregunta, haremos uso de un concepto revisado anteriormente, el supremo.

Teorema del valor intermedio

Teorema del valor intermedio. Sea f:[a,b]R continua en todo el intervalo [a,b]. Si f(a)<0 y f(b)>0, entonces existe c, a<c<b, tal que f(c)=0.

Demostración.

Como f(a)<0, sabemos que existe δ1 tal que para todo x(aδ1,a+δ1)[a,b] se tiene que f(x)<0. Es decir,

(1)x[a,a+δ1),f(x)<0.

Como f(b)>0, sabemos que existe δ2 tal que para todo x(bδ2,b+δ2)[a,b] se tiene que f(x)>0. Es decir,

(2)x(bδ2,b],f(x)>0.

Definamos ahora el siguiente conjunto:

A={t[a,b]|x[a,t],f(x)<0}.


Es decir, el conjunto A está formado por todos los números reales que forman un intervalo [a,t] donde f toma valores negativos. Utilizando la ilustración del inicio, se puede ejemplificar cómo se ve t, que estará en el eje x entre a y el punto rojo marcado.

Primero veamos que A.

Consideremos t0=a+δ12. Es inmediato que a<a+δ12<a+δ1 y como [a,a+δ12][a,a+δ1), por (1) se tiene que, para todo x[a,a+δ12], f(x)<0.

t0AA.

Notemos que el conjunto A está acotado. Por definición si tA, entonces t[a,b], es decir, tb. Ahora, como nuestro conjunto A es no vacío y está acotado, sí tiene supremo. Sea α=supA.

Adicionalmente, notemos que

  1. t0=a+δ12A y a+δ12αb.
  2. Por (2), para todo x(bδ2,b] se tiene que f(x)>0, entonces αbδ2.

Por lo anterior, se tiene
a<a+δ12αbδ2<b.
Se sigue que a<α<b.

Para finalizar con la prueba, demostraremos que f(α)=0.

Para demostrarlo procederemos por contracción, es decir, supongamos que f(α)0, entonces existen dos casos, f(α)>0 ó f(α)<0.

  • Caso 1: f(α)<0.

    Se tiene que f(α)<0, entonces existe δ3 tal que para todo x(αδ3,α+δ3)[a,b] se cumple que f(x)<0.

    Dado que α=supA y αδ3<α, entonces existe tA tal que αδ3<tα. Adicionalmente, consideremos s tal que α<s<α+δ3 y s<b.

    Como [t,s](αδ3,α+δ3), entonces

    x[a,s],f(x)<0.

    Además, por definición del conjunto A, para todo x[a,t] se tiene f(x)<0. Entonces

    x[a,s]=[a,t][t,s],f(x)<0.

    Entonces sA y α<s, lo cual es una contradicción pues α es el supremo de A.

    f(α)0.
  • Caso 2: f(α)>0.

    Dado que f es continua en α, entonces existe δ4>0 tal que para todo x(αδ4,α+δ4), f(x)>0.

    Como αδ4<α, entonces existe tA tal que αδ4<tα. Como tA, entonces f(t)<0 y como αδ4<tα<α+δ, f(t)>0, lo cual es una contradicción.

    Por tanto, f(α)=0.

Así, consideremos c=α, a<c<b y f(c)=0.

◻

Podemos notar que el teorema no solo vale cuando la función va de negativo (f(a)<0) a positivo (f(b)>0), sino también en el caso inverso (f(a)>0 y f(b)<0) y lo probaremos en el siguiente corolario.

Corolario. Sea f:[a,b]R, continua en [a,b]. Si f(a)>0 y f(b)<0, entonces existe c, a<c<b, tal que f(x)=c.

Demostración.

Consideremos la función h:[a,b]R, h(x)=f(x).

Notemos que h es continua pues f lo es. Además h(a)=f(a)<0 y h(b)=f(b)>0. Aplicando el teorema del valor intermedio, existe c que cumple a<c<b tal que

h(c)=0.

Se sigue que
f(c)=0.f(c)=0.

◻

Más aún, si en un intervalo [a,b] se cumple que f(a)<M y f(b)>M, entonces también existe un punto c tal que f(c)=M.

Corolario. Sea MR, si f(a)<M y f(b)>M. Entonces existe c, a<c<b, tal que f(c)=M.

Demostración.

Consideremos la función h:[a,b]R, con h(x)=f(x)M.

Notemos que h es continua. Además h(a)=f(a)M<0 y h(b)=f(b)M>0. Por el teorema del valor intermedio, existe c, a<c<b, tal que h(c)=0. Entonces f(c)M=0.

f(c)=M.

◻

Análogamente, tenemos el siguiente resultado.

Corolario. Sea MR, si f(a)>M y f(b)<M. Entonces existe c, a<c<b, tal que f(c)=M.

Más adelante…

En la siguiente entrada demostraremos otra propiedad fuerte respecto a las funciones continuas: si una función es continua en un intervalo, entonces está acotada. Más aún, existe un valor x0 en el intervalo tal que la función alcanza su máximo en dicho punto. De forma análoga, existe un punto en el que la función alcanza su mínimo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea f continua en el intervalo [0,1] y tal que f(0)=f(1). Demostrar que existe un punto c[0,12] tal que f(c)=f(c+12).
  • Sea MR, si f(a)>M y f(b)<M. Prueba que existe c, a<c<b tal que f(c)=M.
  • Dado f(x)=x2+2x7, demuestra que existe c tal que f(c)=50.
  • Para la ecuación 2x7=x1, encuentra una solución en [0,1].

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Definición de continuidad y sus propiedades

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada definiremos la continuidad de una función, es probable que hayas estudiado antes tal concepto y la manera en que se suele definir de forma intuitiva es mediante la siguiente sentencia: «Si puedes dibujar la función sin levantar el lápiz, entonces es una función continua». Nosotros revisaremos el tema con mayor formalidad, pero notarás que tal enunciado será de ayuda para interpretar la definición.

Definición de continuidad

En palabras sencillas, una función es continua en un punto x0 si el límite en tal punto es igual a evaluar la función en x0.

Definición. Sean f:AR con AR y x0A. La función f es continua en x0 si para todo ε>0, existe δ>0 tal que para todo xA que satisface que 0<|xx0|<δ, entonces se cumple que |f(x)f(x0)|<ε.

Observación. Si además x0 es un punto de acumulación de A, entonces se dice que f es continua en x0 si limxx0f(x)=f(x0).

En la entrada de definición formal de límite se vieron algunos ejemplos de funciones continuas; específicamente se dejaron dos ejercicios como tarea moral que procederemos a probar en esta entrada.

Ejemplo 1. La función f(x)=c, es continua en x0 para todo x0R.

Demostración.

Sea ε>0. Dado que la función es constante, cualquier valor de delta nos funciona, así consideremos δ=1.

Si 0<|xx0|<δ, entonces

|f(x)f(x0)|=|cc|=0<ε.

limxx0f(x)=f(x0).

◻

Ejemplo 2. La función f(x)=x es continua en x0 para todo x0R.

Demostración.

Sea ε>0. Consideremos δ=ε.

Si 0<|xx0|<δ, entonces
|f(x)f(x0)|=|xx0|<δ=ε.

limxx0f(x)=f(x0).

Antes de revisar el siguiente ejemplo, demostraremos un resultado que nos será muy útil al momento de calcular límites.

Proposición. Sea f:AR, entonces

limxx0f(x)=Llimh0f(x0+h)=L.

Demostración.

] Supongamos que limxx0f(x)=L.

Sea ε>0. Existe δ>0 tal que si 0<|xx0|<δ, entonces |f(x)L|<ε.

Notemos que si 0<|h|<δ, entonces 0<|(h+x0)x0|<δ. Por lo tanto, |f(x0+h)L|<ε.

limh0f(x0+h)=L.

] Supongamos que limh0f(x0+h)=L.

Sea ε>0. Existe δ>0 tal que si 0<|h|<δ, entonces |f(x0+h)L|<ε.

Notemos que si 0<|xx0|<δ, entonces |f(x0+(xx0))L|=|f(x)L|<ε.

limxx0f(x)=L.

◻

Ejemplo 3. La función f(x)=sen(x) es continua en x0 para todo x0R.

Demostración.

Para probar la continuidad de esta función, procederemos a calcular sus límites laterales y emplearemos el hecho de que las funciones seno y coseno son continuas en x=0, lo cual se demostró en esta entrada. Además, usaremos las siguientes identidades trigonométricas:

  1. sen(a+b)=sen(a)cos(b)+cos(a)sen(b).
  2. sen(ab)=sen(a)cos(b)cos(a)sen(b).

Calculando el límite por la derecha, usando la primera identidad y empleando la proposición anterior, tenemos

limxx0+sen(x)=limh0+sen(x0+h)=limh0+sen(x0)cos(h)+cos(x0)sen(h), pues h>0=sen(x0)cos(0)+cos(x0)sen(0)=sen(x0).

Calculando el límite por la izquierda, usando la segunda identidad y empleando la proposición anterior, tenemos

limxx0sen(x)=limh0sen(x0+h)=limh0sen(x0)cos(h)cos(x0)sen(h), pues h<0=sen(x0)cos(0)+cos(x0)sen(0)=sen(x0).

Como los límites laterales existen y coinciden, se concluye que

limxx0sen(x)=sen(x0).

Por lo tanto, la función es continua.

◻

Propiedades básicas de la continuidad

A continuación revisaremos tres propiedades aritméticas de las funciones continuas.

Teorema. Si f y g son funciones continuas en x0, entonces

  1. f+g es continua en x0.
  2. fg es continua en x0.
  3. Si además g(x0)0, entonces 1g es continua en x0.

Demostración.

Como f y g son continuas en x0, entonces
limxx0f(x)=f(x0) y limxx0g(x)=g(x0).
Por las propiedades del límite, tenemos lo siguiente
limxx0(f+g)(x)=limxx0[f(x)+g(x)]=limxx0f(x)+limxx0g(x)=f(x0)+g(x0)=(f+g)(x0).

limxx0(f+g)(x)=(f+g)(x0).

Por lo tanto, f+g es continua en x0.

Podemos notar que los incisos siguientes tienen demostraciones análogas ocupando las propiedades demostradas para el límite de una función, por lo cual su prueba se omitirá.

◻

Gracias al teorema anterior y los ejemplos vistos, tenemos una gama de funciones continuas, las funciones polinomiales: p(x)=αnxn+αn1xn1++α1x+α0.

La siguiente propiedad que veremos hace referencia a la composición de funciones continuas.

Teorema. Si g es continua en x0 y f es continua en g(x0), entonces la composición de funciones fg es continua en x0.

Demostración.

Queremos probar que limxx0(fg)(x)=(fg)(x0)
y para demostrarlo procederemos mediante la definición épsilon-delta.

Sea ε>0.

Como f es continua en g(x0), existe δ>0 tal que para todo y que cumpla |yg(x0)|<δ, entonces |f(y)f(g(x0))|<ε.

Dado que estamos viendo la composición, podemos considerar particularmente y=g(x), de esta manera se tiene que si |g(x)g(x0)|<δ, entonces
(1)|f(g(x))f(g(x0))|<ε.

Como g es continua en x0, para cualquier valor positivo arbitrario, en este caso consideraremos δ>0, existe δ>0 tal que si 0<|xx0|<δ, entonces
(2)|g(x)g(x0)|<δ.

De (1) y (2), se sigue que si 0<|xx0|<δ|g(x)g(x0)|<δ|f(g(x))f(g(x0))|<ε.

Es decir, si 0<|xx0|<δ, entonces |f(g(x))f(g(x0))|<ε.

◻

El teorema anterior nos permite extender aún más el almacén de funciones continuas. Por ejemplo, sabemos que g(x)=x2+x10 es continua en x0 para todo x0R y la función f(x)=sen(x) es continua en cualquier punto, particularmente en g(x0), entonces la composición (fg)(x)=sen(x2+x10) también es continua en x0.

Existen cierto tipo de funciones que no están definidas en algún punto en particular. Por ejemplo f(x)=xsen(1x), no está definida en x0=0 y, por tanto, no puede ser continua en tal punto, pero a partir de ella podemos construir una nueva función que sí sea continua en x0=0. En una entrada anterior, vimos que limx0xsen(1x)=0.

De esta forma, podemos definir una nueva función:

f(x)={xsen(1x)si x00si x=0.

Esta nueva función f es continua en x0=0. A este tipo de funciones que podemos convertirlas en funciones continuas en x0 redefiniéndolas en tal punto, se dice que tienen una discontinuidad removible o evitable.


Por otro lado, también hay funciones cuya discontinuidad es no removible. Consideremos la función f(x)=sen(1x), revisamos anteriormente que el límite de tal función no existe. Por lo cual, aunque la definiéramos en x0, seguiría siendo discontinua en dicho punto.

Hasta ahora estuvimos empleando la definición de continuidad en un punto, sin embargo, para la mayoría de los ejemplos revisados probamos la continuidad para todo R, puesto que consideramos un x0 arbitrario. Es conveniente tener una definición para la continuidad en un intervalo. Y, como podrás imaginarlo, para que una función sea continua en un intervalo (a,b), se requiere que la función sea continua en cada punto del intervalo (con una pequeña particularidad para intervalos cerrados).

Definición (Continuidad en un intervalo abierto). Si f es continua en todo x con x(a,b), se dice que f es continua en el intervalo (a,b).

Definición (Continuidad en un intervalo cerrado). Si f es continua en todo x con x(a,b) y se cumple que

limxa+f(x)=f(a) y limxbf(x)=f(b).

Entonces se dice que f es continua en el intervalo [a,b].

Terminaremos esta entrada probando un teorema que nos dice que si f es continua en x0 y f(x0) es mayor a cero (o menor a cero), entonces existe todo un intervalo en el que es mayor a cero (o menor a cero).

Teorema. Supongamos que f es continua en x0 y f(x0)>0. Entonces f(x)>0 para todo x en un intervalo que contiene a x0, es decir, existe δ>0 tal que f(x)>0 para todo x tal que |xx0|<δ.

De forma análoga, si f(x0)<0, entonces existe δ>0 tal que f(x)<0 para todo x tal que |xx0|<δ.

Demostración.

Supongamos que f es continua en x0 y f(x0)>0, entonces para ε=12f(x0)>0, existe δ>0 tal que si |xx0|<δ, entonces
|f(x)f(x0)|<12f(x0).12f(x0)<f(x)f(x0)<12f(x0).12f(x0)+f(x0)<f(x)<12f(x0)+f(x0).f(x)>12f(x0)>0.

La demostración para cuando f(x0)<0 es análoga usando ε=12f(x0)>0.

◻

Más adelante…

Tras revisar las propiedades básicas de las funciones continuas, estamos listos para revisar resultados muy interesantes derivados de la continuidad. En la siguiente entrada revisaremos el popular teorema del valor intermedio, que nos indica que si una función continua en un intervalo [a,b] y que al evaluarla en a toma un valor negativo, f(a)<0, y al evaluarla en b toma un valor positivo, f(b)>0, entonces dicha función necesariamente toma el valor cero, es decir, existe un x0 en el intervalo [a,b] tal que f(x0)=0. Para probar este resultado, se hará uso del último teorema revisado en esta entrada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba que la función f(x)=cos(x) es continua en cualquier punto x0R.
  • Sea f:AR. Prueba que si f es continua en un punto x0A, entonces la función |f|(x):=|f(x)| también es continua en x0. ¿Se cumple el regreso? Es decir, ¿si |f| es continua en x0 entonces f también es continua en tal punto?
  • Se dice que una función f es aditiva si f(x+y)=f(x)+f(y) para todo x, y en R. Prueba que para una función aditiva f tal que es continua en algún punto x0, entonces es continua en todo su dominio.
  • Da un ejemplo de dos funciones f y g discontinuas en x0 tales que la suma f+g sea continua en x0.
  • Da un ejemplo de dos funciones f y g discontinuas en x0 tales que el producto fg sea continuo en x0.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»