Archivo de la etiqueta: Geometría Moderna II

Geometría Moderna II: Inversión de un Teorema

Por Armando Arzola Pérez

Introducción

A lo largo de los teoremas vistos en geometría moderna se han demostrado y visto propiedades, pero gracias a la inversión se pueden deducir y demostrar nuevos teoremas de los ya vistos. A esto se le denomina Inversión de un Teorema.

Inversión de un Teorema y circunferencia de antisimilitud

Ejemplo. Dado un teorema referente a las alturas de un triángulo, se puede demostrar usando inversión y referente a circunferencias.
Sean $Z$ y $Z’$ dos circunferencias que se intersecan en $A$ y $O$, de $O$ se tiene los diámetros $OE$ de $Z’$ y $OF$ de $Z$ donde intersecan a $Z$ en $B$ y $Z’$ en $C$; Por lo cual el eje radical $AO$ pasa por el centro de la circunferencia de los puntos $O$, $B$ y $C$ la cual llamaremos $Z’$$’$.

Usando el Teorema. El inverso de una circunferencia que pasa por el centro de inversión es una recta que no pasa por el centro de inversión: Por lo cual, usando $O$ como centro de inversión, se tiene que los inversos de $A$, $B$ y $C$ son $A’$, $B’$ y $C’$ respectivamente.
Las circunferencias $Z$, $Z’$ y $Z’$$’$ se invierten en $A’B’$, $A’C’$ y $B’C’$ correspondientemente. Y las líneas $AO$, $FO$ y $EO$ se invierten en sí mismas por Teorema de inversión de línea que pasa por el centro de inversión. Se tiene la inversión:

Inversión de un Teorema imagen 2

Ahora como un diámetro interseca su circunferencia ortogonalmente, entonces $B’O$ y $C’O$ por la propiedad de conservación de ángulos en la inversión son las alturas del triángulo $A’B’C’$, entonces $A’O \perp B’C’$.
Por lo tanto, $AO \perp $ $Z’$$’$ entonces $AO$ pasa por el centro de $Z’$$’.$

$\triangle$

Circunferencia de Antisimilitud

Definición. La circunferencia de antisimilitud es una circunferencia respecto a la cual dos circunferencias son mutuamente inversas.

Recordemos dos propiedades:

  1. El centro de inversión de dos circunferencias inversas es el centro de similitud.
  2. Dado un par de puntos inversos son antihomologos con respecto al centro de similitud.

Teorema. Sean dos circunferencias de las cuales existen tres posibles casos ($O$ y $O’$ centros de similitud).

Caso 1. Si se intersecan, entonces tienen dos circunferencias de antisimilitud tal que sus centros son los centros de similitud de las circunferencias dadas y que pasan por sus puntos de intersección.

Inversión de un Teorema Circunferencia de antisimilitud Caso1

Caso 2. Si no se intersecan (o son tangentes), entonces solo tienen una circunferencia de antisimilitud cuyo centro está en el centro de similitud exterior si las circunferencias son mutuamente excluyentes.

Inversión de un Teorema
Circunferencia de antisimilitud 
Caso 2.1
Inversión de un Teorema
Circunferencia de antisimilitud 
Caso 2.2

Caso 3. Si no se intersecan, entonces solo tiene una circunferencia de antisimilitud cuyo centro está en el centro de similitud interior si las circunferencias son internas una a la otra.

Inversión de un Teorema
Circunferencia de antisimilitud 
Caso 3

Lema. Una circunferencia $C_1$ y dos puntos inversos respecto a ella los llamaremos $S$ y $S’$ los cuales se invierten en una recta $C’_1$ y en dos puntos simétricos $P$ y $Q$ respecto a $C_1$, cuando el centro de inversión es un punto $A$ en $C_1$.

Teorema. Dos circunferencias que no se intersecan se pueden invertir en dos circunferencias iguales.

Inversión de un Teorema
Circunferencia de antisimilitud 
Teorema

Demostración. Sean $C_1$ y $C’_1$ circunferencias y $C$ la circunferencia de antisimilitud de dichas circunferencias. Sea $A \in C$ y sea $C_2$ con centro $A$.
Las inversas de $C_1$ y $C’_1$ respecto a $C_2$ son dos circunferencias simétricas respecto al inverso de $C$ (Por el Lema anterior).

$\square$

Más adelante…

Es hora de ver algunas construcciones respecto a la inversión.

Entradas relacionadas

Geometría Moderna II: Conservación de ángulos

Por Armando Arzola Pérez

Introducción

Ya analizado en el anterior tema, la inversión de rectas y circunferencias, es momento de ver como la inversión hace conservación de ángulos.

Conservación de ángulos y razón cruzada

Teorema. La inversión es una transformación, que preserva ángulos e invierte orientación.

Demostración. Para ello lo demostraré de dos maneras distintas:

1.º Forma

Conservación de Ángulos forma 1

Se tiene una circunferencia de inversión $C_o(O,r)$, $A$ y $B$ circunferencias que se intersecan, y sea $P$ uno de los puntos de intersección, además se tiene $P’$ inversa de $P$.
Ahora construyamos la circunferencia $C$ tangente a $A$ en $P$ y que pase por $P’$, de igual forma se construye $D$ tangente a $B$ en $P$ y que pase por $P’$. Sea $L_1$ recta tangente a $A$ en $P$ y de igual forma tangente a $C$ en $P$, sea $L_2$ recta tangente a $B$ en $P$ y es tangente a $D$ en $P$, entonces el ángulo entre $A$ y $B$ es el mismo entre $C$ y $D$.
Como $C$ y $D$ pasan por puntos inversos, entonces son ortogonales a $C_o$ la circunferencia de inversión, $P$ y $P’$ son ortogonales entre $A’$ y $B’$ dos circunferencias inversas a $A$ y $B$ respectivamente, entonces se tiene que el ángulo entre $A’$ y $B’$ es el mismo entre $A$ y $B$.
Por lo tanto, la inversión preserva ángulos e invierte orientación.

$\square$

2.º Forma

Conservación de Ángulos forma 2

Sean 2 curvas que se intersecan en $P$ y $P\neq O$. Tracemos una línea por $OP$ y otra por $O$ que corte a las curvas en $Q$ y $R$, $OQR$ colineales.
Se tiene que $P$, $Q$ y $R$ tienen inversos $P’$, $Q’$ y $R’$ respectivamente, entonces las inversas de dichas curvas $PQ$ y $PR$ tendrán que intersecarse en $P’$, $Q’$ y $R’$ respectivamente, ahora por definición de inversión $OP\times OP’=OQ\times OQ’=OR\times OR’$, por lo cual $\triangle OPQ \approx \triangle OQ’P’$ y también $\triangle OPR \approx \triangle OR’P’$, y si trazamos las secantes que corten a las curvas en $P$ y $P’$, y que pase por $Q$, $R$, $Q’$ y $R’$, entonces

$\angle OPQ = \angle P’Q’O$, $\angle OPR = \angle P’R’O .$

Y por lo cual $\angle QPR= \angle R’P’Q’$ y $\angle RPQ= – \angle R’P’Q’$, ahora si se tiene el límite cuando $Q$ y $R$ tienden a $P$, entonces $Q’$ y $R’$ tienden a $P’$, por lo cual $\angle RPQ$ y $ \angle R’P’Q’$ tienden a ser los angulos límite de la intersección de las curvas.
Por lo tanto, los ángulos preservan la inversión en magnitud pero opuestos en signo.

$\square$

Observación. Es por ello que se dice que la inversión es una transformación isogonal.

Corolario. Si dos curvas son tangente una a la otra en $P$, sus inversas son tangentes una a la otra en $P’$.

Conservación de ángulos 
Corolario 1

Corolario. Objetos ortogonales se invierten en objetos ortogonales.

Conservación de ángulos 
Corolario 2

Corolario. Rectas paralelas se invierten en circunferencias tangentes en el centro de inversión.

Conservación de ángulos 
Corolario 3

Teorema. Sea $A$ una circunferencia y $A’$ su inversa, entonces son homotéticas desde el centro de inversión.

Conservación de ángulos

Inversión y Distancias

Teorema. Sean $P$ y $P’$ puntos inversos y $B$ un punto colineal a $PP’$ y que corta al círculo de inversión, entonces

$BP’ = \frac{BP}{1+BP/r}$ y $BP=\frac{BP’}{1-BP’/r}.$

Conservación de ángulos

Demostración. Se tiene que $BP’=r-OP’=r- \frac{OP’ \times OP}{OP}$, entonces por definición de inversión:

$\begin{split} BP’ & =r- \frac{r^2}{OP} \\ & =r- \frac{r^2}{r+BP} \\ & =\frac{r \times BP}{r+BP} \\ & =\frac{BP}{1+BP/r} \end{split}$

$\Rightarrow BP’= \frac{BP}{1+BP/r} $

Ahora

$\begin{split} BP & =OP-r \\ & =\frac{OP’ \times OP}{OP’} -r \\ & =\frac{r^2}{OP’} -r \\ & =\frac{r^2}{r-BP’} -r \\ & =\frac{r \times BP’}{r-BP’} \\ & =\frac{BP’}{1-BP’/r} . \end{split}$

$\square$

Teorema. Sea $C(O,r)$ una circunferencia de inversión y $P$ y $Q$ dos puntos con inversos $P’$ y $Q’$ respectivamente, entonces

$P’Q’= \frac{r^2 \times QP}{OP \times OQ}.$

Conservación de ángulos

Demostración. Se tiene por definición de inversión: $OP \times OP’=r^2$ y $OQ \times OQ’=r^2.$

$\begin{split} & \Rightarrow OP \times OP’ = OQ \times OQ’ \\ &\Rightarrow \frac{OP}{OQ’} = \frac{OQ}{OP’} \\ & \Rightarrow \triangle OQP \approx \triangle OP’Q’ \\ & \Rightarrow \frac{OP}{OQ’} = \frac{OQ}{OP’} = \frac{QP}{P’Q’} \\ & \Rightarrow \frac{OQ}{OP’} = \frac{QP}{P’Q’} \\ & \Rightarrow P’Q’ = \frac{QP \times OP’}{OQ} \\ & \Rightarrow P’Q’ = \frac{QP \times OP’ \times OP}{OQ \times OP} \\ & \Rightarrow P’Q’ = \frac{r^2 \times QP }{OQ \times OP}. \end{split} $

$\square$

Si $P$, $Q$ y $O$ son colineales, asumiendo $OP < OQ$.

Conservación de ángulos

Entonces $OP \times OP’ = OQ \times OQ’$ y $P’Q’=OP’-OQ’$

$\begin{split} \Rightarrow P’Q’ & =\frac{OP \times OP’}{OP} \\ & =\frac{r^2}{OP} – \frac{r^2}{OQ} \\ & =r^2(\frac{OQ-OP}{OP \times OQ}) \\ & =\frac{r^2 \times PQ}{OP \times OQ} . \end{split} $

$\square$

Teorema de Ptolomeo. Sea $ABCD$ un cuadrilátero cíclico convexo, entonces

$BC \times BD = BC \times AD + CD \times AB.$

Demostración. Sea una circunferencia de inversión $C(A,r)$ y se tiene una circunferencia circunscrita del cuadrilátero cíclico. La circunferencia invierte los puntos en una línea, es decir, se tiene $B’$ inverso de $B$, $C’$ inverso de $C$ y $D’$ inverso de $D$, los cuales forman la línea «$L$», se muestra:

Conservación de ángulos 
Teorema Ptolomeo

Entonces se maneja las distancias de la línea «L$, se tiene $B’D’=B’C’+C’D’$ y por el teorema anterior:

$B’D’= \frac{BD \times r^2}{AB \times AD}$, $B’C’= \frac{BC \times r^2}{AB \times AC}$ y $C’D’= \frac{CD \times r^2}{AC \times AD}$

$\Rightarrow \frac{BD \times r^2}{AB \times AD}= \frac{BC \times r^2}{AB \times AC}= \frac{CD \times r^2}{AC \times AD}$

Entonces se cancelan las $r^2$ y si nos fijamos en el denominador tenemos en comun $AB$, $AD$ y $AC$. Por lo cual multiplicamos por $AB \times AD \times AC$

$\Rightarrow \frac{BD \times AB \times AD \times AC}{AB \times AD}= \frac{BC \times AB \times AD \times AC}{AB \times AC}= \frac{CD \times AB \times AD \times AC}{AC \times AD}$

Por lo tanto, $AC \times BD = BC \times AD + CD \times AB .$

$\square$

Teorema de Feuerbach

Teorema. La circunferencia de los nueve puntos del triángulo es tangente al incirculo y a los tres excirculos.

Inversión
Teorema de Feuerbach

Demostración. Sea el triángulo $\triangle ABC$ con $C_I$ el incirculo y $C_E$ el excirculo, sea $BC$ la tangente a $C_1$ y $C_E$, se tiene otra tangente $B’C’$ la cual es simétrica a $BC$ con respecto a la bisectriz $AI$, de lo anterior se tienen tres cosas: $C \in AB$, $B’ \in AC$ y $A’=BC \cap B’C’$.

Por otra parte, los puntos $A$ y $A’$ son centros de homotecia de $C_I$ y $C_E$ respectivamente, entonces $I_E$ es dividido por $A’$ y $A$ interna y externamente en razón de sus radios.

$\Rightarrow \frac{IA’}{A’E}=-\frac{IA}{AE}=\frac{r}{rA}$

Entonces $A$ y $A’$ son armónicos respecto a $I$ y $E$. Trazamos perpendiculares $E$, $I$ y $A$ sobre $BC$ y sus pies los llamamos $P_e$, $P_i$ y $P_a$ respectivamente, entonces los triángulos $\triangle EP_eA’ \approx \triangle IP_iA’ \approx AP_aA’$, entonces $P_a$ y $A’$ son armonicos respecto a $P_i$ y $P_e$.
Ahora sea $M_A$ punto medio de $BC$ entonces también lo es de $P_i$ y $P_e$, trazamos la circunferencia $Z$ con centro $M_A$ y radio $M_AP_i$, entonces $A’$ y $P_a$ son inversos respecto a $Z$

Por lo cual

$P_eP_i=BC-2P_iC=a-2(s-c)=c-b.$

Donde $a$ es el lado opuesto al vértice $A$, de igual forma $b$ es de $B$, $c$ es de $C$ y $s$ es el semiperímetro.

Entonces el radio de $z$ es de $\frac{c-b}{2}$ y $M_AM_B=c/2.$

Por lo cual $S=B’C’ \cap M_AM_B.$

$\Rightarrow M_AS=M_AM_B + M_BS=M_AM_B -SM_B$, y $M_AM_B$ paralelo a $BA$ entonces $\triangle B’SM_B \approx \triangle B’C’A $ por lo cual sus lados son proporcionales $\frac{SM_B}{C’A}=\frac{M_BB’}{AB’}.$.

$\Rightarrow SM_B =\frac{C’A\times B’M_B}{B’A}$

Y como $CA=C’A$ y $B’A=BA$ entonces

$SM_B=\frac{C’A\times B’M_B}{B’A}=\frac{CA(BA-M_BA)}{BA}=\frac{2bc-b^2}{2c}$

$\Rightarrow M_AS=M_AM_B-SM_B=\frac{c}{2} – \frac{2bc-b^2}{2c} = \frac{(c-b)^2}{2c}.$

Así,

$M_AS \times M_AM_B = \frac{(c-b)^2}{2c} \times \frac{c}{2} = (\frac{c-b}{2})^2.$

Y por lo cual $S$ y $M_B$ son inversos respecto a la circunferencia $Z$ con diámetro $P_iP_e$. El inverso de $B’C’$ es una circunferencia que pasa por $M_A$ el centro de inversión y por $P_a$ y $M_B$. Como una circunferencia está determinada por tres puntos y la circunferencia de los nueve puntos cumple esto, entonces $C_N$ es la inversa de la recta $B’C’$ con respecto a la circunferencia $Z$.
Pero el inverso de $C_I$ con respecto a $Z$ es $C_I$, al igual $C_E$ su inverso con respecto a $Z$ es $C_E$, ya que son ortogonales a $Z$; $B’C’$ es tangente a $C_I$ y $C_E$ y como la inversión conserva ángulos se sigue que la circunferencia $C_N$ será tangente a las circunferencias $C_I$ y $C_E$ (De igual forma para los otros 2 excirculos).

$\square$

Teorema. La razón cruzada es invariante bajo inversiones.

Demostración. (Se debe de interpretar como la razón cruzada entre puntos colineales y rectas concurrentes).

Sea, $C(O, r)$ circunferencia, $A$, $B$, $C$ y $D$ cuatro puntos colineales distintos de $O$, sus inversos $A’$, $B’$, $C’$ y $D’$ con respecto a $C$ y $a’=OA’$, $b’=OB’$, $c’=OC’$ y $d’=OD’.$

Inversión en razón cruzada

Ahora las razones cruzadas coinciden: $O(a’b’, c’d’)=o(AB, CD).$

Como la razón cruzada es una propiedad proyectiva y las inversiones respeten ángulos e invierten orientación.

$o(AB, CD)=\frac{sen \angle AOC}{sen \angle AOD} \times \frac{sen \angle DOB}{sen \angle COB}=\frac{-sen \angle A’OC’}{-sen \angle A’OD’} \times \frac{-sen \angle D’OB’}{-sen \angle C’OB’}=O(a’b’, c’d’) .$

$\square$

Más adelante…

Se verá como la inversión es una forma alterna de resolver problemas ya demostrados y más fáciles de ver, además se revisará un tema de importante, la circunferencia de antisimilitud.

Entradas relacionadas

Geometría Moderna II: Potencia de un punto

Por Armando Arzola Pérez

Introducción

En esta primera unidad abordaremos varios los temas relacionados con las circunferencias coaxiales. Para ello, iniciaremos hablando de la potencia de un punto con respecto a una circunferencia. A grandes rasgos, esto trata de lo siguiente.

Tomemos una circunferencia $\mathcal{C}$. Tomemos $P$ un punto cualquiera. Tomemos una recta $l$ por $P$ y llamemos $A$ y $B$ los puntos de intersección de $l$ con $\mathcal{C}$. Bajo estas elecciones, la potencia de $P$ será $PA\cdot PB$. Lo que veremos en esta entrada es que dicho producto es constante sin importar la elección de $l$. Para mostrar esto, introduciremos algunas definiciones y posteriormente haremos una demostración por casos.

Definición de potencia de un punto

Comenzaremos dando una primer definición de potencia, que dependerá de cierto punto, circunferencia y recta que elijamos.

Definición. Sea $\mathcal{C}$ una circunferencia, $P$ un punto y $l$ una recta que intersecta a $\mathcal{C}$. Sean $A$ y $B$ los puntos de intersección de $l$ y $\mathcal{C}$ ($A=B$ si $l$ es tangente a $\mathcal{C}$). La potencia de $P$ con respecto a $\mathcal{C}$ en la recta $l$ es la cantidad $PA\cdot PB$. Usaremos la siguiente notación: $$\text{Pot}(P,\mathcal{C},l):=PA\cdot PB.$$

En esta definición y de aquí en adelante, a menos que se diga lo contrario, se estará trabajando con segmentos dirigidos. Es decir, estamos pensando que cada segmento tiene una dirección del primer punto al segundo. Así, por ejemplo, el valor de $PA$ dependerá de la longitud del segmento y su signo dependerá de una dirección (usualmente implícita) que se le asigne a la recta por $A$ y $P$. De este modo, tendremos, por ejemplo, que $PA=-AP$.

La definición de potencia de un punto puede simplificarse notablemente en vista de la siguiente proposición.

Proposición. La potencia de un punto con respecto a una circunferencia no depende de la recta elegida. Es decir, tomemos $\mathcal{C}$ una circunferencia, $P$ un punto y $l,m$ rectas. Supongamos que los puntos de intersección de $l$ con $\mathcal{C}$ son $A$ y $B$; y que los puntos de intersección de $m$ con $\mathcal{C}$ son $C$ y $D$ (en caso de tangencias, repetimos los puntos). Entonces: $$PA\cdot PB = PC\cdot PD.$$

Demostración. Haremos la demostración por casos de acuerdo a cuando $P$ está dentro o fuera de la circunferencia, o sobre ella.

Dentro de la circunferencia:

Tomemos las cuerdas $AB$ y $CD$ en la circunferencia, las cuales se cortan en $P$. Los triángulos $\triangle APC$ y $\triangle DPB$ son semejantes ya que:

Geometría Moderna II: Potencia de un punto proposición 1 cuando el punto está dentro de la circunferencia.
  1. $\angle PAC = \angle PDB $ por abrir el mismo arco $\overline{BC}$.
  2. $\angle APC = \angle BPD $ por ser opuestos al vértice.
  3. $\angle PCA = \angle PBD $ por abrir mismo arco $\overline{AD}$.

Entonces de la semejanza $\triangle APC \cong \triangle DPB $ tenemos que

$\frac{PA}{PD}=\frac{PC}{PB},$

de donde obtenemos la igualdad $PA\cdot PB =PC \cdot PD$ deseada.

Fuera de la circunferencia:

Ahora, $AB$ y $CD$ son dos secantes que se intersecan en $P$, pero con $P$ exterior a $\mathcal{C}$. Tenemos que $\triangle APC $ y $\triangle DPB $ son semejantes, ya que:

Geometría Moderna II: Potencia de un punto proposición 1 cuando el punto está fuera de la circunferencia.
  1. El cuadrilátero $\square ABDC$ es cíclico, entonces: $\angle ACD + \angle ABD = 180^\circ$ y $\angle ABD + \angle DBP = 180^\circ $, de donde $\angle DBP = \angle ACD$.
  2. $\angle BPD$ y $\angle CPA$ son los mismos ángulos.

Entonces $\frac{PA}{PC}=\frac{PD}{PB},$ de donde se obtiene la igualdad buscada $PA\cdot PB=PC\cdot PD.$

Sobre la circunferencia:

Este caso es sencillo pues sin importar las secantes tomadas, en cada una hay un punto igual a $P$ y por lo tanto una distancia igual a cero. De este modo, $PA\cdot PB=0=PC\cdot PD$.

$\square$

Nota que las demostraciones anteriores sirven aunque $l$ ó $m$ sean tangentes, sólo que hay que hacer ligeras adaptaciones sobre los ángulos usados y los motivos por los que son iguales. Enunciaremos el caso de la tangencia un poco más abajo.

En vista de la proposición anterior, podemos simplificar nuestra definición notablemente.

Definición. Sea $\mathcal{C}$ una circunferencia y $P$ un punto. Tomemos $l$ una recta que intersecta a $\mathcal{C}$. Sean $A$ y $B$ los puntos de intersección de $l$ y $\mathcal{C}$ ($A=B$ si $l$ es tangente a $\mathcal{C}$). La potencia de $P$ con respecto a $\mathcal{C}$ es la cantidad $PA\cdot PB$. Usaremos la siguiente notación: $$\text{Pot}(P,\mathcal{C}):=PA\cdot PB.$$

La potencia queda bien definida sin importar la recta $l$, debido a la proposición anterior.

El signo de la potencia

En esta definición estamos usando segmentos dirigidos, y eso nos lleva a que la potencia de un punto puede tener distintos signos. El comportamiento queda determinado por el siguiente resultado.

Proposición. La potencia de un punto $P$ con respecto a una circunferencia $\mathcal{C}$ es positiva, negativa o cero, de acuerdo a si el punto $P$ está fuera de $\mathcal{C}$, dentro de ella, o sobre ella, respectivamente.

Demostración. Veamos esto caso por caso.

  • Sea $P$ un punto externo a $\mathcal{C}$. Entonces $PA$ y $PB$ tienen la misma orientación y por lo tanto el mismo signo. Además, como $P$ no está sobre $\mathcal{C}$, ninguno de ellos es cero. Así, $\text{Pot}(P,\mathcal{C})> 0$.
Geometría Moderna II: Potencia de un punto respecto a un punto externo.
  • Sea $P$ un punto interno a $\mathcal{C}$. Entonces $PA$ está dirigido hacia un lado y $PB$ está dirigido hacia el otro, de modo que tienen signo contrario. Además, ninguno de ellos es cero. Así, $\text{Pot}(P,\mathcal{C})<0$.
Geometría Moderna II: Potencia de un punto respecto a un punto interno de la circunferencia.
  • Finalmente, sea $P$ un punto sobre $\mathcal{C}$. Esto quiere decir que alguno de los puntos $A$ o $B$ es $P$ (quizás ambos, si $l$ es tangente). Así, $PA=0$ ó $PB=0$. De este modo $\text{Pot}(P,\mathcal{C})=0$.
Geometría Moderna II: Potencia de un punto que está sobre la circunferencia.

$\square$

Otras fórmulas para la potencia

La potencia es invariante sin importar la recta elegida. De este modo, podemos elegir a una recta tangente y obtener una fórmula para la potencia en términos de la longitud de dicha tangente.

Proposición. Sea $\mathcal{C}$ una circunferencia. Para un punto $P$ fuera de $\mathcal{C}$, su potencia es igual al cuadrado de la longitud de una tangente de él a la circunferencia.

Es decir, sea $T$ un punto sobre la circunferencia tal que $PT$ sea tangente a $\mathcal{C}$. Entonces, $\text{Pot}(P,\mathcal{C})=PT^2$.

Imagen representativa de la Proposición 2.

El resultado se sigue de llevar al límite lo que ya probamos en la proposición de invarianza de la potencia. Pero a continuación damos un argumento alternativo.

Demostración. Tracemos otra recta por $P$ que no sea tangente a $\mathcal{C}$ y cuyos puntos de intersección con $\mathcal{C}$ son $A$ y $B$ como en la figura. Tenemos que mostrar que $PA\cdot PB =PT^2$.

El ángulo $\angle PTA$ es semi-inscrito y es igual al ángulo inscrito $ \angle TBA$, pues ambos tienen el mismo arco $\overline{AT}$.

Entonces los triángulos $\triangle APT$ y $\triangle TPB$ comparten el ángulo con vértice en $P$ y $\angle PTA=\angle TBA$. Por ello, se tiene que $\triangle APT \cong \triangle TPB $ son semejantes y sus lados son proporcionales: $\frac{PA}{PT} = \frac{PT}{PB}$. De aquí, $$PT^2=PT\cdot PT=PA\cdot PB=\text{Pot}(P,\mathcal{C}).$$

$\square$

También es posible conocer la potencia de un punto hacia una circunferencia si conocemos el radio de la circunferencia y la distancia del punto al centro.

Proposición. Sea $\mathcal{C}$ una circunferencia de centro $O$ y radio $r$. Sea $P$ un punto en cualquier posición. La potencia de $P$ con respecto a $\mathcal{C}$ es $$\text{Pot}(P,\mathcal{C}) = OP^2 – r^2.$$

Demostración. Haremos la demostración por casos

Dentro de la circunferencia:

Sea $AB$ la cuerda que pasa por el centro $O$ y $P$ (si $O=P$, tomamos cualquier cuerda $AB$ por el centro). Supongamos sin pérdida de generalidad que la recta está dirigida de $A$ a $B$. Tenemos que $AO=r>0$ y llamemos $d=OP>0$. De aquí, $PB=r-d>0$. La siguiente figura resume estas igualdades.

Potencia de un punto imagen de Proposición 3 cuando un punto está dentro de la circunferencia.

La potencia desde $P$ sería entonces, cuidando los signos:

\begin{align*}
PA\cdot PB &= (PO+OA)(PB)\\
&=(-d-r)(r-d)\\
&=-(d+r)(r-d)\\
&=-(r^2-d^2)\\
&=d^2-r^2\\
&=OP^2-r^2.
\end{align*}

Así, $\text{Pot}(P,\mathcal{C})=OP^2-r^2$.

Fuera de la circunferencia:

Ahora desde $P$ tracemos una tangente $PT$ a $\mathcal{C}$ con $T$ sobre $\mathcal{C}$. Como $\angle PTO =90^o$, entonces $\triangle POT$ es un triángulo rectángulo.

Potencia de un punto imagen de Proposición 3 cuando un punto está fuera de la circunferencia.

Por el teorema de Pitágoras y la expresión de potencia en términos de la tangente: $$OP^2=r^2+PT^2=r^2+\text{Pot}(P,\mathcal{C}).$$ Despejando, obtenemos la expresión deseada: $$\text{Pot}(P,\mathcal{C})=OP^2-r^2.$$

Sobre la circunferencia:

Este caso es sencillo, pues sabemos que la potencia de $P$ debe ser cero. Pero además, como $P$ está en la circunferencia, entonces $OP=r$, de modo que $OP^2-r^2=0$, y entonces la expresión también es lo que queremos.

$\square$

Más adelante…

Seguiremos abordando el tema de potencia de un punto y veremos cómo a partir de él se define el eje radical de dos circunferencias.

Entradas relacionadas