Archivo de la etiqueta: Ecuaciones Diferenciales

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales de segundo orden con coeficientes variables. Solución por series de potencias cerca de un punto ordinario

Por Eduardo Vera Rosales

Introducción

A lo largo de las entradas anteriores que forman parte de la segunda unidad hemos estudiado a detalle ecuaciones lineales de segundo orden con coeficientes constantes, es decir, ecuaciones de la forma $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t), \,\,\,\,\, a\neq 0$$ y hemos desarrollado diversos métodos para resolverlas. Es momento de revisar ecuaciones lineales de segundo orden, pero ahora con coeficientes variables, es decir, del tipo $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t).$$

Hallar soluciones para este tipo de ecuaciones no resulta tan sencillo como para el caso con coeficientes constantes, y en ocasiones no podremos encontrar soluciones en términos de funciones elementales como polinomios, exponenciales, trigonométricas, etc., por lo que una manera de hallar soluciones es suponiendo que la solución puede escribirse como una serie de potencias alrededor de un punto dado.

Estudiaremos entonces soluciones por series de potencias en dos tipos de puntos: cuando los coeficientes tienen desarrollo en series de Taylor alrededor del punto dado, y cuando lo anterior no ocurre. En particular, en esta entrada revisaremos el primer caso. Definiremos los conceptos de puntos ordinarios y singulares, y demostraremos la existencia de soluciones en series de potencias cerca de un punto ordinario,.

¡Manos a la obra!

Soluciones en series de potencias cerca de un punto ordinario

En el primer video ofrecemos la definición de puntos ordinarios y puntos singulares, y probamos la existencia de soluciones en series de potencias cerca de un punto ordinario, a la ecuación diferencial $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0.$$ La solución encontrada será, además, la solución general a la ecuación diferencial.

Radio de convergencia de la solución en serie de potencias cerca de un punto ordinario

En el segundo video de la entrada encontramos el radio de convergencia para la solución en serie de potencias cerca de un punto ordinario.

Ejemplos

En el último video de la entrada resolvemos un par de ejemplos de ecuaciones diferenciales con coeficientes variables, con el método desarrollado a lo largo de esta misma entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Qué sucede si suponemos que $a_{0}=0$ en la demostración del primer video?
  • ¿Qué pasa si suponemos que $c=1$ en la demostración del primer video?
  • Prueba que las series de potencias que aparecen en la solución general a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}-ty=0$$ son soluciones particulares a la misma ecuación, y que estas son linealmente independientes. Por tanto, la solución general efectivamente lo es para la ecuación diferencial.
  • Encuentra la solución general a la ecuación $$\frac{d^{2}y}{dt^{2}}-y=0$$ usando series de potencias alrededor de $t_{0}=0$.
  • Encuentra la solución al problema de valor inicial $$\frac{d^{2}y}{dt^{2}}-ty=0$$ $$y(1)=0; \,\,\,\,\, \frac{dy}{dt}(1)=2$$ calculando una solución por serie de potencias alrededor de $t_{0}=1$.

Más adelante

Terminamos de estudiar las soluciones cerca de un punto ordinario. Lo siguientes será revisar el caso cuando el punto en cuestión no es un punto ordinario, es decir, es un punto singular de nuestra ecuación diferencial $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0.$$

Pero antes analizaremos un caso particular sencillo de resolver: la ecuación de Euler que tiene la forma $$t^{2}\frac{d^{2}y}{dt^{2}}+\alpha t\frac{dy}{dt}+\beta y=0.$$

A partir de la solución para esta ecuación podremos generalizar más adelante el método a una clase más general de ecuaciones diferenciales con puntos singulares.

¡No se lo pierdan!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de segundo orden. Solución por coeficientes indeterminados

Por Eduardo Vera Rosales

Introducción

En la entrada anterior resolvimos ecuaciones lineales no homogéneas de segundo orden por el método de variación de parámetros. Como pudiste advertir después de resolver algunas ecuaciones por dicho método, las integrales que se deben resolver para encontrar la solución particular $y_{P}$ a la ecuación diferencial no homogénea son, en muchos casos, bastante complicadas. Es por eso que debemos hallar otros métodos para solucionar este problema.

El método que presentaremos en esta entrada recurre a la forma que presenta la función $g(t)$ en la ecuación diferencial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t)$$ donde $a$, $b$ y $c$ son constantes y $a\neq0$. Si $g(t)$ es el producto de funciones polinómicas, exponenciales, $\cos{\beta t}$ o $\sin{\beta t}$, entonces podremos conjeturar la forma de la solución particular gracias a que las derivadas de dichas funciones tienen la misma forma. A este método lo llamaremos coeficientes indeterminados.

Vamos a comenzar!

Consideraciones generales y caso cuando $g$ es un polinomio

En el video describimos de manera general el método de coeficientes indeterminados, y revisamos el caso cuando $g(t)$ es un polinomio de grado $n$. Finalizamos el video con un ejemplo.

Caso cuando $g$ es producto de un polinomio y una función exponencial

En el video encontramos una solución particular a la ecuación diferencial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=(\sum_{k=0}^{n} a_{k}t^{k})e^{rt}, \,\,\,\,\, r\neq0$$ y resolvemos un ejemplo referente al caso.

Caso cuando $g$ es producto de un polinomio y una función seno o coseno

Finalizamos el tema considerando el caso cuando la función $g(t)$ es el producto de un polinomio y una función $\sin{\beta t}$ o una función $\cos{\beta t}$. En el segundo video aplicamos el método de coeficientes indeterminados para resolver la ecuación diferencial $$m\frac{d^{2}y}{dt^{2}}+ky=F_{0}\cos{\omega t}$$ donde $\omega=\sqrt{\frac{k}{m}}$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que si $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}=\sum_{k=0}^{n} a_{k}t^{k}$$ entonces $$y_{P}(t)=t[\sum_{k=0}^{n} A_{k}t^{k}]$$ es solución particular a la ecuación diferencial, mostrando también que se pueden encontrar expresiones para cada $A_{k}$.
  • Encuentra una solución particular $y_{P}(t)$ para la ecuación $$\frac{d^{2}y}{dt^{2}}-5\frac{dy}{dt}=2t^{3}-4t^{2}-t+6$$ por el método de coeficientes indeterminados.

Considera la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=(\sum_{k=0}^{n} a_{k}t^{k})e^{rt}, r\neq0.$$ Muestra lo siguiente:

  • Si $$ar^{2}+br+c\neq0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
  • Cuando $$ar^{2}+br+c=0, \,\,\,\,\, 2ar+b\neq0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=t(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
  • Si $$ar^{2}+br+c=0, \,\,\,\,\, 2ar+b=0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=t^{2}(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$

Hint: Supón que $y_{P}(t)=e^{rt}u(t)$ es solución particular, y considera la ecuación $$a\frac{d^{2}u}{dt^{2}}+(2ar+b)\frac{du}{dt}+(ar^{2}+br+c)u=\sum_{k=0}^{n} a_{k}t^{k}$$ (revisa el segundo video para mayor detalle). Posteriormente recuerda cómo son las soluciones a la ecuación homogénea asociada (te sugiero revisar la siguiente entrada en caso necesario) y concluye la forma de $y_{P}$.

  • Encuentra una solución particular a la ecuación $$\frac{d^{2}y}{dt^{2}}-y=t^{2}e^{t}.$$
  • Encuentra la solución general a la ecuación diferencial $$4\frac{d^{2}y}{dt^{2}}+16y=10\cos{2t}.$$

Más adelante

Hemos concluido el estudio a las ecuaciones lineales con coeficientes constantes, tanto homogéneas como no homogéneas. Es momento de revisar el caso cuando las funciones $a_{0}$, $a_{1}$ y $a_{2}$ de la ecuación $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t)$$ son no constantes. A este tipo de ecuaciones les llamaremos ecuaciones lineales de segundo orden con coeficientes variables.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de segundo orden. Solución por variación de parámetros

Por Eduardo Vera Rosales

Introducción

Es momento de estudiar el caso no homogéneo, es decir, ecuaciones del tipo $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$$ donde la función $g$ no es la función constante cero. El primer método que estudiaremos es el de variación de parámetros que es, en cierta parte, análogo al método de variación de parámetros para ecuaciones lineales no homogéneas de primer orden, y que puedes encontrar en el siguiente enlace.

El teorema principal de esta entrada nos dice que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada, que denotaremos por $y_{H}$, y una solución particular a la ecuación no homogénea denotada por $y_{P}$.

Dado que en entradas anteriores estudiamos ecuaciones lineales homogéneas y sabemos cómo encontrar su solución general, nos enfocaremos en encontrar únicamente la solución particular. El método de variación de parámetros nos ayudará a resolver este problema.

Vamos a comenzar!

Soluciones a ecuaciones lineales no homogéneas de segundo orden

En el video demostramos que la solución general a una ecuación lineal no homogénea de segundo orden puede verse como la suma de la solución general a la ecuación homogénea asociada y una solución particular a la ecuación no homogénea denotada.

Método de variación de parámetros

En el primer video desarrollamos el método de variación de parámetros para encontrar a la solución particular $y_{P}$. En el segundo video empleamos este método para resolver dos ejemplos particulares.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra una expresión para $u_{2}(t)$ similar a la encontrada para $u_{1}(t)$ en el segundo video: $$u_{1}(t)=-\int \frac{g(t)y_{2}(t)}{W[y_{1},y_{2}](t)} dt$$ con $u_{1}(t)$, $u_{2}(t)$ que satisfacen $$y_{P}(t)=u_{1}(t)y_{1}(t)+u_{2}(t)y_{2}(t)$$ donde $y_{P}(t)$ es una solución particular a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$$ y $y_{1}$, $y_{2}$ son soluciones a la ecuación homogénea asociada. (Revisa el video para mayor referencia).
  • Prueba que $y_{P}(t)=u_{1}(t)y_{1}(t)+u_{2}(t)y_{2}(t)$ es solución a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$$ una vez que has encontrado las expresiones para $u_{1}(t)$ y $u_{2}(t)$.
  • Resuelve la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=3e^{-t}$$ por el método de variación de parámetros.
  • Resuelve el problema de condición inicial $$3\frac{d^{2}y}{dt^{2}}+4\frac{dy}{dt}+y=e^{-t}\sin{t}; \,\,\,\,\,\, y(0)=1, \frac{dy}{dt}(0)=0.$$

Más adelante

Hemos presentado un primer método para resolver ecuaciones lineales no homogéneas de segundo orden. En la siguiente entrada estudiaremos otro método de resolución, en particular para resolver ecuaciones de la forma $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t)$$ donde $a$, $b$ y $c$ son constantes, $a \neq 0$ y en la función $g(t)$ aparecen funciones exponenciales, polinómicas y funciones $\sin{\beta t}$ y $\cos{\beta t}$.

El método que estudiaremos será llamado coeficientes indeterminados.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes

Por Eduardo Vera Rosales

Introducción

Al comienzo de la segunda unidad, revisamos las propiedades más importantes de las ecuaciones lineales homogéneas de segundo orden. En particular, vimos que para encontrar la solución general basta con encontrar dos soluciones particulares que sean linealmente independientes, y la combinación lineal de estas será la solución general a la ecuación.

Pondremos en práctica lo aprendido anteriormente para resolver ecuaciones lineales homogéneas de segundo orden con coeficientes constantes, es decir, de la forma $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0$$ donde $a$, $b$ y $c$ son constantes y $a \neq 0$. Observaremos que las soluciones deben ser de la forma $e^{rt}$, y si hallamos los valores de $r$ que satisfagan la ecuación diferencial, entonces podremos encontrar la solución general.

Finalmente analizaremos tres distintos casos que se presentan cuando buscamos la solución general a la ecuación diferencial, los cuales dependen de la ecuación $$ar^{2}+br+c=0$$ que aparece durante el desarrollo de la solución. Por supuesto, estos casos dependerán de las raíces de dicha ecuación.

Ecuaciones lineales homogéneas de segundo orden con coeficientes constantes. Raíces reales diferentes

Analizamos cómo deben ser las soluciones a la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0$$ y suponiendo que $y_{0}(t)=e^{rt}$ es una solución, hallamos la solución general a la ecuación. En particular, revisamos el caso cuando las dos raíces de la ecuación $$ar^{2}+br+c=0$$ son reales y distintas, y resolvemos un ejemplo.

Raíces reales repetidas

En este video revisamos el caso cuando las dos raíces de la ecuación $$ar^{2}+br+c=0$$ son iguales, y resolvemos un ejemplo para mostrar lo desarrollado.

Raíces complejas

En el último video de esta entrada revisamos el caso cuando las dos raíces de la ecuación $$ar^{2}+br+c=0$$ son complejas, vemos que las soluciones complejas se comportan de manera similar a las soluciones con valores reales, y como buscamos soluciones reales, transformamos la solución compleja en una real.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Resuelve el problema de valor inicial $$\frac{d^{2}y}{dt^{2}}-6\frac{dy}{dt}+y=0; \,\,\,\,\,\, y(0)=1, \frac{dy}{dt}(0)=0.$$
  • Prueba que $\{e^{rt}, te^{rt}\}$ es un conjunto linealmente independiente. Por tanto, para el caso cuando $$ar^{2}+br+c=0$$ tiene raíces repetidas, la solución general a la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0$$ efectivamente es la que se muestra en el video correspondiente.
  • Resuelve el problema de condición inicial $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=0; \,\,\,\,\, y(0)=1, \frac{dy}{dt}(0)=0.$$
  • Prueba que si $r_{1}=w + iz$ y $r_{2}=w – iz$, entonces $\{e^{r_{1}t}, e^{r_{2}t}\}$ es un conjunto linealmente independiente. Por tanto, para el caso cuando $$ar^{2}+br+c=0$$ tiene raíces complejas, la solución general a la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0$$ es la combinación lineal de estas dos funciones.
  • Prueba que $$W[e^{wt}\cos{zt}, e^{wt}\sin{zt}]\neq 0$$ para el caso del ejercicio anterior, y por tanto la combinación lineal de estas dos funciones es la solución general a la ecuación diferencial.
  • Resuelve el problema de condición inicial $$\frac{d^{2}y}{dt^{2}}+\frac{dy}{dt}+2y=0; \,\,\,\,\, y(0)=1, \frac{dy}{dt}(0)=0.$$

Más adelante

En la siguiente entrada comenzaremos a estudiar el caso no homogéneo de las ecuaciones lineales de segundo orden, es decir, ecuaciones de la forma $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=g(t)$$ donde la función $g$ no es la constante cero.

En particular, resolveremos este tipo de ecuaciones por el método de variación de parámetros, que es análogo al método de variación de parámetros para resolver ecuaciones no lineales de primer orden.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Método de reducción de orden

Por Eduardo Vera Rosales

Introducción

En la entrada anterior estudiamos las propiedades más importantes que cumple el conjunto de soluciones a una ecuación lineal homogénea de segundo orden, que tienen la forma $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0.$$ Si encontramos dos soluciones $y_{1}(t)$, $y_{2}(t)$ tales que formen un conjunto fundamental en un mismo intervalo $I$, entonces $y(t)=c_{1}y_{1}(t)+c_{2}y_{2}(t)$ será la solución general a la ecuación diferencial en $I$.

A continuación, vamos a suponer que conocemos una solución $y_{1}(t)$ a la ecuación, y desarrollaremos un método, conocido como reducción de orden, que nos permitirá encontrar una segunda solución $y_{2}(t)$ de tal manera que $\{y_{1}(t), y_{2}(t)\}$ formen un conjunto fundamental de soluciones.

Reducción de orden

En el video desarrollamos de manera general el método de reducción de orden, dada una solución $y_{1}(t)$, y suponiendo que la solución general es de la forma $u(t)y_{1}(t)$ para cierta función $u$, y posteriormente aplicamos este método para resolver un ejemplo en particular.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que si $y_{1}(t)$ es solución a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ entonces $$y_{1} \int \frac{1}{y_{1}^{2}} e^{-\int p(t) \, dt} \, dt $$ también es solución a la ecuación.
  • Prueba que $$\{y_{1}, y_{1} \int \frac{1}{y_{1}^{2}} e^{-\int p(t) \, dt} \, dt \}$$ es un conjunto fundamental de soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0.$$
  • Encuentra la solución general a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+2\frac{dy}{dt}+y=0$$ por el método de reducción de orden, si $y_{1}(t)=e^{-t}$ es una solución a la ecuación.
  • Encuentra la solución general a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+16y=0$$ por el método de reducción de orden, si $y_{1}(t)=\cos{4t}$ es una solución a la ecuación.

Más adelante

En la próxima entrada continuaremos estudiando ecuaciones lineales homogéneas de segundo orden, en particular, estudiaremos el caso cuando las funciones $a_{i}(t)$, $i \in \{0,1,2\}$ en la ecuación $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0$$ son todas constantes. A este tipo de ecuaciones les llamamos ecuaciones lineales homogéneas de segundo orden con coeficientes constantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»