Compacidad en espacios métricos

Por Lizbeth Fernández Villegas

Introducción

En esta sección mostraremos los fundamentos de uno de los términos más importantes de las matemáticas. Una descripción histórica la presenta Yanina del Carmen Rodríguez Reyes, en la tesis «Desarrollo histórico-pedagógico del concepto de compacidad» en la Universidad de Panamá, República de Panamá 2018.

«La compacidad surgió de uno de los periodos más productivos de la actividad matemática. En la segunda mitad del siglo XIX en Europa las matemáticas avanzadas comenzaron a tomar la forma que conocemos actualmente. Muchos matemáticos, incluyendo Weierstrass, Hausdorff y Dedekind estaban preocupados por los fundamentos de las matemáticas y comenzaron a hacer muchas rigurosidades de las ideas que durante siglos habían sido dadas por sentado. Mientras que algunos de los trabajos del siglo XIX se pueden remontar a las preocupaciones matemáticas de los antiguos griegos, el nivel de rigor y la abstracción refleja una revolución en el pensamiento matemático. Fréchet fue influenciado por muchos contemporáneos y predecesores pero parece que merece el crédito como el padre de la compacidad. Fue Fréchet quien dio el nombre al concepto en un documento que conduce a su tesis doctoral de 1906. Fréchet también define por primera vez espacios métricos aunque no usando ese término y de hecho incursiona en el análisis funcional proporcionando así un contexto para el cual la importancia de la compacidad se hizo indiscutible”. (Rodríguez, 2018).

Conjuntos compactos

Sea $(X,d)$ un espacio métrico y $A \subset X$. Podemos pensar en «cubrir» este subconjunto a través de otros a modo de la siguiente imagen, es decir, conjuntos cuya unión logre contener a $A.$

$A$ cubierto por conjuntos

La cantidad de subconjuntos que forman parte de la cubierta elegida puede ser finita, numerable o no numerable, entonces, para ser formales, cada subconjunto se puede indexar con los elementos de algún conjunto $\mathcal{I}$. Así tenemos la siguiente:

Definición. Cubierta de un conjunto: Sea $A \subset X$. Decimos que una familia de subconjuntos $\mathcal{C} = \{A_{i} \subset X : i \in \mathcal{I} \}$ es una cubierta de $A$ en $X$ si
$$A \subset \underset{i \in \mathcal{I}}{\cup} \, A_{i} \,$$

Cubierta de $A$

Definición. Cubierta abierta: Si para toda $i \in \mathcal{I}$ se cumple que el conjunto $A_i$ es abierto, diremos que $\mathcal{C}$ es una cubierta abierta de $A$ en $X$.

Cubierta abierta de $A$

Definición. Subcubierta: Si tomamos conjuntos de una cubierta $\mathcal{C}$, digamos, una familia $\mathcal{C’} \subset \mathcal{C} \, $ y $\, \mathcal{C’}$ es también una cubierta de $A$ diremos que $\mathcal{C’}$ es una subcubierta de $\mathcal{C}$.

Los conjuntos en rosa son una subcubierta de $\mathcal{C}$

Definición. Conjunto compacto: Sea $A$ un conjunto de un espacio métrico $(X,d)$. Decimos que $A$ es un conjunto compacto si dada cualquier cubierta abierta $\mathcal{C}$ de $A$, existe una subcubierta finita de $\mathcal{C}.$

El concepto de compacidad suele tomar mayor relevancia cuando en un espacio topológico se considera el subespacio generado por el conjunto compacto. En estos casos se le denomina espacio topológico compacto.

Subcubierta abierta finita

Según la definición, para demostrar que un conjunto $A$ no es compacto, bastará con identificar una cubierta de la cual no sea posible extraer una subcubierta finita (conjuntos cuya unión logre contener el conjunto $A$).

Ejemplos

El conjunto $\mathbb{R}$ con la métrica euclidiana no es compacto.

Demostración:
El conjunto de intervalos abiertos con centro en $0$ y radio $n, \, n \in \mathbb{N}$ es decir, $\mathcal{C}=\{(-n,n):n \in \mathbb{N}\}$ es una cubierta abierta de $\mathbb{R}.$ Pero si consideramos un subconjunto finito $\mathcal{C’} \subset \mathcal{C}$ entonces $\mathcal{C’} = \{(-k_1,k_1),(-k_2,k_2),…,(-k_m,k_m)\}$ con $k_1,k_2,…,k_m \in \mathbb{N}.$ Sea $k=máx\{k_1,k_2,…,k_m\}$ podemos ver que la unión de los elementos en $\mathcal{C’}$ es el intervalo $(-k,k)$ que claramente, no contiene a $\mathbb{R}$, por lo tanto $\mathbb{R}$ no es compacto.

Representación de intervalos de la subcubierta finita

Un espacio discreto es compacto si y solo si es finito

Considera un conjunto $X$ con la métrica discreta. Entonces, para cada $x \in X$ el conjunto $\{ x \}$ es abierto, así $\mathcal{C}=\{\{x\}:x \in X\}$ es una cubierta abierta de $X.$ Un subconjunto finito de esta cubierta estaría dada por $\mathcal{C’}=\{\{x_1\},\{x_2\},…,\{x_k\}\}, \, k \in \mathbb{N}$ cuya unión de conjuntos contiene $k$ elementos. Por lo tanto, si $X$ es infinito no es compacto con la métrica discreta. La prueba de que si $X$ es finito entonces es compacto se deja como ejercicio al final de esta sección.

Si $(X,d_{disc})$ es infinito no hay subcubierta finita

Proposición. Si $A$ es un conjunto compacto en $(X,d)$, entonces toda sucesión en $A$ tiene una subsucesión que converge en $A$.

Demostración:
Sea $A \subset X$ compacto y $(x_n)_{n \in \mathbb{N}} \,$ una sucesión en $A$. Demostraremos primero que existe un punto $x \in A$ tal que toda bola abierta con centro en $x$ tiene una subsucesión de $(x_n)$. Supón por el contrario que no es así, es decir, para todo punto $x \in A$ existe $\varepsilon_x >0$ y existe $k_x \in \mathbb{N}$ tal que para toda $k \geq k_x, \, x_k \, \notin \, B(x,\varepsilon_x).$

No hay subsucesión dentro de la bola abierta pues todos los últimos términos de la sucesión están fuera de ella.


El conjunto de todas estas bolas abiertas, $\{B(x, \varepsilon_x): x \in A\}$ es una cubierta abierta del conjunto $A$. Como $A$ es compacto, existe $\{B(x_1, \varepsilon_{x_1}),B(x_2, \varepsilon_{x_2}),…,B(x_m, \varepsilon_{x_m})\}$ subcubierta finita. Sea $l =: máx \{k_{x_1},k_{x_2},…,k_{x_3}$ entonces para toda $k \geq l,$ el término $x_k \notin \underset{1\leq i \leq m}{\cup} \, B(x_i, \varepsilon_{x_i}) \supset A,$ en consecuencia $x _k \notin A$ lo cual es una contradicción, pues todos los términos de la sucesión están en $A$, por lo tanto existe un punto $x \in A$ tal que toda bola abierta con centro en $x$ tiene una subsucesión de $(x_n)$.

Cubierta finita

Sea $x \in A$ dicho punto. Por la propiedad mencionada es posible seleccionar un punto $x_{k_j}$ de la sucesión que esté en cada bola $B(x,\frac{1}{j}), \, j \in \mathbb{N}$ tal que no se repita con los anteriores y conserven el orden de la sucesión original. Por lo tanto $(x_{k_j})$ es subsucesión de $(x_n)$ y $x_{k_{j}} \to x$.
Así probamos que toda sucesión de un conjunto compacto tiene una subsucesión que converge en él.


Proposición: Si $A \subset X$ es compacto entonces es cerrado y acotado.

Demostración:
Recordemos que un conjunto es cerrado si y solo si es igual a su cerradura. Como $A \subset \overline{A}$ basta demostrar que $\overline{A} \subset A$. Sea $x \in \overline{A}$ entonces existe una sucesión $(x_n)_{n \in \mathbb{N}}$ en $A$ que converge en $x$ (Visto en Convergencia). Pero por la proposición que acabamos de ver, $(x_n)$ tiene una subsucesión que converge en $A$. Por la unicidad del límite, ese punto de convergencia es $x$, por lo tanto $x \in A$.

La subsucesión converge en $x$. Por lo tanto $x \in A$

Para probar que $A$ es acotado notemos lo siguiente. Si fijamos un punto $x_0 \in X$, podemos poner cada $x \in A$ en una bola abierta con centro en $x_0$ y radio mayor a la distancia $d(x,x_0).$ Elegimos el radio como un número natural $k \,$ suficientemente grande, tal que $d(x,x_0)<k.$ Entonces $x \in B(x_0,k).$

Cada punto de $A$ está en una bola abierta de $x_0$

En consecuencia el conjunto de bolas abiertas $\{B(x_0,n):n \in \mathbb{N}\}$ es una cubierta abierta del conjunto $A$ que, como es compacto, tiene una subcubierta finita $\{B(x_0,n_1), B(x_0,n_2),…,B(x_0,n_m)\}$. Sea $M =: máx \{n_1,n_2,…,n_m\}$ entonces $A \subset B(x_0,M)$ por lo tanto $A$ es acotado.

$A \subset B(x_0,M)$

Ejemplos

A continuación recordamos un resultado conocido de los cursos de cálculo:

Teorema de Heine Borel: Considera $\mathbb{R}^n$ con la métrica euclidiana y $A \subset \mathbb{R}^n.$ Entonces $A$ es un conjunto compacto si y solo si es cerrado y acotado.

Conjuntos compactos en $\mathbb{R}^3$

No obstante, hay espacios métricos en los que no es suficiente que un conjunto sea cerrado y acotado para que sea compacto:

Ejercicio: Considera el conjunto $\mathbb{R}$ y $d$ definida como $d(x,y)=min\{1, |x-y|\}, \, x,y \in \mathbb{R}$ entonces tenemos lo siguiente:

  1. $d$ es una métrica en $\mathbb{R}.$
  2. $d$ induce en $\mathbb{R}$ los mismos conjuntos abiertos que la métrica usual. Entonces un conjunto es compacto en $(\mathbb{R},d)$ si y solo si lo es en $(\mathbb{R},d_2).$
  3. El conjunto $[0,\infty)$ es cerrado y acotado en $(\mathbb{R},d),$ pero no es compacto, pues no lo es en $(\mathbb{R},d_2).$

Veamos una propiedad que hereda la compacidad a un subconjunto de un conjunto compacto:

Proposición: Un subconjunto cerrado $B$ de un conjunto compacto $A$ también es compacto.

Demostración:

Sea $B \subset A$ con $B$ cerrado y $A$ compacto. Considera $\mathcal{C} = \{B_{i} \subset X : i \in \mathcal{I} \}$ una cubierta abierta de $B$.

Representación de una cubierta abierta de $B$

Como $B$ es cerrado, entonces el conjunto $X \setminus B$ es abierto.

$X \setminus B$ es abierto

Dado que $B \subset A,$ si agregamos $X \setminus B$ a la cubierta de $B$ tenemos que $\mathcal{C} \cup \{X \setminus B\}$ es una cubierta abierta de $A.$

$\mathcal{C} \cup \{X \setminus B\}$ es una cubierta abierta de $A$


Al ser el conjunto $A$ compacto, se sigue que esta cubierta tiene una subcubierta finita que satisface:
$$B \subset A \subset B_{i_1} \cup…\cup B_{i_n} \cup (X \setminus A).$$ con $n \in \mathbb{N}.$

Por lo tanto $\mathcal{C’}=B_{i_1},…,B_{i_n}$ es una subcubierta finita de $\mathcal{C}$ lo cual concluye que $B$ es compacto.

La cubierta abierta de $B$ tiene una subcubierta finita

Finalizamos esta sección con los siguientes resultados para así cumplir con una deuda pendiente.

Teorema: Considera $ \{ A_{\alpha} : \alpha \in \mathcal{A} \}$ una colección de subconjuntos compactos de un espacio métrico $(X,d).$ Si ocurre que cualquier intersección finita de elementos de $\{A_{\alpha}\}$ es no vacía, entonces la intersección de todos los elementos también es no vacía. Es decir:
$$\underset{\alpha \in \mathcal{A}}{\bigcap} \, A_{\alpha} \, \neq \emptyset$$

Demostración:
Supón por el contrario que la intersección es vacía. Sea $A_1 \in \{A_{\alpha}\}$ entonces no existe punto de $A_1$ que pertenezca al mismo tiempo, a todos los elementos de $\{A_{\alpha}\}$
Sea $C_{\alpha} := X \setminus A_{\alpha}.$ Entonces $ \{ C_{\alpha} : \alpha \in \mathcal{A} \}$ es una cubierta abierta de $A_1$ que, por ser compacto, tiene una subcubierta finita, así:
$A_1 \subset (C_{\alpha_1} \cup … \cup C_{\alpha_n})$ p.a. ${\alpha_1},…{\alpha_n}, \in \mathcal{A}$
En consecuencia $A_{\alpha_1} \cap … \cap A_{\alpha_n} = \emptyset$ lo cual no es cierto, por lo tanto
$$\underset{\alpha \in \mathcal{A}}{\bigcap} \, A_{\alpha} \, \neq \emptyset$$

Corolario: Si $ \{ A_{n} : n \in \mathbb{N} \}$ es una colección de subconjuntos compactos no vacíos de un espacio métrico $(X,d)$ tales que para cada $n \in \mathbb{N} , \, A_n \supset A_{n+1}$ se cumple que $\underset{n \in \mathbb{N}}{\bigcap} \, A_n \neq \emptyset .$

En la entrada Convergencia uniforme y continuidad se enunció el siguiente resultado. Vamos a retomarla ahora con demostración.

Proposición: Sea $A$ un espacio métrico compacto, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones continuas con $f_n:A \to \mathbb{R}, n \in \mathbb{N}$ tal que $(f_n)$ converge puntualmente a una función continua $f$. Si para cada $x \in A$ y $n \in \mathbb{N} \, f_n(x) \geq f_{n+1}(x),$ entonces $(f_n)$ converge a $f$ uniformemente en $A.$

Demostración:
Para cada $n \in \mathbb{N}$ definimos $g_n := f_n – f.$ Entonces $(g_n)_{n \in \mathbb{N}} \,$ es una sucesión de funciones continuas en $A.$ Es sencillo probar que $(g_n)_{n \in \mathbb{N}} \,$ converge puntualmente a $0.$

Sea $\varepsilon >0.$ Ahora, para cada $n \in \mathbb{N}$ definimos un conjunto con los puntos de $A$ que bajo la función $g_n \,$ quedan fuera de la bola de radio $\varepsilon$ con centro en $0.$ Formalmente:

$A_n:= \{a \in A: g_n(a) \notin \, B(0,\varepsilon)\}$

Nota que este conjunto es complemento de la imagen inversa de la función continua $g_n \,$ en la bola abierta $B(0,\varepsilon).$ Por lo tanto $A_n$ es cerrado en $A.$ Esa propiedad se vio en Funciones continuas en espacios métricos. Arriba vimos que cada conjunto cerrado de un compacto hereda la compacidad, en consecuencia cada $A_n$ es compacto.

Nota además que para cada $n \in \mathbb{N}, \, A_{n+1} \subset A_n.$ La intersección de todos estos conjuntos es vacía, pues si existe $x_0 \in \underset{\n \in \mathbb{N}}{\cap} \, A_n$ entonces para toda $n \in \mathbb{N}, \, g_n(a) \notin \, B(0,\varepsilon)$ lo cual no puede ser, pues $g_n(x_0) \to 0.$ A partir del corolario visto un par de lineas arriba se sigue que existe $N \in \mathbb{N}$ tal que $A_N$ es vacío. Entonces, para todo $k \geq N, \, A_k = \emptyset.$ Así para cada $a \in A$ se cumple que $0 \leq g_n(a) < \varepsilon.$ Por lo tanto $(f_n)$ converge a $f$ uniformemente en $A.$

Más adelante…

Conoceremos los efectos que producen algunas funciones al ser aplicadas en conjuntos compactos. ¿Será posible conservar la compacidad al enviar conjuntos de un espacio métrico a otro? ¿Qué propiedades tendrá la imagen de una función continua?

Tarea moral

  1. Resuelve el ejercicio planteado arriba.
  2. Prueba que un espacio discreto finito es compacto. ¿Es necesario que tenga asociada la métrica discreta?
  3. Demuestra que cada subconjunto infinito de un conjunto compacto posee un punto de acumulación en el conjunto compacto.
  4. Da un ejemplo de un conjunto $A$ que sea cerrado pero no acotado y una cubierta abierta y numerable de $A$ que no tenga una subcubierta finita.
  5. Prueba que si $A$ es cerrado y $B$ es compacto, entonces $A \cap B$ es compacto.
  6. Prueba que la intersección arbitraria de conjuntos compactos es compacta.
  7. Demuestra que una sucesión de Cauchy en un conjunto compacto es convergente.
  8. Sea $(X,d)$ un espacio métrico y $A \subset X$ un conjunto compacto. Demuestra que el subespacio $(A,d)$ es completo.

Enlaces

Cálculo Diferencial e Integral II: Integración directa

Por Moisés Morales Déciga

Introducción

Ahora que hemos recordado las derivadas y de haber estudiado los teoremas fundamentales, podemos definir integrales inmediatas que surgen de estos temas.

La bondad de estos teoremas es que podemos encontrar formas y métodos de integración que se desprenden directamente de los procesos de derivación.

Para facilitar la notación de esta entrada, utilicemos la integral indefinida, es decir, sin considerar los límites de integración.

Recordemos que si tenemos una integral definida, tiene la siguiente representación:

$$\int \limits_a^b f(x) \ dx = \left. F(x) \right|_a^b = F(b) \ – \ F(a).$$

Donde $F(x)$ es la integral de $f(x)$ y posteriormente se evalúa en los límites correspondientes.

En contraste con las integrales sin límites de integración o indefinidas, se verían de la siguiente manera:

$$\int f(x) \ dx = F(x) \ + \ C.$$

Ya que no tenemos límites, al momento de integrar encontramos una función que depende de nuestra variable pero podríamos tener una pérdida de información ya que, si recordamos las derivadas, la derivada de una constante es $0$, lo que, al momento de integrar esta derivada perdemos el valor de esta constante, (constante de integración).

Por ejemplo:

$$f(x) = x^2 + 3x + 5.$$

Si aplicamos derivamos esta función, tenemos lo siguiente.

$$\frac{d}{dx} f(x) = f'(x) = 2x + 3.$$

Lo que, al integrar esta derivada utilizando el teorema fundamental del cálculo, tenemos lo siguiente.

$$\int \frac{d}{dx} f(x) \ dx = f(x) = x^2 + 3x + 5. $$

Pero, si integramos tal cual la derivada que se encontró, se tiene la siguiente integral.

$$\int 2x + 3 = x^2 + 3x. $$

Vemos que no es exactamente lo mismo. En realidad, lo único que difiere es en la constante y esto no nos genera mayor problema, ya que al considerar los límites de integración se puede ajustar.

Nota: Solo se puede ajustar mediante una constante. No se pueden añadir términos que dependan de la misma variable de la función.

Si falta una constante, no hay problema. La integral quedará de la siguiente forma:

$$\int 2x + 3 = x^2 + 3x + C.$$

Donde $C$ se le conoce como la constante de integración.

Entonces, tomando el ejemplo anterior, hay que identificar el valor de $C$, y ya solo se tendría que despejar.

$$ x^2 + 3x + 5= x^2 + 3x + C.$$

$$C = 5.$$

Entonces, por practicidad en la sección, utilizaremos la notación de la integral sin límites de integración sin olvidar la constante de integración.

Integral de una constante

$$\int z \ dx = z \ x +C.$$

En particular, si $z=1$.

$$\int \ dx = x + C.$$

Integral de potencias

Tendríamos funciones del estilo $f(x) = x^n$.

$$\int x^n \ dx = \frac{x^{n+1}}{n+1}; \ n \neq -1.$$

Integral de un cociente

Tendríamos funciones del estilo $f(x) = \frac{1}{x}$.

\begin{align*}
\int x^{-1} \ dx & = \int \frac{1}{x} \ dx \\
&= ln|x| + C.
\end{align*}

Integral de una exponencial

Son funciones de la forma $f(x) = a^x; \ \ f(x) = e^x$ donde $a$ es un número real y $e$ es el número de Euler y que se utiliza para la «exponencial».

$$\int a^x \ dx = \frac{a^x}{ln \ a} + C.$$

$$\int e^x \ dx = e^x + C .$$

Integrales trigonométricas

Integrales de funciones trigonométricas.

$$\int sin(x) \ dx = -cos(x) + C.$$

$$\ \int cos(x) \ dx = sin(x) + C.$$

$$\int tan(x) \ dx = – \ ln|cos(x)| + C = ln|sec(x)| + C.$$

$$\int cot(x) \ dx = ln|sin(x)| + C.$$

$$\ \int sec(x) \ dx = ln|sec(x) + tan(x)| + C. $$

$$\int csc(x) \ dx = ln|csc(x) – cot(x)| + C.$$

Así, como algunos productos entre funciones.

$$ \int sec^2(x) \ dx = tan(x) + C.$$

$$\int csc^2(x) \ dx = -cot(x) + C.$$

$$\ \int sec(x) \ tan(x) \ dx = sec(x) + C.$$

$$\int csc(x) \ cot(x) \ dx = -csc(x) + C.$$

Integrales de la forma $x^2 \pm a^2, a^2 – x^2$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} arc \ tan(\frac{x}{a}) + C.$$

$$\ \int \frac{dx}{x^2 – a^2} = \frac{1}{2a} ln \left| \frac{x-a}{x+a} \right| + C.$$

$$\int \frac{dx}{ a^2 – x^2 } = \frac{1}{2a} ln \left|\frac{a + x}{a-x} \right| + C.$$

Integrales de la forma $\sqrt{x^2 \pm a^2} , \sqrt{a^2 – x^2}$

$$\int \frac{dx}{\sqrt{a^2 \ – \ x^2 } } \ = \ arc \ sin \left(\frac{x}{a} \right) + C.$$

$$\int \frac{dx}{\sqrt{a^2 \ \pm \ x^2 } } \ = \ ln \left(x + \sqrt{x^2 \pm a^2} \right) + C.$$

$$\ \int \frac{dx}{x \sqrt{x^2 \ – \ a^2}} \ = \ \frac{1}{a} arc \ sec \left( \frac{x}{a} \right) + C.$$

$$\int \sqrt{a^2 \ – \ x^2} dx \ = \ \frac{x}{2} \sqrt{a^2 \ – \ x^2} \ + \ \frac{a^2}{2} arc \ sin \frac{x}{a} \ + \ C.$$

$$\int \sqrt{x^2 \ \pm \ a^2} dx \ = \ \frac{x}{2} \sqrt{x^2 \pm a^2} \ \pm \ \frac{a^2}{2} ln \left( x + \sqrt{x^2 \ \pm \ a^2} \right) \ + \ C.$$

Más adelante…

A partir de ahora podemos calcular integrales de forma inmediata, solo viendo la función sin necesidad de elaborar o desarrollar la definición.

Esto considerando que las funciones cumplen con los supuestos necesarios, como la continuidad de la función sobre el intervalo de integración.

Entonces, ¿Qué pasa si al momento de integrar, nuestro dominio presenta un problema? ¿Qué se hace si nuestra función original o la que encontramos después de realizar la integral, tiene puntos conflictivos, alguna discontinuidad o el rango de integración se vuelve infinito?

En la siguiente sección se verán las integrales impropias donde se explicará cual es el tratamiento correspondiente a este tipo de funciones o que hacer en esos casos.

Tarea moral

Realice las siguientes integrales.

  1. $\int 3x^2 + x \ – \ 5 \ dx.$
  2. $\int 2 sec^2(x) \ – \ 7sin(x) + e^{x} dx .$
  3. $\ \int 3^x + \frac{1}{4x} dx.$
  4. $\int \frac{1}{1 + x^2} \ – \ \frac{2}{4 \ – \ (2x)^2} dx.$
  5. $\int \frac{3}{\sqrt{27 \ – \ 3(9x^2)}} \ dx.$

Entradas relacionadas

Cálculo Diferencial e Integral II: Intuición de los teoremas fundamentales del cálculo

Por Moisés Morales Déciga

Introducción

Para este momento, se definió la integral definida, la integral indefinida y rememoramos de forma práctica las reglas de derivación.

Adicionalmente, en algunas de las entradas anteriores se ha mencionado la relación entre la diferencial y la integral, y esta relación se hace explícita en los teoremas fundamentales del cálculo.

Para poder ver y demostrar íntegramente estos teoremas que sustentan esta relación, es importante ilustrar de forma intuitiva la motivación, así como algunos posibles uso de ellos.

Intuición a los teoremas

Los teoremas fundamentales del cálculo mencionan la relación entre la integración y la diferenciación y, hasta cierto nivel, se puede observar que la integración es la función inversa una de la otra.

Entonces, para empezar a mencionar y observar la relación entre estos procesos podemos enumerar ejemplos de cada uno de ellos y comparar sus resultados.

Si definimos a $D$ como la función diferencial que se aplica a una función $f$ y que, al momento de aplicar la diferenciación a $f$ genera una nueva función $D(f)$, por ejemplo,

\begin{align*}
D(x^4)= 4x^3; \\
D(sen(x)) = cos(x).
\end{align*}

Por otro lado, si se define la operación $\int \limits_a$ como la función integral.

En otras palabras, el símbolo $\int \limits_a$ es la representación del operador integral, así como los símbolos $+, \ – \ , \times , \div $ son los correspondientes a la operación suma, resta, multiplicación y división.

Entonces, se define $G= \int \limits_a f$ donde $G$ es la función con regla de correspondencia $G(x) = \int \limits_a^x f$.

De esta forma, el dominio de $G$ queda definido por el conjunto de todas las $x$ para las cuales la integral queda definida, en otras palabras, el dominio de $G$ es el conjunto de todas las $x$ tales que $f$ es integrable sobre $[a,x]$ teniendo que $a < x$ o sobre $[x,a]$ si $x < a$.

Podemos ver los siguientes ejemplos sobre la aplicación de la integral en funciones:

\begin{align*}
\int \limits_0^x c \ dt =cx, \\
\int \limits_0^x t \ dt = \frac{x^2}{2}, \\
\int \limits_0^x 4t^3 \ dt = x^4 .
\end{align*}

Es decir, utilizando únicamente el operador sin límites de integración o siendo una integral indefinida:

\begin{align*}
\int \limits_0 c \ dt =c \ I + C, \\
\int \limits_0 t \ dt = \frac{I^2}{2} + C, \\
\int \limits_0 4t^3 \ dt = I^4 + C .
\end{align*}

No olvidemos que en integrales indefinidas, se tiene la constante de integración.

En los ejemplos presentado podemos observar que existe uno con su contraparte en las funciones, el primero y el tercero correspondiente, esto da pie en ver la relación entre estos operadores.

\begin{align*}
D(x^4)= 4x^3; \\
\int \limits_0^x 4t^3 \ dt = x^4 .
\end{align*}

En este ejemplo se ve claramente que, al momento de integrar el resultado del valor de la integral, recuperamos la función original, previo a realizar la derivación.

Pero son funciones y procesos independientes, así que también aplica la observación de forma inversa.

Esto es que, al momento de derivar el resultado del proceso de integración, de igual forma se obtiene la función original.

Existen dos teoremas que demuestran esta relación, los cuales se desarrollarán en las siguientes entradas.

La derivada de la integral

Recordemos la notación de la integral indefinida que vimos al inicio de este capítulo. Se definió de la siguiente manera, utilizando el símbolo integral.

$$ \phi (x) =\int \limits_{\alpha}^{x} f(u) ~ du.$$

Lo que se verá en el primer teorema fundamental es que, si tenemos una función originada por una integral indefinida $ \phi (x) $ de una función continua $f(x)$, siempre existe la derivada $ \phi’ (x) $ y, además.

$$ \phi’ (x) = f(x).$$

Si se sustituyen los símbolos por la notación completa de la derivada y de la integral, se tiene lo siguiente.

$$\frac{d}{dx} \int \limits_a^x f(u)~du = f(x).$$

Aquí se puede observar que las operaciones son inversas, siempre y cuando se estén cumpliendo las hipótesis del teorema. Esto se puede demostrar utilizando el teorema del valor medio para la integral, ya que es una consecuencia de este teorema.

Demostración:

Recordando el Teorema del Valor Medio para la Integral, tenemos la siguiente afirmación.

Para cualesquiera valores de $x$ y $x + h$, siendo dominio de la función $f$, se obtiene lo siguiente.

$$\int \limits_x^{x+h} f(u) \ du = \phi(x+h) \ – \ \phi(x) = (x +h \ – \ x) \ f(\xi) = h \ f(\xi).$$

Donde $\xi$ es un punto dentro del intervalo.

Ahora, si tomamos la diferencia de la integral indefinida valuada en los puntos extremos del intervalo y la dividimos por $h$, se ve de la siguiente manera.

$$\frac{\phi(x+h) \ – \ \phi(x)}{h} = \ f(\xi).$$

Y ahora, tomemos el límite haciendo que $h$ se vaya a $0$.

$$\lim_{h \rightarrow 0} \frac{\phi(x+h) \ – \ \phi(x)}{h} = \lim_{h \rightarrow 0} f(\xi).$$

Si somos observadores, el lado izquierdo es la definición de la derivada, ya que, por hipótesis, la función $f$ es continua.

Ahora, uno pensaría que el límite en lado derecho no tiene sentido, ya que $\xi$ es un punto y $f$ solo está valuada en $\xi$ y no depende de $h$. Pero recordemos que la forma en identificar este punto $\xi$ es porque está dentro del intervalo $[x, x+h]$, de forma tal que, al considerar un limite haciendo que $h$ se vaya a $0$, el intervalo se reduce y colapsa en el punto $x$. Entonces el límite sí tiene sentido.

Y como ya vimos que el lado izquierdo es la definición de derivada y el derecho se colapsa el intervalo en $x$, lo anterior queda de la siguiente manera.

$$\phi'(x) = f(x).$$

$\square$

La función primitiva

El teorema muestra que la integral indefinida $ \phi (x) $, que es la integral de una función $f(u)$, cuyo límite superior depende de $x$ es una solución para el siguiente problema: Dada $f(x)$, determina una función $F(x)$ tal que.

$$F'(x) = f(x).$$

Para resolver este problema es necesario realizar el proceso contrario de la derivación. Con ello, se define como función primitiva de $f(x)$ o solamente primitiva de $f(x)$ a cualquier función $F(x)$ tal que $F'(x) = f(x)$.

Entonces, ocupamos la función $F(x)$ como la función primitiva de $f(x)$ y el proceso para determinar $f(x)$ es derivando la primitiva.

De forma que, tenemos la siguiente afirmación:

Toda integral indefinida $\phi(x)$ de la función $f(x)$ es una primitiva de $f(x)$.

Algo que hay que ponerle atención en la afirmación anterior es que dice «una«. Entonces se puede pensar que hay más de una función primitiva que al momento de derivar se encuentra la misma función para las diversas que hay.

Y aunque esto pueda parecer muy complicado, recordemos que la derivada de una constante se hace cero. Entonces, al momento de integrar cualquier función, se le puede adicionar la constante de integración de forma que ajuste con la información extra que nos dé el problema (esta idea se profundizará más adelante). De forma que, cada vez que se deriva una función de la misma forma excepto por una constante, se obtiene la misma función. Por poner un ejemplo:

$A_1 = x^2 + 3x + 4.$

$A_2 = x^2 + 3x \ – \ 5.$

Si nos damos cuenta, las funciones son diferentes salvo por la constante. Entonces, al momento de derivar se tiene lo siguiente.

$A’_1 = 2x +3.$

$A’_2 = 2x +3.$

Se obtiene la misma función. Entonces, si tomamos $f(x) = 2x+3$ y queremos encontrar su primitiva, esta sería:

$\phi(x) = x^2 + 3x + C.$

Pero teníamos 2 funciones, entonces.

$\phi_1(x) = x^2 + 3x + C_1.$

$\phi_2(x) = x^2 + 3x + C_2$

Por lo tanto, tenemos la siguiente afirmación.

La diferencia de dos funciones primitivas $F_1(x)$ y $F_2(x)$ de la misma función $f(x)$ siempre es una constante.

$$F_1(x) \ – \ F_2(x) = C_1 \ – \ C_2 = C.$$

Por lo tanto, si se tiene la función primitiva de una función $f(x)$, se pueden encontrar todas las demás a partir de la siguiente forma.

$$F(x) \ + \ C.$$

Por esto se dice que no hay una única forma función primitiva, con esta forma, se tienen una infinidad.

Más adelante…

Acabamos de ilustrar de forma sencilla, con ejemplos prácticos que se han visto, lo que implican los teoremas fundamentales.

En las entradas siguientes mostraremos a detalle cada uno de ellos y las aplicaciones que estos tienen.

Vale la pena mencionar que, por lo mismo que son fundamentales, su remembranza en diferentes asignaturas y áreas es basta por la importancia de los teoremas, así que escucharas de ellos un buen rato en tu carrera académica.

Tarea moral

  1. P1
  2. P2
  3. P3
  4. P4
  5. P5

Entradas relacionadas

Cálculo Diferencial e Integral II: Propiedades de la integral indefinida

Por Moisés Morales Déciga

Introducción

En la entrada anterior se dio el paso de generalizar la integral. Ya no solo considerarla como un valor, si no como una función.

Al momento de precisar esta generalización, pudimos encontrar el paralelismo que existe con la integral definida, lo podemos ver de la siguiente forma.

$$\text{Integral Definida} \Rightarrow \int \limits_a^b f(u) \ du.$$

$$\text{Integral Indefinida} \Rightarrow \int \limits_a^x f(u) \ du.$$

Como lo mencionamos anteriormente, la diferencia reside en el intervalo de integración, como se observa arriba sería el límite superior.

Pero, sin perdida de generalidad, se puede considerar el límite inferior o ambos, ya que el hecho de que sea indefinida es que no tiene un inicio o fin especifico, si no que estos dependen de una variable.

Entonces, el resultado de la integral no es un número real, ahora es una función que depende de la variable $x$, en este caso.

Y, dado que esta es nuestra única diferencia, se puede hacer analogía con las propiedades propuestas con la integral definida.

I. Aditividad

Considere un intervalo de integración $[a,x]$, y un punto $c$ dentro de este intervalo. $a<c<x.$

Entonces, la integral se puede separar de la siguiente forma.

$$ \int \limits_a^x f(u) \ du = \int \limits_a^c f(u) \ du + \int \limits_c^x f(u) \ du.$$

En este caso, se genera una integral definida y una integral indefinida.

Ejemplo:

Sea $f(u)$ la siguiente función.

$$f(u) =\left\lbrace\begin{array}{c} u^2 \ \ [0, 3] \\ sin(u) \ \ (3,10] \end{array}\right.$$

Se pueden tener diferentes casos al momento de pedir la integral de la función, ya que se puede partir el intervalo dependiendo del valor de $x$.

a) Si $ 0 \leq x \leq 3.$

Entonces, la integral de $f(u)$ se plantea como sigue.

$$\int \limits_0^x u^2 \ du.$$

Ya que es la parte donde la función tiene el dominio que se quiere integrar.

b) Si $ 3 < x \leq 10.$

Entonces la integral se ve de la siguiente manera.

$$\int \limits_3^x sin(u) \ du.$$

Y tenemos el mismo argumento que en el caso anterior.

c) Si $x \in [0,10] \ y \ x > 3.$

En este caso la $x$ corre en todo el intervalo y está condicionado que $x$ tiene que ser mayor que 3, entonces la integral se ve de la siguiente manera.

$$\int \limits_0^x f(u) \ du = \int \limits_0^3 u^2 \ du + \int \limits_3^x sin(u) \ du.$$

Y este caso, como se mencionó en la propiedad de la Aditividad, genera una integral definida y una integral indefinida.

d) Si $x \in [0,10] .$

Este caso solo condiciona a que el valor de $x$ tiene que estar dentro del dominio de la función, por lo que la integral queda de la siguiente manera.

$$ \int \limits_a^x f(u) \ du .$$

Y que se podrá dar solución en el momento en que se defina el valor de $x$.

II. Suma

Sea $h(u)$ una función tal que:

$$h(u) = f(u) + g(u).$$

Donde $f(u)$ y $g(u)$ también son funciones. Entonces, para calcular la integral de $h(x)$, tenemos la siguiente propiedad.

$$\int \limits_a^x h(u) \ du = \int \limits_a^x [f(u) \ + \ g(u)] \ du = \int \limits_a^x f(u) \ du + \int \limits_a^x g(u) \ du. $$

Entonces, la integral de una suma, es la suma de las integrales.

III. Producto por una constante

Sea $h(u)$ una función tal que $h(u)= c \cdot f(u)$, donde $c$ es cualquier real y $f(u)$ una función. Entonces,

$$\int \limits_a^x h(u) \ du = \int \limits_a^x c \cdot f(u) \ du = c \int \limits_a^x f(u) \ du.$$

Las constantes que se encuentran multiplicando a una función pueden entrar y salir de la integral.

IV. Linealidad

Sean $f(x)$ y $h(x)$ dos funciones y sean $\alpha$ y $\beta$ dos números reales. Entonces:

$$\int \limits_a^x [\alpha \ f(u) + \beta \ g(u)] \ du = \alpha \int \limits_a^x f(u) \ du + \beta \int \limits_a^x g(u) \ du.$$

Esta propiedad contiene a las dos anteriores (suma y producto), lo que la hace sumamente útil y provoca que se mencione en múltiples ocasiones.

Más adelante…

Ya que tenemos estás propiedades, podemos simplificar el proceso para desarrollar la integral y poder descomponerla en integrales más simples ó, en caso contrario, podemos aplicarlas para poder simplificarlas (reducirlas) o encontrar una sustitución adecuada para que se pueda integrar con mayor facilidad.

En la siguiente sección, tendremos un recordatorio de derivadas. Esto es necesario ya que existe una relación importante entre la derivada y la integral. Es posible que para este momento de tu formación, haz escuchado que la integral es el proceso contrario a o la inversa de la derivación.

Entonces, para poder explicar esta relación entre ambos procesos, es necesario recordar como funciona la derivada, que significa y como se calcula.

Tarea moral

  1. Utiliza la propiedad de linealidad.
    $$\int \limits_a^x \alpha \ \left[ f(u) \ – \ g(u) + 1 \right] \cdot \beta \ h(u) \ du.$$
  2. Aplique las reglas correspondientes para expandir la forma de la integral, para los diferentes casos.
    $$f(x) = \left\lbrace\begin{array}{c} 3x^2 \ – \ x + 13 \ \ [0, 5] \\ \frac{7}{x} \ \ (5,10] \end{array}\right.$$
    i) Integral indefinida para cualquier $x$ entre 5 y 9.
    ii) Integral indefinida para cualquier $x$ entre 0 y 5.
    ii) Integral indefinida para cualquier $x$ entre 3 y 8, pasando por el 5.
  3. Aplique las reglas correspondientes para dejar en una sola integral la siguiente integral.
    $$1/7 \int \limits_a^x u^6 \ du \ – \ 7 \int \limits_a^x cos(u) \ du \ + \ 8 \int \limits_a^x \frac{1}{u+1} \ du.$$

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: La integral como función del límite superior – Integral Indefinida
  • Entrada siguiente: Recordatorio de derivadas

Cálculo Diferencial e Integral II: La integral como función del límite superior, integral indefinida.

Por Moisés Morales Déciga

Introducción:

En la primera unidad del curso, hemos definido la integral mediante las sumas de Riemann considerando los distintos comportamiento que estas pueden tener.

Vimos que hacer en los casos sencillos donde se tienen funciones bien portadas como las continuas, acotadas, monótonas, etc. Pero también se vieron casos más interesantes, por ejemplo, como cuando son continuas en subintervalos, y estos podían ser finitos o infinitos, como las funciones escalonadas o la función de Dirichlet.

En estos ejemplos se mostraba la integrabilidad o la no integrabilidad de la función. Pero a pesar de que los ejemplos podían ser contrastantes entre sí, todos compartían una característica y era que se encontraban definidos dentro de un intervalo cerrado.

Esto era, que la función se encontraba dentro de un segmento del eje de las abscisas el cual tenía un inicio y un fin bien determinado.

En esta nueva unidad se tendrá una generalización de este proceso. Ya no se considerarán intervalos con un inicio y fin, ahora trabajaremos la integral en un intervalo que el inicio o el fin (o ambos) dependerán de una variable, por lo que será un intervalo no definido.

A este nuevo fenómeno de generar la integral en un intervalo no definido se le conocerá como integral indefinida.

Integral Indefinida

En la unidad anterior se determinó que el valor de la integral depende del intervalo de integración o de los límites de integración donde teníamos la siguiente representación $[a,b]$.

Y se decía que el límite inferior era el punto $a$ y el límite superior era el punto $b$ y entre esos dos puntos se tenía la curva de la función y la integral era el área contenida bajo esa curva.

Ahora, consideremos el límite inferior como un número fijo $\alpha$, que no es un número particular, es decir, que puede ser cualquiera. Y el límite superior será una variable denotada con $x$. Teniendo la siguiente notación.

$$ \phi (x) =\int \limits_{\alpha}^{x} f(u) \ du.$$

Así que la función $\phi(x)$ se denomina como la integral indefinida de la función $f(x)$.

De forma que la función $\phi(x)$, es una función que depende de $x$.

Esto cambia la percepción de la integral ya que, anteriormente, solo se concebía la integral como un número (que era el área bajo la curva). Pero ahora la integral ya no solo es un escalar, a partir de este momento, podemos mostrar que la integral también es una función que puede depender de una variable independiente.

De manera análoga, se puede hacer que el límite inferior sea variable y, por lo tanto, que ambos límites puedan variables o dependan de otra función.

De una forma geométrica, se puede ver de la siguiente manera.

Así que la integral indefinida $ \phi (x) $ está dada por el área sombreada en rojo, que se encuentra delimitada por la curva en azul $y=f(u)$ dentro del intervalo $[\alpha , x]$.

Entonces, hasta que no se determine un valor para $x$, el valor de la integral irá cambiando.

Se debe recordar que el signo del área se determina por el cuadrante en el que se encuentra, como se vio en la Unidad 1.

Observación: Cualquier integral definida es un caso particular de una integral indefinida $\phi(x)$.

En el momento en que se define el valor de $\alpha$ y de $x$, recuperamos un intervalo definido y tenemos una integral definida.

Las reglas básicas para la integral que se vieron, tienen su generalización con integrales indefinidas, por ejemplo, la suma:

\begin{align*}
\int \limits_a^b f(u) \ du & = \int \limits_a^\alpha f(u) \ du + \int \limits_\alpha^b f(u) \ du \\ &= – \int \limits_\alpha^a f(u) \ du + \int \limits_\alpha^b f(u) \ du \\ & = \phi(b) \ – \ \phi(a) .
\end{align*}

De esta forma queda una integral definida en términos de integrales indefinidas.

Así, se puede expresar cualquier integral indefinida con límite inferior $\alpha’$ en términos de $\phi(x)$:

$$ \int \limits_{\alpha’}^x f(u) \ du = \phi(x) \ – \ \phi({\alpha’}) . $$

En donde $\phi({\alpha’}) $ es una constante, así que, sin pérdida de generalidad, se puede concluir que cualquier integral definida difiere de la integral indefinida $\phi(x)$ por una constante.

$$ \int \limits^x f(u) \ du = \phi(x) + C.$$

Donde a $C$ se le conoce como la constante de integración.

Continuidad de la integral indefinida

En la unidad anterior, al momento de trabajar con funciones continuas nos era sencillo generar las sumas de Riemann ya que se encontraba la función dentro del intervalo bien definida en todo momento. No presentaba saltos extraños o, como era continua, no presentaba discontinuidades en ningún tramo del intervalo o de cualquier partición de este.

En este caso, hemos dicho que la integral indefinida también es una función. Entonces, es importante conocer cuales son las características de esta nueva función.

En este caso, vamos a mostrar que la integral de una función continua, también es continua, entonces:

Sea $f(x)$ función continua en el intervalo $[a,b]$ y sea $\alpha$ un punto dentro del intervalo, i.e. $\alpha \in [a,b]$. Se define la integral indefinida como:

$$\phi(x) = \int \limits_\alpha^x f(u) \ du.$$

Teorema: La integral indefinida $\phi(x)$ de una función $f(x)$ continua, es asimismo, continua.

Demostración:

Sea $x, y$ dos valores dentro del intervalo donde la función es continua.

Por el teorema del valor medio se tiene que:

\begin{align*}
\phi(y) \ – \ \phi(x) & = \int \limits_x^y f(u) \ du \\ &
= f(\xi) (y \ – \ x).
\end{align*}

Donde $\xi$ es algún valor en el intervalo con puntos extremos $x$ y $y$.

Ahora, por la continuidad de $f$, obtenemos lo siguiente:

\begin{align*}
\lim_{y \rightarrow x} \phi(y) & = \lim_{y \rightarrow x} [\phi(x) + f(\xi) (y \ – \ x) ] \\&
= \ \lim_{y \rightarrow x} \phi(x) + \lim_{y \rightarrow x} f(\xi) (y \ – \ x) \\ &
= \ \phi(x) \ + \ f(\xi) \ \lim_{y \rightarrow x} (y \ – \ x) \\ &
= \ \phi(x) + f(\xi) \cdot 0
\end{align*}

$$\therefore \lim_{y \rightarrow x} \phi(y) = \phi(x).$$

Lo que muestra que $\phi$ es continua.

Adicionalmente, si lo vemos dentro de cualquier intervalo cerrado, obtenemos lo siguiente:

$$|\phi(y) \ – \ \phi(x)| \leq M \ |y \ – \ x|.$$

donde $M$ es el máximo de $|f|$ en el intervalo, de modo que $\phi$ es aún Lipschitz-continua.

Si quieres recordar continuidad, sigue este link.

$\square$

Durante la demostración se recordó el teorema del valor medio, mostrando la siguiente ecuación:

\begin{align*}
\phi(y) \ – \ \phi(x) & = \int \limits_x^y f(u) \ du \\ &
= f(\xi) (y \ – \ x).
\end{align*}

Observación: Si $f(x)$ es una función positiva en todo el intervalo $[x,y]$, se obtiene que $\phi(x)$ es una función creciente.

$$\phi(y) = f(\xi) (y \ – \ x) > \phi(x).$$

Más adelante…

Teniendo definidas las integrales indefinidas, podremos revisar las propiedades que estas integrales tienen y teoremas que son de alta importancia, tanto en cálculo como en las demás asignaturas.

Este paso de trabajar con integrales indefinidas nos da una mayor libertad al momento de trabajar con funciones. Anteriormente, al trabajar con integrales definidas, teníamos plena conciencia de que punto a que punto se necesitaba integrar, lo que, al momento de evaluar o de integral solo encontramos un número; pero ahora que trabajamos con integrales indefinidas.

Y como estamos ampliando la definición de la integral, es necesario mostrar las propiedades que esta extensión genera ya que, si consideramos estas propiedades se nos podrá facilitar el manejo de de esta transformación de funciones.

Estas propiedades las veremos en la siguiente entrada.

Tarea moral

  1. Escribe las siguientes integrales definidas como integrales indefinidas.
    • $ \int \limits_3^{12} x^3 \ dx $
    • $ \int \limits_1^5 ln(t) \ dt $
    • $ \int \limits_{-\pi}^{\pi} sin(\theta) \ d \theta $
  2. Sea $f(x)$ una función continua y se cumple que $f(x) = \int \limits_0^x f(t) \ dt$.
    Demuestra que $f(x)$ es idénticamente 0.

Entradas relacionadas

  • Página del curso: Cálculo Diferencial e Integral II
  • Entrada anterior: Funciones que no son Riemann integrables
  • Entrada siguiente: Propiedades de la integral indefinida