7 Material de prueba: Ley del paralelogramo en Rn

Por Mariana Perez

Sean x,yRn entonces 2x2+2y2=x+y2+xy2

Donde es la norma Euclidiana, x=xx

En el siguiente enlace puedes observar que se cumple esta ley. Puedes mover los vectores v1 y v2, haciéndolos del tamaño que prefieras y observar que los valores de la igualdad representados en la ley se mantiene.

https://www.geogebra.org/classic/t4y4evhn

6 Material de prueba: Un ejemplo de una norma en R2 que no es norma-p

Por Mariana Perez

Consideremos el paralelogramo cuyos vértices son los puntos (2,1),(1,1),(2,1),(1,1).

Sea A={(x,y)R2|1y1,3y2x3}

Este paralelogramo es un conjunto convexo y también simétrico respecto al origen, es decir que (x,y)A(x,y)A

Además es cerrado, A¯=AA=A, donde A es la unión de los elementos de recta que forman las aristas, incluyendo los vértices.

Es acotado con la norma Euclidiana (un conjunto es acotado si está contenido en una bola).

Entonces, nos preguntamos si ¿existe una norma ◻:R2R tal que A sea la bola unitaria cerrada?, es decir A={(x,y)R2|(x,y)◻1}

Para que la frontera sea la «circunferencia unitaria» debe suceder que si (x,y)A(x,y)◻=1

Para que sea norma se debe complir que (0,0)◻=0

y además debe cumplir que t(x,y)◻=|t|(x,y)◻

Analicemos que:

si (x,y)=λ(a,b) entonces (x,y)◻=|λ|(a,b)◻=|λ| ya que el punto (a,b) es un punto de A.

Entonces ¿cuál es la regla de correspondencia que a cada (x,y)|λ|=(x,y)◻?

Sea (x,y)R2, tenemos que considerar los siguientes casos:

Caso «fácil»: si (x,y) está en la recta diagonal.

Caso «menos fácil»: si (x,y) no está en ninguna recta que contenga a una diagonal.

Pregunta auxiliar ¿cuáles son las ecuaciones de las rectas que contienen a las diagonales del paralelogramo?

Tenemos que las ecuaciones de las rectas que contienen a las diagonales son:

Recta I: y=12x

Recta II: y=x

Comenzamos analizando el caso «fácil»:

CASO «punto en la Recta I»: si (x,y)=λ(2,1)

entonces (x,y)=(2λ,λ)

por lo tanto y=λ

Ejemplo: (4,2)◻=2

CASO «punto en la Recta II»: si (x,y)=λ(1,1)

entonces (x,y)=(λ,λ)

por lo que y=λ

Ejemplo: (3,3)◻=3

Análogamente se estudia el CASO III (x,y)=λ(2,1),

y el CASO IV, cuando (x,y)=λ(1,1).

Ejemplo: (10,5)◻=5

(8,8)◻=8

Ahora, analizamos el caso «menos fácil»:

CASO «punto en la Región I»: si (x,y) está en el cono generado por los vectores a=(2,1) y b=(1,1).

(x,y)=αa+βbα,β>0

Afirmación:

t=máx{|y|,|2xy|3}

Sea (x,y)R2◻.

Consideramos 4 posibilidades, dadas por la ubicación del punto en algunas de las cuatro partes en las que queda dividido el plano, según las rectas y=12x y y=x.

Veamos que sucede cuando el punto está en las regiones «I» y «IV». Los dos casos restantes son análogos.

Cuando (x,y) está en la Región I, cumple que: y>x y>12x

Observación: como y>0 entonces al unir (x,y) con (0,0) cortamos a la arista superior en un punto de la forma (a,b) pero la arista superior está contenida en la recta y=1 por lo que b=1 por lo tanto (a,b)=(a,1).

Luego (x,y)=t(a,b)=t(a,1)

Por lo tanto, y=t

(x,y)◻=y

Cuando (x,y) está en la Región IV, cumple que: y>x y<12x

Ahora x>0 por lo que al unir (x,y) con (0,0) cortamos a la arista del lado derecho del paralelogramos en el punto (a,b), pero como la arista está contenida en la recta y=2x3 tenemos que b=2a3

Luego (x,y)=t(a,b)

por lo que x=ta y y=tb entonces y=t(2a3) y=2at3t a=y+3t2t

Hemos propuesto (x,y)◻:=máx{|y|,|2xy|3}

◻:R2R

Afirmación: ◻ es una norma.

(x,y)◻>0

(x,y)◻=0(x,y)=(0,0)

(x,y)◻=máx{|ty|,|2txty|3}=|t|máx{|y|,|2xy|3}=|t|(x,y)◻.

Por último probamos que satisface la desigualdad del triángulo, es decir que se cumple que: u+v◻u◻+v◻

Sean u=(u1,u2) y v=(v1,v2). Además u+v=(u1+v1,u2+v2).

Entonces u+v◻=máx{|u2+v2|,2(u1+v1)(u2+v2)3}

Por demostrar u+v◻u◻+v◻

Si el máximo es |u2+v2| entonces, se tiene que |u2+v2||u2|+|v2|u◻+|v◻

Si el máximo es 2(u1+v1)(u2+v2)3 entonces, 2(u1+v1)(u2+v2)3=2u1u2+2v1v232u1u23+2v1v23u◻+v◻

Por lo anterior queda probado que ◻ es una norma.

4 Material de prueba: Norma-p

Por Mariana Perez

En R2 se define otra norma, llamada norma-p, de la siguiente manera:(x,y)p=|x|p+|y|pp para p[1,]

En el siguiente enlace puedes ver una animación de esta norma para valores de p[1,10]. Cambia el parámetro p para que observes como la circunferencia unitaria cambia su forma.

Tal vez te preguntes, qué sucede con los valores de p(0,1). Bueno, en el siguiente enlace puedes observar que sucede con la circunferencia unitaria. ¿Consideras qué para estos valores de p se tiene una norma?

https://www.geogebra.org/m/txjay9zn

Teorema de existencia y unicidad de ecuaciones diferenciales

Por Lizbeth Fernández Villegas

Introducción

En la entrada anterior trabajamos con la ecuación diferencial dy(x)dx=y(x) con condición inicial y(0)=1. Al identificar propiedades enunciadas en el teorema de punto fijo de Banach encontramos su solución. En esta ocasión repetiremos el proceso para demostrar que la solución a una ecuación diferencial general existe y es única.

Primeramente, veamos un concepto.

Definición. Función localmente Lipschitz continua en la segunda variable. Sea (a,b)R y sea ΩR tal que Ω es abierto. Si F:(a,b)×ΩR es una función que satisface que para cada x0(a,b) y y0Ω existen δ0>0 y c>0 tales que [x0δ0,x0+δ0](a,b),[y0δ0,y0+δ0]Ω y además que si x[x0δ0,x0+δ0] y si y1,y2[y0δ0,y0+δ0] entonces
|F(x,y1)F(x,y2)|c|y1y2|
diremos que F es localmente Lipschitz continua en la segunda variable.

Solución a la ecuación diferencial dy(x)dx=F(x,y(x))

Sea dy(x)dx=F(x,y(x)) una ecuación diferencial con condición inicial y(x0)=y0 donde:

  1. F es una función localmente Lipschitz continua en la segunda variable.
  2. y es una función, al menos derivable, de variable x que manda valores reales en valores reales.
  3. x0 es un punto donde la y buscada toma valor y0.

Plan para resolverla con el teorema de punto fijo de Banach: Propondremos un espacio métrico completo (X,d) de funciones entre las cuales deberá estar la y buscada y una contracción ϕ:XX cuyo punto fijo sea la solución de la ecuación diferencial.

Sean δ0>0 y c>0 para F localmente Lipschitz continua como en la definición. Se dejará como ejercicio al lector probar que F restringida en [x0δ0,x0+δ0]×[y0δ0,y0+δ0] es continua. Como este conjunto es compacto, se sigue que F está acotada en este conjunto. Por lo tanto existe M>0 tal que para toda (x,y)[x0δ0,x0+δ0]×[y0δ0,y0+δ0] se cumple
|f(x,y)|M.

Sea δ tal que 0<δ<min{1c,δ0M}

Considera X:={fC0([x0δ,x0+δ],R):d(f,y0)δM}
donde y0 representa, en este caso, a la función constante que arroja el valor y0. Nota que X es un espacio cerrado en el espacio métrico C0([x0δ,x0+δ],R) que recordemos, tiene la propiedad de ser completo. Por lo visto en la última proposición de la entrada Espacios métricos completos concluimos que X también es completo.

Propongamos la contracción ϕ deseada

Si fX satisface la ecuación diferencial entonces para todo x[x0δ,x0+δ] se sigue:

df(x)dx=F(x,f(x))x0xdf(t)dtdt=x0xF(t,f(t))dtf(x)f(x0)=x0xF(t,f(t))dtf(x)=f(x0)+x0xF(t,f(t))dtf(x)=y0+x0xF(t,f(t))dt

Como buscamos que esta solución sea punto fijo de una contracción ϕ en X entonces ϕ(f(x))=f(x). La última igualdad nos lleva a proponer:

ϕ(f(x)):=y0+x0xF(t,f(t))dt

Nota que ϕ(f(x)) pertenece a C0([x0δ,x0+δ],R). Probaremos que también pertenece a X. Si x[x0δ,x0+δ], tenemos dos casos:

Si x0x

|ϕ(f(x))y0|=|x0xF(t,f(t))dt|x0x|F(t,f(t))|dt(xx0)M=δM

Si x<x0

|ϕ(f(x))y0|=|x0xF(t,f(t))dt|=|xx0F(t,f(t))dt|=|xx0F(t,f(t))dt|xx0|F(t,f(t))|dt(x0x)M=δM

De ambos casos podemos concluir que d(f,y0)δM, por lo tanto ϕ(f)X.

ϕ es contracción en X

Sean f,gX. Considera I=[x0δ,x0+δ] entonces si xI, tenemos dos casos.

Si x0x.

|ϕ(f(x))ϕ(g(x))|=|y0+x0xF(t,f(t))dt(y0+x0xF(t,g(t))dt)|=|x0xF(t,f(t))dtF(t,g(t))dt|x0x|F(t,f(t))dtF(t,g(t))|dtx0xc|f(t)g(t)|dt(xx0)cd(f,g)(δc)d(f,g)

Si x<x0.

|ϕ(f(x))ϕ(g(x))|=|y0+x0xF(t,f(t))dt(y0+x0xF(t,g(t))dt)|=|x0xF(t,f(t))dtF(t,g(t))dt|=|xx0F(t,f(t))dtF(t,g(t))dt|=|xx0F(t,f(t))dtF(t,g(t))dt|xx0|F(t,f(t))dtF(t,g(t))|dtxx0c|f(t)g(t)|dt(x0x)cd(f,g)(δc)d(f,g)

Por lo tanto, la distancia entre ϕ(f) y ϕ(g) se puede estimar como

d(ϕ(f(x)),ϕ(g(x)))=SupxI{|ϕ(f(x))ϕ(g(x))|}SupxI{δcd(f,g)}=(δc)d(f,g)

Sea α:=δc entonces α<1, por lo tanto ϕ es contracción en X.

Lo que hemos visto en esta entrada demuestra el siguiente:

Teorema. Picard-Lindelöf. Sea F:(a,b)×ΩR una función continua y localmente Lipschitz continua en la segunda variable. Entonces, dados x0(a,b) y y0Ω existe δ>0 tal que la ecuación diferencial
dy(x)dx=F(x,y(x)),y(x0)=y0
tiene una única solución en el intervalo [x0δ,x0+δ].

Generalización en Rn

Si ΩRn y F tiene su contradominio en Rn entonces la definición y el teorema quedan como sigue:

Definición. Función localmente Lipschitz continua en la segunda variable. Sea (a,b)R y sea ΩRn tal que Ω es abierto. Si F:(a,b)×ΩRn es una función que satisface que para cada x0(a,b) y y0Ω existen δ0>0 y c>0 tales que [x0δ0,x0+δ0](a,b),B(y0,δ0)Ω y además que si |xx0|δ0 y si y1,y2B(y0,δ0) entonces
F(x,y1)F(x,y2)cy1y2
diremos que F es localmente Lipschitz continua en la segunda variable.

Teorema. Picard-Lindelöf. Sea F:(a,b)×ΩRn una función continua y localmente Lipschitz continua en la segunda variable. Entonces, dados x0(a,b) y y0Ω existe δ>0 tal que la ecuación diferencial
dy(x)dx=F(x,y(x)),y(x0)=y0
tiene una única solución en el intervalo [x0δ,x0+δ].

En este caso el espacio completo donde podemos encontrar la solución es

X:={fC0([x0δ,x0+δ],Rn):fy0δM}

Donde δ y M se definen de forma análoga a la demostración anterior.

Más adelante

Pasaremos a la siguiente sección de esta asignatura con temas de compacidad. Aunque ya se han usado algunos resultados para el caso del espacio métrico euclidiano, mostraremos cómo el concepto puede generalizarse en otros espacios a partir de la topología que la métrica induce en ellos.

Tarea moral

  1. Sean δ0>0 y c>0 para F localmente Lipschitz continua como en la definición. Prueba que F restringida en [x0δ0,x0+δ0]×[y0δ0,y0+δ0] es continua.
  2. Sea F:R×RR tal que F(x,y)=3y2/3.
    a) Prueba que F no es localmente Lipschitz continua en la segunda variable.
    b) Prueba que para cualesquiera α<0<β, la función
    fα,β(x)={(xα)3si x α,0si αxβ,(xβ)3si xβ.
    Es diferenciable en R y es solución de
    dy(x)dx=3y2/3,y(0)=0.
    Así, si F no es localmente Lipschitz continua en la segunda variable la ecuación puede tener una infinidad de soluciones.
  3. Sea F:R×RR tal que F(x,y)=y2.
    a) Prueba que F es localmente Lipschitz continua en la segunda variable.
    b) Para α0 considera la ecuación
    dy(x)dx=y2,y(0)=1α.
    Prueba que f(x)=1xα es su solución en algún intervalo que contiene a 0.
    c) ¿Cuál es el intervalo máximo para el que esta ecuación tiene solución?

Enlaces

Teoría de los Conjuntos I: Conjuntos infinitos no numerables.

Por Gabriela Hernández Aguilar

Introducción

Al hablar de conjuntos infinitos, resulta natural pensar que entre cualesquiera dos de ellos debería existir una manera de «emparejar» sus elementos, es decir, establecer una biyección entre tales conjuntos, ya que, al fin y al cabo, ambos contienen infinitos elementos. Esta idea puede deberse a que, cuando uno piensa en conjuntos infinitos, lo primero que viene a la mente es el conjunto de los números naturales o el de los enteros, los cuales están ordenados de una manera bastante agradable y nos resulta «fácil» ubicarlos en una recta, como si fueran números colocados sobre una cinta métrica infinita.

Sin embargo, no todos los conjuntos infinitos poseen un orden tan agradable como el de estos dos conjuntos, y muchos de ellos presentan propiedades considerablemente diferentes. Por ejemplo, algunos conjuntos infinitos pueden no tener un buen orden como el de los naturales, o quizás exista tal orden pero nos resulte extremadamente difícil de identificar.

El teorema de Cantor demuestra que, efectivamente, la idea de que se pueden emparejar los elementos de cualesquiera dos conjuntos infinitos es incorrecta. Un ejemplo específico es el conjunto de los números naturales N y su conjunto potencia P(N); es imposible emparejar cada elemento de P(N) con uno y solo un elemento de N. Este hecho muestra que existen conjunto infinitos más grandes que otros.

Esta entrada está dedicada precisamente a esta cuestión: exhibir conjuntos infinitos con «diferentes tamaños», específicamente, conjuntos que no sean numerables, es decir, que no sean equipotentes con N. Como hemos venido haciendo, también emplearemos el muy importante teorema de Cantor-Schröder-Bernstein para probar ciertas equipotencias.

Conjuntos más grandes que N

Por el teorema de Cantor sabemos que para cada conjunto A se tiene |A|<|P(A)|, es decir, que existe una función inyectiva de A en P(A) pero no una función biyectiva. Así pues, por ejemplo, P(N) además de ser un conjunto infinito, tiene «más» elementos que N, el cual es también infinito. Esto es una muestra de que existen conjuntos infinitos que no son equipotentes. En lo subsecuente exhibiremos algunos otros conjuntos infinitos que sí se pueden biyectar con P(N) y que por tanto no son numerables.

Comenzaremos proporcionando ejemplos que involucran conceptos que hemos visto en la entrada anterior.

Ejemplo.

El conjunto de sucesiones en N, que denotaremos por NN, es equipotente a P(N).

Demostración.

En la entrada anterior probamos que para cada AN infinito, existe una única función biyectiva FA:NA tal que FA(0)=min(A) y que FA(n)<FA(n+1) para cada nN. Lo mismo mencionamos respecto a conjuntos finitos no vacíos, es decir, si AN es un conjunto finito no vacío, digamos |A|=n+1 con nN, existe una única función biyectiva fA:n+1A tal que fA(0)=min(A) y que fA(m)<fA(k) si y sólo si m<k para cualesquiera m,kn+1.
Si AN es finito, podemos extender la función fA a todo N de la siguiente manera: si fA:n+1A es la única función biyectiva que satisface fA(0)=min(A) y fA(m)<fA(k) si y sólo si m<k para cualesquiera m,kn+1, definimos FA:NA por medio de FA(m)={fA(m)si mn+1min(A)si mn+1

Lo anterior nos permite asociar a cada elemento de P(N){} una única sucesión en NN por medio de la siguiente función: definamos F:P(N){}NN como F(A)=FA para cada AP(N). Debido a la definición de las funciones FA, en cualquier caso, ya sea que AN es finito o infinito, se cumple que FA[N]=A; en consecuencia, si A y B son conjuntos no vacíos tales que F(A)=F(B) tendríamos que para cada kN, FA(k)=FB(k) y, por ende, que A=FA[N]=FB[N]=B, lo cual muestra que F es inyectiva.

Ahora bien, para cada xNN definamos x+1:NN por medio de (x+1)(n):=x(n)+1 para cada nN. La función g:NNNN definida por medio de g(x)=x+1 es una función inyectiva, pues si g(x)=g(y) para algunas x,yNN, entonces, x(n)+1=y(n)+1 para cada nN y, por tanto, x(n)=y(n) para cada nN, es decir, x=y. Observemos además que g(x)x0 para cada xNN, donde x0(n)=0 para cada nN; en efecto, si xNN, entonces, g(x)(n)=(x+1)(n)=x(n)+10 para cada nN ya que 0 no es sucesor de ningún número natural. Así, la función gF:P(N){}NN es inyectiva y (gF)(A)x0 para cada AP(N){}. Por tanto la función h:P(N)NN definida como h(A)={(gF)(A)si Ax0si A= es inyectiva.

Para dar una función inyectiva de NN en P(N) retomaremos al conjunto de números primos P={pn:nN} enumerado de tal forma que pn<pn+1 para cada nN. Definamos ahora T:NNP(N) por medio de T(x)={pnx(n):nN}. Notemos que T es una función inyectiva, pues si T(x)=T(y), entonces, {pnx(n):nN}={pny(n):nN} y así pnx(n)=pny(n) y x(n)=y(n) para cada nN, pues de otro modo se contradice al teorema fundamental de la aritmética. Por lo tanto, x=y y T es inyectiva.

Por el teorema de Cantor-Schröder-Bernstein concluimos que |P(N)|=|NN|.

◻

Al contrario de los conjuntos finitos, existen ejemplos de conjuntos infinitos que poseen subconjuntos propios equipotentes a ellos mismos, es decir, existe una biyección entre el subconjunto propio y el conjunto original. Un ejemplo de lo anterior es el conjunto de los números naturales, pues cualquier subconjunto propio de N que sea infinito resulta ser numerable. A continuación vamos a proporcionar otro de estos ejemplos, pero esta vez con un conjunto infinito no numerable.

Ejemplo.

El conjunto 2N:={fNN:f(n){0,1} para cada nN} es equipotente a P(N).

Demostración.

Para demostrar la equipotencia de este ejemplo vamos a exhibir una biyección entre tales conjuntos. Para ello haremos lo siguiente, si AP(N) definimos χA:NN por medio de χA(n)={1si nA0si nNA

Lo anterior nos permite establecer una función entre P(N) y 2N, función que de hecho resulta ser biyectiva. Veamos primero la inyectividad. Si para A,BP(N) se cumple χA=χB, entonces χA(n)=χB(n) para cada nN. En consecuencia, si nA, 1=χA(n)=χB(n) y por ende nB; análogamente, si nB, 1=χB(n)=χA(n) y por tanto nA. Por consiguiente A=B, lo que demuestra la inyectividad de la función.
Resta probar la sobreyectividad. Consideremos χ2N un elemento arbitrario. Definamos A:={nN:χ(n)=1} y veamos que χA=χ. Si nA, entonces χ(n)=1 por definición del conjunto A y, por otro lado, χA(n)=1 por definición de la función χA. Si ahora nNA, χ(n)=0 por definición del conjunto A mientras que χA(n)=0 por definición de la función χA. Esto muestra que χ(n)=χA(n) para cada nN y por ende que χ=χA. Así pues, la función F:P(N)2N definida por medio de F(A)=χA para cada AP(N) es una biyección y, por tanto, |P(N)|=|2N|.

◻

Como lo mencionamos previamente, ahora contamos con un ejemplo de un conjunto infinito no numerable que posee un subconjunto propio equipotente a él, específicamente NN y 2N son equipotentes y 2NNN. Conjuntos de este tipo, es decir, conjuntos que poseen subconjuntos propios equipotentes a ellos, reciben un nombre particular que anotamos en la siguiente definición.

Definición. Un conjunto X se llama infinito según Dedekind si existe una función inyectiva f:XX tal que f[X]X.

Que un conjunto sea infinito según Dedekind implica que dicho conjunto es infinito. Y ya que contamos con algunos ejemplos de conjuntos infinitos que también son infinitos según Dedekind, surge de manera natural la pregunta: ¿todo conjunto infinito es infinito según Dedekind? Dicha cuestión no la podemos responder con lo que hemos visto hasta ahora y es por eso que la dejaremos para más adelante.

Una consecuencia inmediata del último ejemplo es el siguiente corolario.

Corolario. Sean a0,a1,,anN naturales distintos con n1. El conjunto {fNN:f[N]{a0,a1,,an}} es equipotente a NN.

Demostración.

Dado que j:{fNN:f[N]{a0,a1,,an}}NN definida por medio de j(f)=f es una función inyectiva, basta exhibir una función inyectiva de NN en {fNN:f[N]{a0,a1,,an}}.

Denotemos A:={fNN:f[N]{a0,a1,,an}}. Si denotamos B:={fNN:f[N]{a0,a1}}, entonces BA. Para cada χ2N definamos fχ:NN de la siguiente manera fχ(n)={a0si χ(n)=0a1si χ(n)=1
A partir de la definición anterior tenemos que fχB para cada χ2N, lo cual nos permite definir F:2NB por medio de F(χ)=fχ. Resulta que F es una biyección. En efecto, por un lado es inyectiva ya que si F(χ)=F(χ), entonces fχ(n)=fχ(n) para cada nN, de modo que si χ(n)=0 se tiene que a0=fχ(n)=fχ(n) y por tanto χ(n)=0; asimismo, si χ(n)=1 se tiene que a1=fχ(n)=fχ(n) por lo que χ(n)=1. Por tanto χ(n)=χ(n) para cada nN y así χ=χ.
Ahora para mostrar que F es sobreyectiva tomemos fB elemento arbitrario y definamos χ:NN por medio de χ(n)={1si f(n)=a10si f(n)=a0
Luego, fχ=f, pues si nN es tal que f(n)=a1 se tiene que χ(n)=1 por definición de χ y así fχ(n)=a1; por otro lado, si nN es tal que f(n)=a0 se tiene que χ(n)=0 por definición de χ y por ende fχ(n)=a0. Podemos concluir entonces que F(χ)=fχ=f, lo que demuestra que F es sobreyectiva. Por tanto F es una biyección y |2N|=|B|.
Ahora, sean h:NN2N una función biyectiva (la cual sabemos que existe pues |NN|=|P(N)|=|2N|) y ι:BA la función inclusión, es decir, ι(f)=f para cada fB. Luego, ιh:NNA es una función inyectiva.
Por el teorema de Cantor-Schröder-Bernstein concluimos que |NN|=|A|.

◻

Observemos que el corolario muestra que existen una infinidad de subcojuntos propios de NN equipotentes a él. Dado que |P(N)|=|NN|, entonces P(N) también posee una cantidad infinita de subconjuntos propios equipotentes a él. El siguiente ejemplo es uno de tales subconjuntos.

Ejemplo.

El conjunto [N]N:={AN:|A|=|N|} es equipotente a P(N).

Demostración.

Dado que [N]NP(N) lo único que hace falta es exhibir una función inyectiva de P(N) en [N]N.

Consideremos al conjunto de números primos P={pn:nN} donde pn<pn+1 para cada nN. Definamos g:NN[N]N como g(x)={pnx(n)+1:nN}. Dado que para cada xNN, x(n)+10 para toda nN, tenemos que {pnx(n)+1:nN} es un conjunto infinito, por lo que g tiene el codominio adecuado. Por otro lado, g es inyectiva ya que si g(x)=g(y), entonces pnx(n)+1=pny(n)+1 para cada nN por el teorema fundamental de la aritmética y, más aún, x(n)+1=y(n)+1 para cada nN, lo que demuestra que x=y. Si h:P(N)NN es una biyección se sigue que gh:P(N)[N]N es una función inyectiva. Por el teorema de Cantor-Schröder-Bernstein concluimos que |P(N)|=|[N]N|.

◻

Como un ejercicio para esta entrada dejaremos el siguiente ejemplo.

Ejemplo.

N↗N:={fNN:f(n)<f(n+1) para cada nN} es equipotente a [N]N, y por tanto equipotente a P(N).

Para finalizar con esta serie de ejemplos de conjuntos no numerables y equipotentes a P(N) hablaremos del conjunto de números reales.
Para lo que sigue vamos a suponer que ya conocemos todas las propiedades básicas del conjunto de números reales, y si no se conocen dichas propiedades o lo que es un número real, puedes consultar cualquier libro introductorio a la teoría de conjuntos como el de Hernández1, o también puedes consultarlo en un libro de cálculo como el de Spivak2.
Además de lo dicho en el párrafo precedente, estaremos haciendo un abuso de notación escribiendo las contenciones NZQR.
Dicho lo anterior tenemos la siguiente proposición.

Proposición. El intervalo abierto (0,1)={rR:0<r<1} es equipotente a R.

Demostración.

Definamos f:R(0,1) por medio de f(x)={4x+14x+2si x012(12x)si x<0
Lo primero que se debe observar es que la función f tiene el codominio adecuado, es decir, f(x)(0,1) para cada xR. Si x0, entonces, 0<4x+1<4x+2 y por tanto 0<4x+14x+2<1, es decir, f(x)(0,1); por otro lado, si x<0, entonces 0<2x y así 1<12x, lo cual implica que 0<112x<1 y que 0<12(12x)<12<1, es decir, f(x)(0,1). Por tanto, f(x)(0,1) para cada xR. Es importante notar que para x<0 vimos que no sólo se cumple 0<f(x)<1, sino también que 0<f(x)<12. Por otro lado, para x0, tenemos que 0<1+2x1+4x por lo que 14x+12x+1 y por tanto 124x+14x+2; de modo que para x0 no sólo se cumple que f(x)(0,1), sino también que f(x)[12,1).
Veamos ahora que f es una función inyectiva. Sean x,yR con xy. Debido a que R posee un orden lineal podemos suponer que y<x. Tenemos los siguientes casos.
Caso 1. y<0x. En este caso se tiene que f(y)(0,12) mientras que f(x)[12,1), razón por la cual f(x)f(y).
Caso 2. 0y<x. En este caso se tiene que f(y)=4y+14y+2 y f(x)=4x+14x+2. Luego, si ocurriera que 4y+14y+2=4x+14x+2, entonces (4y+1)(4x+2)=(4x+1)(4y+2), lo cual implica (4y+1)(2x+1)=(4x+1)(2y+1), es decir, 8xy+4y+2x+1=8xy+4x+2y+1 y por ende 2y=2x, lo cual contradice que xy. Por tanto, f(x)f(y).
Caso 3. y<x<0. Si ocurriera que f(x)=f(y), entonces 12(12x)=12(12y) y por ende, 12x=12y, de donde x=y y eso contradice la elección de x y y. Por tanto f es una función inyectiva.

Veamos ahora que f es sobreyectiva. Sea r(0,1). Si r(0,12), entonces 2<1r, lo cual implica 12<14r y así x:=1214r es un número real menor a 0; luego, para tal x tenemos que f(x)=12(12x)=12(1(112r))=1212r=r. Si ahora r[12,1), entonces 2r10 y 1r>0, por lo que x:=2r14(1r) es un número real mayor o igual a 0 para el cual se cumple f(x)=4x+14x+2=4(2r14(1r))+14(2r14(1r))+2=2r11r+12r11r+2=2r1+1r1r2r1+22r1r=r1=r. Lo anterior prueba que f es sobreyectiva.

Por lo tanto f es una biyección y |R|=|(0,1)|.

◻

Una consecuencia de la proposición anterior es el siguiente corolario.

Corolario. El intervalo [0,1]:={rR:0r1} es equipotente a R.

Demostración.

Dado que [0,1]R, basta mostrar que existe una función inyectiva de R en [0,1]. Por la proposición anterior existe una función biyectiva f:R(0,1) y así la función F:R[0,1] definida como F(x)=f(x) para cada xR es inyectiva. Por el teorema de Cantor-Schröder-Bernstein concluimos que |R|=|[0,1]|.

◻

Si bien la demostración del corolario anterior fue muy rápida y utilizamos el importante teorema de Cantor-Schröder-Bernstein, siempre resulta interesante determinar una biyección explícita, y precisamente en el caso del corolario anterior lo podemos hacer.

Definamos S:={1n:nN{0}}{0}. Definamos g:[0,1](0,1) por medio de g(x)={xsi xS1n+2si x=1n, nN{0}12si x=0

La función anterior resulta ser una biyección entre [0,1] y (0,1). Primero veremos que g es inyectiva. Sean x,y[0,1] con xy. Tenemos algunos casos.

Caso 1. x,yS. En este caso g(x)=xy=g(y).
Caso 2. xS, yS. Dado que para cada zS se tiene g(z)S, entonces, g(x)S mientras que g(y)=yS. Por tanto g(x)g(y).
Caso 3. xS, yS. Análogo al caso 2.
Caso 4. x,yS. Si x=0 y y=1n con nN{0}, entonces g(x)=12 y g(y)=1n+2. Como n1 se tiene que n+23 y por tanto 121n+2, es decir, g(x)g(y). Análogamente, si y=0 y x=1n con nN{0}, g(x)g(y). Supongamos ahora que x=1n y y=1m con n,mN{0} con nm.
Luego, g(x)=1n+21m+2=g(y) pues de lo contrario tendríamos n+2=m+2 y n=m, lo cual contradice nm.
Los cuatro casos anteriores muestran que g es inyectiva.

Veamos ahora que g es sobreyectiva. Sea x(0,1). Si xS, entonces x=1n con nN, n2, por lo que existe mN tal que m+2=n; si m=0, entonces x=12=g(0) y si m>0, entonces, g(1m)=1m+2=1n=x.
Si xS, entonces g(x)=x. Por tanto, g es sobreyectiva y en consecuencia una biyección. Esto muestra que [0,1] y (0,1) son equipotentes y, por tanto, [0,1] y R son equipotentes. Más aún, contamos con una biyección explícita entre [0,1] y R.

Para exhibir la biyección entre [0,1] y (0,1) utilizamos el hecho de que [0,1] contiene un conjunto numerable, específicamente el conjunto S={1n:nN{0}}{0}. Precisamente este hecho fue el que jugó un papel fundamental, pues como veremos en la siguiente proposición, si X es un conjunto infinito que contiene un conjunto numerable, entonces, para cada AX conjunto finito, se cumple |XA|=|X|.

Proposición. Sea X un conjunto infinito tal que existe una función inyectiva f:NX. Entonces, para cada AX conjunto finito, |XA|=|X|.

Demostración.

Como lo mostrarás en los ejercicios de esta sección, basta mostrar que para cada xX, los conjuntos X{x} y X son equipotentes.

Sea pues xX. Sea f:NX una función inyectiva y denotemos por N a la imagen de f, esto es N:=im(f)={f(n):nN}.

Si xN, definamos g:XX{x} por medio de g(y)={ysi yN{x}f(0)si y=xf(n+1)si y=f(n)

Comprobar que esta función es biyectiva es análogo a como lo hicimos con la función biyectiva que exhibimos entre los intervalos [0,1] y (0,1), por lo que lo dejaremos como un ejercicio para esta entrada.

Supongamos ahora que xN y sea nN tal que x=f(n). Para este caso definamos h:XX{x} por medio de h(y)={ysi yN{f(m):m<n}f(m+1)si y=f(m), mn

Nuevamente, comprobar que esta función es biyectiva es similar a lo que hemos hecho. Esto nos permite concluir que |X{x}|=|X| para cada xX.

◻

La proposición precedente muestra además que todo conjunto que contenga un conjunto numerable es infinito segun Dedekind, pues si tomamos xX, entonces X{x}X y |X{x}|=|X|.

Para culminar la entrada mostraremos que (0,1) y P(N) son equipotentes y que por tanto R y P(N) lo son. Esto lo escribiremos como un teorema.

Teorema. (0,1) y P(N) son equipotentes.

Demostración.

Primero vamos a mostrar la siguiente afirmación: para cada r(0,1), existe una única función χr:NN que satisface χr(n){0,1,2,3,4,5,6,7,8,9} para cada nN y tal que 0xi=0nχr(i)10i<110n.

Sea pues r(0,1). Probaremos por inducción que para cada nN existe una única función χr(n):n+1N tal que χr(n)[n+1]{0,1,2,3,4,5,6,7,8,9} y 0xi=0nχr(n)(i)10i<110n.
Para n=0 definamos χr(0):1N por medio de χr(0)(0)=0. Luego, 0r=rχr(0)(0)100<1=1100. Si y:1N es otra función tal que y(0){0,1,2,3,4,5,6,7,8,9} y 0ry(0)100<1100, entonces, y(0)r<1 y por tanto y(0)=0, ya que el único natural menor a 1 es 0. Por tanto, χr(0)=y, lo que demuestra que para n=0 el enunciado es verdadero.
Supongamos que el resultado es válido para algún n0. Sea χr(n):n+1N la única función de la hipótesis. Primero vamos a demostrar la existencia de una función χr(n+1) con las propiedades deseadas y luego probaremos su unicidad. Dado que 0ri=0nχr(n)(i)10i<110n se sigue que 010n(ri=0nχr(n)(i)10i)<1. Si ocurriera que ri=0nχr(n)(i)10i=0, definimos χr(n+1):n+2N como χr(n+1)(i)={χr(n)(i)si in+10si i=n+1
Definida de esa manera la función χr(n+1) se satisfacen las hipótesis deseadas. Supongamos ahora que 0<ri=0nχr(n)(i)10i y definamos r^:=10n(ri=0nχr(n)(i)10i), número real que sabemos satisface 0<r^<1. Consideremos el conjunto A={mN:m10r^}, el cual es no vacío ya que 0<r^ y por tanto 010r^; además, A es acotado superiormente ya que r^<1 y por tanto 10r^<10, de modo que si mA, entonces m<10. Así, existe a=max(A), el cual es un natural dentro del conjunto {0,1,2,3,4,5,6,7,8,9}. Por la maximalidad de a se tiene que 10r^<a+1 y así a10r^<a10+110, es decir, 0r^a10<110.
Luego, dado que r^=10n(ri=0nχr(n)(i)10i) se sigue que 0ri=0nχr(n)(i)10ia10n+1<110n+1. Si definimos χr(n+1):n+2N por medio de χr(n+1)(i)={χr(n)(i)si in+1asi i=n+1

entonces χr(n+1) es una función que satisface las condiciones deseadas. Así, hemos demostrado la existencia de una función con las características requeridas. Veamos que ésta es única. Supongamos que η:n+2N es otra función que satisface las mismas propiedades que χr(n+1).
Luego, en particular, 0ri=0n+1η(i)10i<110n+1 y por tanto 0ri=0nη(i)10i<110n+1+η(n+1)10n+1110n+1+910n+1=1010n+1=110n. De este modo, la función ηn+1:n+1N satisface las mismas condiciones que la función χr(n), y por la unicidad de esta última función se sigue que η(i)=χr(n)(i) para cada in+1. Así, la función η coincide con la función χr(n+1) en n+1, por lo que resta probar que η(n+1)=χr(n+1)(n+1)=a.
Sabemos que 0ri=0nχr(n+1)(i)10iη(n+1)10n+1<110n+1 y por tanto, 010n+1(ri=0nχ(n+1)(i)10i)η(n+1)<1, es decir, η(n+1)10r^<η(n+1)+1, de modo que η(n+1)A y por tanto η(n+1)a=χr(n+1)(n+1). Podemos elegir k{0,1,2,3,4,5,6,7,8,9} tal que η(n+1)+k=a y tenemos a=η(n+1)+k10r^, razón por la cual k10r^η(n+1)<(η(n+1)+1)η(n+1)=1 y en consecuencia, k=0. Por tanto, η(n+1)=a=χr(n+1)(n+1). Esto demuestra la unicidad de χr(n+1).

Por lo tanto, para cada nN existe una única función χr(n):n+1N tal que χr(n)[N]{0,1,2,3,4,5,6,7,8,9} y 0ri=0nχr(n)(i)10i<110n. En el proceso de la demostración de la existencia y unicidad de tales funciones, mostramos además que si χr(n+1):n+2N es la única función con tales propiedades, entonces, χr(n)=χr(n+1)n+1, lo que muestra que el conjunto de funciones F:={χr(n):nN} es un sistema de funciones compatibles y, por tanto, χr=F:NN es la única función con las propieades que enunciamos en la afirmación.

Estamos entonces en condiciones de definir una función F:(0,1){fNN:f[N]{0,1,2,3,4,5,6,7,8,9}} por medio de F(r)=χr. Dicha función es inyectiva, ya que si χr=χr, entonces, para cada nN, |rr|=|ri=0nχr(i)10i+i=0nχr(i)10ir| |ri=0nχr(i)10i|+|i=0nχr(i)10ir| <110n+110n=210n lo cual muestra que |rr|=0, es decir, r=r. Por tanto, existe una función inyectiva de (0,1) en NN, de modo que |(0,1)||NN|=|P(N)|.

Ahora vamos a definir una función inyectiva de 2N en (0,1). Sea f2N y veamos que la sucesión de números racionales (i=0nf(i)10i+1)nN converge. Dado que f(i){0,1} para cada iN, la sucesión (i=0nf(i)10i+1)nN es no decreciente. Luego, para cada nN, 0i=0nf(i)10i+1i=0n110i+1=i=1n+1110i=1110n+211101=1110n+2(910)1<1(910)1=1091=19<1, por lo que dicha sucesión está acotada inferiormente por 0 y superiormente por 19 y, por tanto, converge a algún número real en el intervalo [0,19]. Sea rf[0,19] el límite de dicha sucesión.
Si la función f no es la constante cero, entonces, rf(0,19], ya que existe NN tal que f(N)=1 y por tanto, para cada nN, 110N+1i=0nf(i)10i+1rf.
Dado que el número real rf es único para cada f2N, estamos en condiciones de definir la siguiente función: sea G:2N[0,1) tal que G(f)={rfsi f00si f=0

Veamos que G es inyectiva. Por la definición de G sabemos que si f0, entonces G(f)G(0). Ahora, sean f,h2N funciones no cero tales que rf=G(f)=G(h)=rh. Veamos que f(n)=h(n) para cada nN.
Algo que será de utilidad para probar esto último es la desigualdad i=n+1m110i<1210n, la cual es cierta para cualesquiera n,mN tales que n<m. En efecto, si n,mN con n<m, tenemos i=n+1m110i=i=0m110ii=0n110i=1110m+111101110n+11110=110n+1110m+1(910)=110n110m9 y este número racional es menor que 1210n, pues 110n110m<110n<92110n, pues 1<92. Por tanto, para cualesquiera n,mN con n<m, i=n+1m110i<1210n.

Ahora sí, veamos que f(n)=h(n) para cada nN.
Dado que las sucesiones de números racionales (i=0nf(i)10i+1)nN y (i=0nh(i)10i+1)nN convergen al número real rf, existe mN tal que para cada n>m, 0rfi=0nf(i)10i+1<1410 y 0rfi=0nh(i)10i+1<1410. Luego, |i=0m+1f(i)10i+1i=0m+1h(i)10i+1|=|i=0m+1f(i)10i+1rf+rfi=0m+1h(i)10i+1| |i=0m+1f(i)10i+1rf|+|rfi=0m+1h(i)10i+1|<1410+1410=1210. Por otro lado, |f(0)h(0)10||i=1m+1f(i)h(i)10i+1||i=0m+1f(i)h(i)10i+1|<1210 y así |f(0)h(0)10|<1210+|i=1m+1f(i)h(i)10i+1|1210+i=1m+1|f(i)h(i)|10i+1. Dado que |f(i)h(i)|={1si {f(i),h(i)}={0,1}0si f(i)=h(i)=0 o f(i)=h(i)=1 entonces, |f(i)h(i)|1 para cada iN y, como i=1m+1110i+1=i=2m+2110i<1210, se sigue que |f(0)h(0)|101210+i=1m+1110i+1<110 lo cual implica que |f(0)h(0)|=0, es decir, f(0)=h(0). Supongamos que para algún nN hemos probado que f(m)=h(m) para cada mn y veamos que f(n+1)=h(n+1).
Sea mN, mn+1, tal que para cada k>m, |rfi=0kf(i)10i+1|<1410n+2 y |rfi=0kh(i)10i+1|<1410n+2.
Luego, |i=n+1m+1f(i)h(i)10i+1|=|i=0m+1f(i)h(i)10i+1||rfi=0m+1f(i)10i+1|+|rfi=0m+1h(i)10i+1|<1210n+2. Por otro lado, |f(n+1)h(n+1)|10n+2|i=n+2m+1f(i)h(i)10i+1||i=n+1m+1f(i)h(i)10i+1|<1210n+2 por lo que |f(n+1)h(n+1)|10n+2<1210n+2+|i=n+2m+1f(i)h(i)10i+1|1210n+2+i=n+2m+1|f(i)h(i)|10i+1 1210n+2+i=n+2m+1110i+1=1210n+2+i=n+3m+2110i<1210n+2+1210n+2=110n+2
y en consecuencia, |f(n+1)h(n+1)|=0, es decir, f(n+1)=h(n+1). Por tanto, para cada nN, f(n)=h(n), lo que demuestra que f=h.
Así, la función G es inyectiva y, por consiguiente, |2N||[0,1)|. Dado que |[0,1)|=|(0,1)|, se sigue que |P(N)|=|2N||(0,1)|. Por el teorema de Cantor-Schröder-Bernstein concluimos que |(0,1)|=|P(N)|.

◻

Concluimos la entrada con el siguiente corolario, cuya prueba es consecuencia del teorema anterior y el hecho que |R|=|(0,1)|.

Corolario. R y P(N) son equipotentes.

◻

Tarea moral

  1. Demuestra que el conjunto N↗N:={fNN:f(n)<f(n+1) para cada nN} es equipotente a [N]N.
  2. Demuestra que para cualquier conjunto infinito X que contenga un conjunto numerable se cumple que |XA|=|X|, para cada AX conjunto finito.
  3. Sean a,bR con a<b. Demuestra que |(a,b)|=|(0,1)|.
  4. Exhibe una biyección entre R y [0,):={rR:r0}.

Más adelante…

En la siguiente entrada introduciremos uno de los axiomas más relevantes de la teoría de conjuntos, el axioma de elección. Dicho axioma nos permitirá responder algunas de las interrogantes que quedaron abiertas en secciones anteriores y, además, veremos algunas de sus sorpredentes consuecuencias.

Entradas relacionadas

  1. Hernández, F., Teoría de Conjuntos, México: Aportaciones Matemáticas No.13,
    SMM, 1998 ↩︎
  2. Spivak, M., Cálculo Infinitesimal (2a ed). México: Reverté, 1998. ↩︎