Entrada destacada

Geometría Analítica I: Introducción al curso

Por Leonardo Ignacio Martínez Sandoval

Introducción

Bienvenido al curso de Geometría Analítica I. A través de esta serie de entradas cubriremos el temario oficial del programa de la materia tal y como se requiere en la Facultad de Ciencias de la UNAM. Esto incluye desarrollar no sólo habilidades para ejecutar procedimientos («hacer cuentitas»), sino también aquellas que nos permitan deducir los resultados que obtendremos a través de razonamientos lógicos («demostrar»).

Pre-requisitos del curso

En la mayoría de las entradas seguiremos un flujo matemático, en el cual escribiremos definiciones, proposiciones, ejemplos, teoremas y otro tipo de enunciados matemáticos. Siempre que digamos que algo sucede, es importante argumentar o justificar por qué es esto, es decir, que demos una demostración. Las demostraciones nos ayudarán a justificar que ciertos procedimientos (para encontrar distancias, ángulos, etc.) son válidos.

Para entender un poco más al respecto, te recomendamos leer las siguientes dos entradas, o incluso llevar a la par un curso de Álgebra Superior I:

Además de estos pre-requisitos de pensamiento lógico, también es importante que recuerdes algunos de los conceptos fundamentales de geometría (punto, línea, segmento, triángulo, distancia, etc.). Si bien todo lo construiremos «desde cero», el recordar estos conceptos te ayudará mucho en la intuición de por qué ciertas cosas las definimos como lo haremos, y por qué ciertos enunciados que planteamos «deben ser ciertos».

Finalmente, también supondremos que sabes manejar a buen nivel las operaciones y propiedades en $\mathbb{R}$, los números reales. Por ejemplo, que la suma es conmutativa ($a+b=b+a$), que se distribuye con el producto ($a(b+c)=ab+ac$), etc. Si bien en otros cursos se definen a los reales con toda formalidad, para este curso sólo será importante que sepas hacer estas operaciones.

La idea fundamental

La geometría se trata de figuras, de ver, de medir. El álgebra se trata de sumar, de operar, de comparar. La idea clave que subyace a la geometría analítica, como la veremos en este curso, es la siguiente:

La geometría y el álgebra son complementarias e inseparables, ninguna con más importancia sobre la otra. Podemos entender al álgebra a partir de la geometría, y viceversa.

Un ejemplo muy sencillo que se ve desde la educación básica es que la suma de reales se corresponde con «pegar segmentos». Si en la recta real tenemos un segmento de longitud $a$ y le pegamos un segmento de longitud $b$, entonces el segmento que se obtiene tiene longitud $a+b$. Si bien es obvio, cuando estemos estableciendo los fundamentos tendremos que preguntarnos, ¿por qué pasa? ¿qué es pegar segmentos?

Nuestro objetivo será entender a profundidad muchas de estas equivalencias.

Interactivos

En este curso procuraremos incluir interactivos para que explores las ideas que vayamos introduciendo. Si bien un interactivo no reemplaza a una demostración, lo cierto es que sí ayuda muchísimo a ver más casos en los cuales una proposición o teorema se cumple. Nuestros interactivos están hechos en GeoGebra y necesitarás tener activado JavaScript en tu navegador.

En el siguiente interactivo puedes mover los puntos $A$, $B$ y $C$. Observa como la suma de dos segmentos siempre es igual al tercero. ¿Qué pasa si $B$ «se pasa de $C$»? ¿Cuál segmento es la suma de los otros dos?

Te recomendamos fuertemente que dediques por lo menos un rato a jugar con los interactivos: intenta ver qué se puede mover, qué no, qué cosas piensas que suceden siempre y para cuales crees que haya ejemplos que fallen.

Más adelante…

En esta entrada platicamos de cómo son las notas del curso en general. Platicamos de pre-requisitos y de la idea fundamental que subyace al curso. A partir de la siguiente entrada comenzaremos con el tratamiento teórico de la materia. Hablaremos de dos visiones de geometría: la sintética y la analítica. Veremos un primer resultado que nos dice que, en realidad, ambas están muy relacionadas entre sí.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Escribe en una hoja de papel o en un documento digital qué significan para ti los siguientes términos: punto, línea, círculo, plano, semiplano, elipse, intersección, alineado, longitud, ángulo, dirección, vector. ¿En cuáles de estas palabras tuviste que usar las otras? ¿En cuáles no? Más adelante formalizaremos cada una de estas.
  2. Explora el inicio del siguiente libro digital: Euclides de Byrne.
  3. Si aprendes a manejar GeoGebra por tu cuenta, podrás hacer interactivos tú mismo. Si te interesa esto, revisa el siguiente curso de GeoGebra.
  4. ¿Cómo le harías para a cada punto del plano asociarle una pareja de números reales? ¿Cómo le harías para a cada pareja de números reales asociarle un punto en el plano?
  5. Si la suma de números corresponde a pegar segmentos, ¿a qué corresponde la multiplicación de números?

Entradas relacionadas

Geometría Moderna II: Teorema de Pascal, Brianchon y Pappus

Por Armando Arzola Pérez

Introducción

Tres teoremas importantes en la razón cruzada son el Teorema de Pascal, Brianchon y Pappus. Con estos se muestran propiedades de colinealidad y concurrencia.

Teorema de Pascal

Sea un hexágono inscrito en una circunferencia, los puntos de intersección de sus lados opuestos son colineales.

Demostración. Sea el hexágono inscrito $ABCDEF$ en la circunferencia $O$, donde sus lados opuestos $AB,DE$, $BC,EF$ y $CD,FA$ se intersecan en los puntos $P,Q$ y $R$ son colineales. Ahora $FA$ interseca a $DE$ en $H$ y $EF$ interseca a $CD$ en $K$.

Pascal 1

Por propiedades de razón cruzada en la circunferencia se tiene $A\{EDBF\}=C\{EDBF\}$ y por lo cual $\{EDPH\}=\{EKQF\}$, como se observa en la siguiente imagen.

Pascal 2


Así mismo se tiene que al unir $R$ con estos puntos se cumple la propiedad $R\{EDPH\}=R\{EKQF\}$. Donde $RE$ coincide con $RE$, $RD$ coincide con $RK$ y $RH$ coincide con $RF$, por ende estos dos haces coinciden en la primera, segunda y cuarta recta, y al tener 3 rectas y una constante distinta de -1, es posible construir una única cuarta recta tal que la razón cruzada sea la constante elegida por ello $RP$ coincide con $RQ$. Y, por lo tanto, $PQR$ son colineales y a esta es la línea de Pascal del hexágono.

Pascal 3

$\square$

Teorema de Brianchon

Este es un teorema dual al de Pascal, el cual es aplicable a hexágonos circunscritos a cualquier sección cónica. En nuestro caso se mostrará para una circunferencia.

Teorema. Sea un hexágono circunscrito a una circunferencia, entonces las líneas que unen sus vértices opuestos son concurrentes.

Demostración. Sea el hexágono $ABCDEF$ circunscrito a la circunferencia $O$, ahora los puntos de tangencia de los lados del hexágono $ABCDEF$ son los vértices del hexágono $A’B’C’D’E’F’$.

Brianchon 1

Si observamos los lados opuestos del hexágono $A’B’C’D’E’F’$ estos se intersecan de la siguiente forma:

  • $A’B’$ y $D’E’$ en $P$
  • $B’C’$ y $E’F’$ en $Q$
  • $C’D’$ y $F’A’$ en $R$
Brianchon 2

Por propiedad de los Polos y Polares, las polares de $A$ y $D$ pasan por $P$ y la polar de $P$ es $AD$. De igual forma, la polar de $Q$ es $BE$ y la polar de $R$ es $CF$, y por el Teorema de Pascal el hexágono inscrito $A’B’C’D’E’F’$ los puntos de intersección de sus lados opuestos $P$, $Q$ y $R$ son colineales, y por lo cual sus polares $AD$, $BE$ y $CF$ son concurrentes y a este es el punto de Brianchon.

Brianchon 3

$\square$

Teorema de Pappus

Si los vértices de un hexágono están alternativamente en dos líneas rectas, entonces la intersección de los pares de lados opuestos genera puntos los cuales son colineales.

Demostración. Este es un caso especial del Teorema de Pascal para un hexágono inscrito en una sección cónica. Sea el hexágono $ABCDEF$, donde la intersección de los lados opuestos son:

  • $AB$ y $DE$ en $P$
  • $BC$ y $EF$ en $Q$
  • $CD$ y $FA$ en $R$

Se tiene que $AF$ interseca a $ED$ en $H$, y $EF$ interseca a $CD$ en $K$.

Pappus 1

Por lo cual $A\{EBDF\}$ es igual a $C\{EBDF\}$, entonces $\{EPDH\}=\{EQKF\}$.

Pappus 2

Uniendo $RQ$ los cuatro puntos de las líneas $ED$ y $EF$, se tiene que $R\{EPDH\}=R\{EQKF\}$.
Ahora como $RE$ coincide con $RE$, $RD$ coincide con $RK$ y $RH$ coincide con $RF$, entonces $RP$ y $RQ$ coinciden, por lo tanto, $P$, $Q$ y $R$ son colineales.

Pappus 3

$\square$

Más adelante…

Otro tema interesante por abordar es la involución tanto en Hileras de puntos como Haces de líneas.

Entradas relacionadas

Mutiplicadores de Lagrange

Por Angélica Amellali Mercado Aguilar

$\textcolor{Red}{\textbf{Extremos Restringidos (Multiplicadores de Lagrange)}}$

Supongase que se quieren hallar los valores extremos (máximo ó mínimo) de una función $f(x,y)$ sujeta a la restircción $x^2+y^2=1$; esto es, que $(x,y)$ está en el circulo unitario. Con mayor generalidad, podemos necesitar maximizar o minimizar $f(x,y)$ sujeta a la condición adicional de que $(x,y)$ también satisfaga una ecuación $g(x,y)=c$ donde $g$ es alguna función y $c$ es una constante. En el ejemplo $g(x,y)=x^2+y^2$ y $c=1$]. El conjunto de dichas $(x,y)$ es un conjunto de nivel de $g$.

En general, sean $f:u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ y $g: u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ funciones $C^1$ dadas, y sea $S$ el conjunto de nivel de $g$ con valor $c$. Recordar que el conjunto de nivel son los puntos $x\in
\mathbb{R}^n$ con $g(x)=c$] Cuando $f$ se restringe a $S$, de nuevo tenemos el concepto de máximos locales o mínimos locales de $f$ (extremos locales), y un máximo (valor mayor) o un minimo absoluto (valor menor) debe ser un extremo local.

$\textbf{Teorema.- Método de los multiplicadores de lagrange.}$ Sean $f:u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ y $g: u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ funciones $C^1$ con valores reales dados. Sean $x_0 \in u$ y $g(x_0)=c$, y sea $S$ el conjunto de nivel de $g$ con valor $c$. Suponer $\nabla g(x_0)\neq 0$.
Si $f|_s$ (f restringida a s) tiene un máximo o un mínimo local en $S$, en $x_0$, entonces existe un número real $\lambda$ tal que $\nabla f(x_0)=\lambda\nabla g(x_0)$.

$Demostrción$ Para $n=3$ el espacio tangente o plano tangente de $S$ en $x_0$ es el
espacio ortogonal a $\nabla g(x_0)$ y para $n$ arbitraria podemos dar la misma definición de espacio tangente de $S$ en $x_0$. Esta definición se puede motivar al considerar tangentes a trayectorias $c(t)$ que estan en $s$, como sigue: si $c(t)$ es una trayectoria en $S$ y $c(0)=x_0$, entonces $c'(0)$ es un vector tangente a $S$ en $x_0$, pero $$\frac{dg(c(t))}{dt}=\frac{d}{dt}(c)=0$$
Por otro lado usando regla de la cadena
$$\left.\frac{d}{dt}g(c(t))\right|_{t=0}=\nabla g(x_0)\cdot c'(0)$$
de manera que $\nabla g(x_0)\cdot c'(0)=0$, esto es, $c'(0)$ es ortogonal a $\nabla g(x_0)$.

Si $f|s$ tiene un máximo en $x_0$, entonces $f(c(t))$ tiene un máximo en $t=0$. Por cálculo de una variable, $\displaystyle\left.\frac{df(c(t))}{dt}\right|{t=0}=0$. Entonces por regla de la cadena $$0=\displaystyle\left.\frac{df(c(t))}{dt}\right|_{t=0}=\nabla f(x_0)\cdot c'(0)$$
Asi, $\nabla f(x_0)$ es perpendicular a la tangente de toda curva en $S$ y entonces tambien es perpendicular al espacio tangente completo de $S$ en $x_0$. Como el espacio perpendicular a este espacio tangente es una recta, $\nabla f(x_0)$ y $\nabla
g(x_0)$ son paralelos. Como $\nabla g(x_0)\neq 0$, se deduce que $\nabla f(x_0)$ es multiplo de $\nabla g(x_0)$.

$\textbf{Corolario.}$ Si $f$ al restringirse a una superficie $S$, tiene un máximo o un mínimo local en $x_0$, entonces $\nabla f(x_0)$ es perpendicular a $S$ en $x_0$.La geometria de los valores extremos restringidos.

$\textbf{Ejemplo.}$ Sea $S\subset\mathbb{R}^2$ la recta que pasa por $(-1,0)$ inclinada a $45^{o}$, y sea $f:\mathbb{R}^2 \rightarrow \mathbb{R}$ daa asi $f(x,y)=x^2+y^2$. Hallar los extremos de $f|_s$.

$Solución.$ Aqui $S=\left\{(x,y) | y-x-1=0 \right\}$ y por lo tanto hacemos $g(x,y)=-y-x-1$ y $c=0$. Tenemos $\nabla g(x,y)=-i+j \neq 0$. Los extremos relativos de $f|_s$ deben hallarse entre los puntos en que $\nabla f$ es ortogonal a $S$, esto es, inclinada a $-45^{o}$. Pero $\nabla f (x,y)=(2x.2y)$, que tiene la pendiente deseada sólo cuando $x=-y$, o cuando $(x,y)$ está sobre la recta L, que pasa por el origen inlinada a $-45^{o}$. Esto puede suceder en el conjunto $S$ sólo para el unico punto en
el que se intersecan L y S. Al referirnos a las curvas de nivel de $f$ se indica que este punto $(-\frac{1}{1},\frac{1}{2})$ es un mínimo relativo de $f|_s$ (Pero no de $f$).

$\textbf{Ejemplo.}$ Sea $f:\mathbb{R}^2\rightarrow \mathbb{R}$ dada asi $f(x,y)=x^2-y^2$ y sea $S$ el círculo de radio 1 alrededor del origen. Hallar los extremos de $f|_s$.

$Solución.$ El conjunto $S$ es la curva de nivel para $g$ con valor $t$. Donde $g:\mathbb{R}^2\rightarrow \mathbb{R}$, $(x,y) \rightarrow x^2+y^2$. La condición de que $\nabla f=\lambda \nabla g$ en $x_0$, es decir que $\nabla f$ y $\nabla g$ son pararlelos en $x_0$, es la misma que las curvas de nivel sean tangentes en $x_0$. Asi los puntos extremos de $f |_s$ son $(0,\pm 1)$ y $(\pm1,0)$. Evaluando $f$ hallamos que $(0,\pm 1)$ son mínimos y $(\pm1,0)$ son máximos. Usando Multiplicadores de
lagrange $\nabla f(x,y)=(2x,2y)$ y $\nabla g(x,y)=(2x,2y)$\ $\therefore$ \quad $(2x,-2y)=\lambda(2x,2y)$ cuya solución es $(0,\pm 1)$, $(\pm1,0)$.

$\textbf{Ejemplo.}$ Maximizar la función $f(x,y,z)=x+z$ sujeta a la restricción $x^2+y^2+z^2=1$

$Solución.$ Buscamos $\lambda$ y $(x,y,z)$ tales que $1=2x\lambda$, $0=2y\lambda$ y $1=2z\lambda$ $x^2+y^2+z^2=1$ la solución es $(\frac{1}{\sqrt{2}},0,\frac{1} {\sqrt{2}})$, $(-\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})$ comprobando los valores de $f$ en estos puntos podemos ver que el primer punto produce el máximo de $f$ y el segundo el mínimo.

$\textbf{Ejemplo.}$ Hallar los puntos extremos de $f(x,y,z)=x+y+z$ sujeto a las dos condiciones $x^2+y^2=2$ y $x+z=1$

$Solución.$ Aquí hay dos restricciones $g_1=(x,y,z)=x^2+y^2-2=0$ $g_2(x,y,z)=x+z-1=0$ asi, debemos encontrar $x,y,z,\lambda_1$ y $\lambda_2$ tales que $$\nabla f(x,y,z)=\lambda_1 \nabla g (x,y,z)+ \lambda_2 \nabla g_2(x,y,z)$$
$$g_1(x,y,z)=0 \quad y \quad g_2(x,y,z)=0$$
Calculando gradientes e igualando componentes, obtenemos


$\begin{eqnarray}
1=\lambda_1\cdot 2x+\lambda_2\cdot 1\\
1=\lambda_1 2y+\lambda_2\cdot 0\\
1=\lambda_1\cdot 0 + \lambda_2\cdot 1\\
x^2+y^2=2\\
x+z=1
\end{eqnarray}$


De (3) $\lambda_2=1$ y asi $2x\lambda_1=0$, $2y\lambda_1=1$.

Como la segunda implica $\lambda_1\neq 0$ $x=0$. Asi $y=\pm\sqrt{2}$ y $z=1$. Entonces los extremos deseados son $(0,\pm\sqrt{2},1)$.

Por inspección $(0,\sqrt{2},1)$ da un máximo relativo y $(0,-\sqrt{2},1)$ un mínimo relativo.

La condición $x+z=1$ implica que $z$ tambien está acotada. Se deduce que el conjunto de restricciones $S$ es cerrada y acotada,

Por lo tanto $f$ tiene un máximo y un mínimo en $S$ que se deben alcanzar en $(0,\sqrt{2},1)$ y $(0,-\sqrt{2},1)$ respectivamente.

Extremos Locales (parte 2)

Por Angélica Amellali Mercado Aguilar

Extremos Locales parte 2 pequeño

Para el caso de funciones $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$ tenemos que recordando un poco de la expresión de taylor
$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial z}\right){p}(z-z_{0})+$$

$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial
x^{2}}{p}(x-x_{0})^{2}+2\frac{\partial^{2}f}{\partial x \partial
y}{p}(x-x_{0})(y-y_{0})+\frac{\partial^{2}f}{\partial
y^{2}}{p}(y-y_{0})^{2}+2\frac{\partial^{2}f}{\partial
x\partial z}{p}(z-z_{0})(x-x_{0})+2\frac{\partial^{2}f}{\partial
y\partial z}{p}(z-z_{0})(y-y_{0})\right)}$$
$$\textcolor{Red}{+\frac{\partial^{2}f}{\partial
z^{2}}{p}(z-z_{0})}$$

Haciendo $x-x_{0}=h_{1},y-y_{0}=h_{2},z-z_{0}=h_{3}$ podemos escribir el término rojo de la siguiente manera
$$\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}\right)$$

y también se puede ver como producto de matrices
$$\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

Si $(x_{0},y_{0},z_{0})$ es un punto critico de la función entonces en la expresión de Taylor
$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial
x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial
y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial
z}\right){p}(z-z_{0})$$
$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial
x^{2}}{p}(x-x_{0})^{2}+2\frac{\partial^{2}f}{\partial x \partial
y}{p}(x-x_{0})(y-y_{0})+\frac{\partial^{2}f}{\partial
y^{2}}{p}(y-y{0})^{2}+2\frac{\partial^{2}f}{\partial
x\partial z}{p}(z-z{0})(x-x_{0})+2\frac{\partial^{2}f}{\partial
y\partial z}{p}(z-z_{0})(y-y_{0})\right)}$$
$$\textcolor{Red}{+\frac{\partial^{2}f}{\partial
z^{2}}{p}(z-z_{0})(x-x_{0})}$$

El término
$$\frac{\partial f}{\partial x}{p}(x-x_{0})+\frac{\partial f}{\partial y}{p}(y-y_{0})+\frac{\partial f}{\partial z}{p}(z-z_{0})=0$$
y por lo tanto
$$f(x,y)-f(x_{0},y_{0})=\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$
vamos a determinar el signo de la forma
$$Q(h)=\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

vamos a trabajar sin el término $\displaystyle{\frac{1}{2!}}$ que no afectara al signo de la expresión, tenemos entonces

$$Q(h)=(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)=\textcolor{Red}{\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$


$$=\textcolor{Red}{\frac{\partial^{2}f}{\partial x^{2}}\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right)^{2}+\left(\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)h_{2}^{2}}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

$$=\textcolor{Red}{\frac{\partial^{2}f}{\partial x^{2}}\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right)^{2}+\left(\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)h_{2}^{2}}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

hacemos $\displaystyle{b_{1}=\frac{\partial^{2}f}{\partial x^{2}},h_{1}’=\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right),b_{2}=\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}},~~h_{2}’=h_{2}}$ y obtenemos
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
que podemos escribir

$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}-\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right)h_{3}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}\left(h_{1}’-\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}’\right)h_{3}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{1}’h_{3}+\left(2\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)h_{2}’h_{3}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
hacemos

$$2b_{23}=2\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}$$y obtenemos
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{1}’h_{3}+2b_{23}h_{2}’h_{3}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
que se puede escribir

$$=b_{1}\left(h_{1}’^{2}+2\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{1}’h_{3}+\left(\frac{\frac{\partial^{2}f}{\partial x\partial z}h_{3}}{b_{1}}\right)^{2}\right)+b_{2}\left(h_{2}’^{2}+2\frac{b_{23}}{b_{2}}h_{2}’h_{3}+\left(\frac{b_{23}}{b_{2}}h_{3}\right)^{2}\right)+\left(\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}\right)h_{3}^{2}$$
hacemos
$$b_{3}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}$$
y obtenemos

$$=b_{1}\left(h_{1}’^{2}+2\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{1}’h_{3}+\left(\frac{\frac{\partial^{2}f}{\partial x\partial z}h_{3}}{b_{1}}\right)^{2}\right)+b_{2}\left(h_{2}’^{2}+2\frac{b_{23}}{b_{2}}h_{2}’h_{3}+\left(\frac{b_{23}}{b_{2}}h_{3}\right)^{2}\right)+b_{3}h_{3}^{2}$$
$$=b_{1}\left(h_{1}’+\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{3}\right)^{2}+b_{2}\left(h_{2}’+\frac{b_{23}}{b_{2}}h_{3}\right)^{2}+b_{3}h_{3}^{2}$$
esta última expresión será positiva si y solo si $b_{1}>0~~b_{2}>0$ y $b_{3}>0$ en clases pasadas vimos los dos primeros, veamos ahora que $$b_{3}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}>0$$
tenemos entonces que

$$\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial z^{2}}}-\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)^{2}}{\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}}$$

$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}-\frac{\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\left(\frac{\partial^{2}f}{\partial x^{2}}\right)^{2}}}{\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}}=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}-\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)\frac{\partial^{2}f}{\partial x^{2}}}$$

$$=\frac{\left(\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\right)\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)-\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$

$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}+\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\left(\frac{\partial^{2}f}{\partial y\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial x^{2}}\right)^{2}-}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$

$$\frac{2\left(\frac{\partial^{2}f}{\partial x^{2}}\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)-\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$
$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial z^{2}}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\frac{\partial^{2}f}{\partial y^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}-\left(\frac{\partial^{2}f}{\partial y\partial z}\right)^{2}\frac{\partial^{2}f}{\partial x^{2}}+2\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}$$
$$=\frac{\left|\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right|}{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}$$

por lo tanto
$$b_{3}>0~\Leftrightarrow~\left|\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right|>0$$

Definición 1. La forma $Q(x)=xAx^{t}$, que tiene asociada la matriz A (respecto a la base canónica de $\mathbb{R}^{n}$) se dice:
$\textcolor{Red}{\textbf{Definida positiva}}$, si $Q(x)>0~\forall x \in~\mathbb{R}^{n}$
La forma $Q(x)=xAx^{t}$, que tiene asociada la matriz A (respecto a la base canónica de $\mathbb{R}^{n}$) se dice:
$\textcolor{Red}{\textbf{Definida negativa}}$, si $Q(x)<0~ \forall x \in~\mathbb{R}^{n}$

Definición 2. Si la forma $Q(x)=xAx^{t}$ es definida positiva, entonces f tiene un mínimo local en en x.
Si la forma $Q(x)=xAx^{t}$ es definida negativa, entonces f tiene un máximo local en en x.

Hay criterios similares para una matriz simetrica $A$ de $n\times n$ y consideramos las $n$ submatrices cuadradas a lo largo de la diagonal, $A$ es definida positiva si y solo si los determinantes de estas submatrices diagonales son todos mayores que cero. Para $A$ definida negativa los signos deberan alternarse $<0$ y $>0$. En casi de que los determinantes de las submatrices diagonales sean todos diferentes de cero pero que la matrix no sea definida positiva o negativa, el punto crítico es tipo silla. Y por lo tanto el punto no es máximo ni mínimo. Asi tenemos el siguiente resultado.

Definición 3. Dada una matriz cuadrada $A=a_{ij}j=1,…,ni=1,…,n$ se consideran las submatrices angulares $A_{k}k=1,…,n$ definidas como $$A_{1} (a_{11})~A_{2}=\left(\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{matrix}\right)~~A_{3}=\left(\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{matrix}\right),\cdots,A_{n}=A$$
se define $\det A_{k}=\triangle_{k}$

Definición 4. Se tiene entonces que que la forma $Q(x)=xAX^{t}$ es definida positiva si y solo si todos los dterminantes $\triangle_{k}~~k=1,…,n$ son números positivos.

Definición 5. La forma $Q(x)=xAX^{t}$ es definida negativa si y solo si los dterminantes $\triangle_{k}k=1,…,n$ tienen signos alternados comenzando por $\triangle_{1}<0,\triangle_{2}>0,…$ respectivamente.

Ejemplo. Consideremos la función $f:\mathbb{R}^3\rightarrow
\mathbb{R}$ $f(x,y,z)=\sin x +\sin y + \sin z -\sin(x+y+z)$, el punto $P=\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ es
un punto crítico de $f$ y en ese punto la matriz hessiana de

$f$ es $$H(p)=\left[
\begin{array}{ccc}
-2 & -1 & -1 \\
-1 & -2 & -1 \\
-1 & -1 & -2 \
\end{array}
\right]
$$
los determinantes de las submatrices angulares son
$$\Delta_1=det(-2)\qquad \quad $$ $$\Delta_2=det \left[
\begin{array}{cc}
-2 & -1 \\
-1 & -2 \
\end{array}
\right]$$

$$\Delta_3=det H(p)=-4$$ puesto que son signos alternantes con $\Delta t< 0$ concluimos que la funcion $f$ tiene en $\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ un máximo local. Este máximo local vale $f\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)=4$

Extremos Locales

Por Angélica Amellali Mercado Aguilar

Introducción

Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor.

Definición 1. Si $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es una función escalar, dado un punto $x_0 \in u$ se llama mínimo local de $f$ si existe una vecindad $v$ de $x_0$ tal que $\forall x \in v$, $f(x)> f(x_0)$. De manera análoga, $x_0 \in u$ es un máximo local si existe una vecindad $v$ de $x_0$ tal que $f(x)< f(x_0)$ $\forall \quad x \in v$. El punto $x_0 \in u$ es un extremo local o relativo, si es un mínimo local o máximo local.

Un punto $x_0$ es un punto crítico de $f$ si $Df(x_0)=0$.

Un punto crítico que no es un extremo local se llama punto silla.

Teorema 1. $\textcolor{Red}{\textbf{Criterio de la primera derivada}}$ Si $u \in \mathbb{R}$ es abierto, la función $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es diferenciable y $x_0 \in u$ es un extremo local entonces $\nabla f(x_0)=0$, esto es $x_0$ es un punto crítico de $f$.

Demostración. Supongamos que $t$ alcanza su máximo local en $x_0$. Entonces para cualquier $h \in \mathbb{R}^n$ la función $g(t)=f(x_0+th)$ tiene un máximo local en $t=0$. Asi, del cálculo de una variable $g'(0)=0$ ya que como $g(0)$ es máximo local, $g(t)\leq g(0)$ para $t > 0$ pequeño
$$\therefore \quad g'(0)=\displaystyle\lim_{t \rightarrow t_0^+}\frac{g(t)-g(0)}{t}=0$$
Análogamente para $t< 0$ pequeño tomamos
$$g'(0)=\displaystyle\lim_{t \rightarrow t_0^-}\frac{g(t)-g(0)}{t}=0$$
Ahora por regla de la cadena $$g'(0)=\frac{\partial f}{\partial x_{1}}(x_{0})h_{1}+\frac{\partial f}{\partial x_{2}}(x_{0})h_{2}+\cdots+\frac{\partial f}{\partial x_{n}}(x_{0})h_{0}=\nabla f(x_{0})\cdot h$$
Así $\nabla f(x_{0})\cdot h=0 \quad \forall \: h$ de modo que $\nabla f(x_{0})=0$. En resumen si $x_0$ es un extremo local, entonces $\displaystyle\frac{\partial f}{\partial x_i}(x_0)=0 \quad \forall~i=1,\ldots,n$. En otras palabras $\nabla f(x_0)=0$. $\square$

Ejemplo. Hallar los máximos y mínimos de la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$, definida por $$f(x,y)=x^2+y^2-2x-6y+14$$

Solución. Debemos identificar los puntos críticos de $f$ resolviendo $\displaystyle{\frac{\partial f}{\partial x}=0}$, $\displaystyle{\frac{\partial f}{\partial y}=0}$ para $x,y$, $$2x-2=0~~~2y-6=0$$ De modo que el punto crítico es $(1,3)$. Como $$f(x,y)=\left(x^{2}-2x+1\right)+\left(y^{2}-6y+9\right)+4=\left(x-1\right)^{2}+\left(y-3\right)^{2}+4$$ tenemos que $f(x,y)\geq 4$ por lo tanto en $(1,3)$ $f$ alcanza un mínimo relativo.

Ejemplo. Considerar la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$,
$f(x,y)=4-x^2-y^2$ entonces $\displaystyle{\frac{\partial f}{\partial x}=-2x}$, $\displaystyle{\frac{\partial f}{\partial y}=-2y}$. $f$ solo tiene un punto crítico en el origen, donde el valor de $f$ es 4. Como $$f(x,y)=4-(x^{2}+y^{2})$$
tenemos que $f(x,y)\leq 4$ por lo tanto en $(0,0)$ $f$ alcanza un máximo relativo.

Ejemplo. En el siguiente ejemplo mostramos que no todo punto critico es un valor extremo\Sea $f(x,y)=x^{2}y+y^{2}x$ tenemos que sus puntos criticos son
$$\frac{\partial f}{\partial x}=2xy+y^{2}~\frac{\partial f}{\partial y}=2xy+x^{2}=0$$ por lo tanto $$\left(\begin{matrix}2xy+y^{2}=0\\2xy+x^{2}=0\end{matrix}\right)\Leftrightarrow\left(\begin{matrix}x=y\\x=-y\end{matrix}\right)$$ tomando $x=-y$ tenemos que $$2xy+y^{2}=0~\Rightarrow~-2y^{2}+y^{2}=0~\Rightarrow~y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$ tomando $x=y$ tenemos que $$2xy+y^{2}=0~\Rightarrow~2y^{2}+y^{2}=0~\Rightarrow~-3y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$ por lo tanto $(0,0)$ es el único punto critico.\Ahora bien para $f(x,y)$ tomamos $x=y$ $$f(x,x)=2x^{3}$$ la cual es ($<0$ si $x<0$) y ($>0$ si $x>0$) por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de f \Ahora bien para $f(x,y)$ tomamos $x=-y$ $$f(x,-x)=0~\forall x$$
por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de $f$

Requerimos un criterio que dependa de la segunda derivada para que un punto sea extremo relativo. En el caso particular $n=1$ el criterio es $f»(x)>0$ y $f»(x)<0$ para máximo o mínimo respectivamente para el contexto de varias variables usaremos el hessiano el cual esta definido por

$$Hf(x_0)h=\frac{1}{2}\sum_{i,j=1}^{n}\frac{\partial^2t}{\partial x_i\partial
x_j}(x_0|_{x_ix_j}).$$

Recordando un poco de la expresión de taylor$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial x}\right){p}(x-x{0})+\left(\frac{\partial f}{\partial y}\right){p}(y-y{0})+\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}{p}(x-x{0})^{2}+2\frac{\partial^{2}f}{\partial y \partial x}{p}(x-x{0})(y-y_{0})+\frac{\partial^{2}f}{\partial y^{2}}{p}(y-y{0})^{2}\right)}$$

Teorema 2. Sea $B=\left[
\begin{array}{cc}
a & b \\
b & c \
\end{array}
\right]
$ y $H(h)=\frac{1}{2}[h_1,h_2]\left[
\begin{array}{cc}
a & b \\
b & c \
\end{array}
\right]\left(
\begin{array}{c}
h_1 \\
h_2 \
\end{array}
\right)
$ entonces $H(h)$ es definida positiva si y solo si $a>0$ y $ac-b^2>0$.

Demostración. Tenemos $$H(h)=\frac{1}{2}[h_1,h_2]\left[
\begin{array}{cc}
a h_1& bh_2 \\
b h_1& ch_2 \
\end{array}
\right]=\frac{1}{2}(ah_1^2+2bh_1h_2+ch_1^2)$$
si completamos el cuadrado
$$H(h)=\frac{1}{2}a\left(h_1+\frac{b}{a}h_2\right)^2+\frac{1}{2}\left(c-\frac{b^2}{a}\right)h_2^2$$
supongamos que $h$ es definida positiva. Haciendo $h_2=0$ vemos que $a>0$. Haciendo $h_1=-\frac{b}{a}h_2$ $c-\frac{b^2}{a}>0$ ó $ac-b^2>0$ De manera analoga $H(h)$ es definida negativa si y solo si $a<0$ y $ac-b^2>0$. $\square$

Criterio del máximo y del mínimo para funciones de dos variables Sea $f(x,y)$ de clase
$C^3$ en un conjunto abierto $u$ de $\mathbb{R}^2$. Un punto $x_0,y_0$ es un mínimo local (Estricto) de $f$ si se cumple las siguientes tres condiciones:


I) $\frac{\partial f}{\partial x}(x_0,y_0)=\frac{\partial f}{\partial y}(x_0,y_0)$


II) $\frac{\partial^2 f}{\partial x^2}(x_0,y_0)> 0$


III ) $\left(\frac{\partial^2 f}{\partial x^2}\right)\left(\frac{\partial^2 f}{\partial y^2}\right)-\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2> 0$ en $(x_0,y_0)$ (Discriminante)


Si en II) tenemos $<0$ en lugar de $>0$ sin cambiar III) hay un máximo local

Ejemplo. Sea $f:\mathbb{R}^2\rightarrow\mathbb{R}$ la función dada por
$$f(x,y)=2(x-1)^2+3(y-2)^2$$ tenemos entonces que $\frac{\partial f}{\partial x}=4(x-1)$ $\frac{\partial f}{\partial y}=6(y-2)$ por lo tanto $\frac{\partial f}{\partial x}=0$ $\Rightarrow \quad x=1$

$\frac{\partial f}{\partial y}=0$ $\Rightarrow$ $y=2$

por lo tanto $x_0=(1,2)$ es un punto critico


$\displaystyle{\frac{\partial^{2} f}{\partial x^{2}}}=4$, $\displaystyle{\frac{\partial^{2} f}{\partial y^{2}}}=6$, $\displaystyle{\frac{\partial^{2} f}{\partial x\partial y}}=0$, $\displaystyle{\frac{\partial^{2} f}{\partial y\partial x}}=0$

$H(1,2)=\left|\begin{array}{cc}
4 & 0 \\
0 & 6 \
\end{array}
\right|=24> 0 \forall \:(x,y) \in
B_{\epsilon}(1,2)$
podemos decir que $f$ tiene un mínimo relativo en $(1,2)$

Operaciones, Gráficas, Límites y Continuidad

Por Angélica Amellali Mercado Aguilar

Funciones de $\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}$ (parte dos)

Ejemplo. Encontrar el dominio y la imagen de la región $\displaystyle{R=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq x\leq1,~0\leq y\leq1\right\}}$ para la función $f:\mathbb{R}^{2}\rightarrow \mathbb{R}^{2}$ dada por $$\displaystyle{f(x,y)=\left(x^{2}-y^{2},2xy\right)}$$

Solución. En este caso $$f_{1}=\left(x^{2}-y^{2}\right)~\Rightarrow~Dom_{f_{1}}=\mathbb{R}^{2}$$
$$f_{2}=\left(2xy\right)~\Rightarrow~Dom_{f_{2}}=\mathbb{R}^{2}$$
por lo tanto
$$Dom_{f}=Dom_{f_{1}}\bigcap Dom_{f_{}}=\mathbb{R}^{2}\bigcap \mathbb{R}^{2}=\mathbb{R}^{2}$$
Para la imagen de la región $\displaystyle{R=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq x\leq1,~0\leq y\leq1\right\}}$ procedemos de la siguiente manera:
Definimos los siguientes conjuntos que limitan la región

$$A_{1}=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq x\leq 1,~y=0\right\}$$
$$A_{2}=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq y\leq 1,~x=1\right\}$$
$$A_{3}=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq x\leq 1,~y=1\right\}$$
$$A_{1}=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq y\leq 1,~x=0\right\}$$

ahora procedemos a encontrar las imagenes de cada uno de los conjuntos definidos

Para $A_{1}$ se tiene
$$A_{1}=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq x\leq 1,~y=0\right\}f(x,y)=\left(x^{2}-y^{2},2xy\right)=(x’,y’)$$ $$x’=x^{2}-y^{2}~\underbrace{\Rightarrow}_{y=0}~x’=x^{2}~y~si~0\leq x\leq\leq1~\Rightarrow~0\leq x^{2}\leq 1~\Rightarrow~0\leq x’\leq 1$$
$$y’=2xy\underbrace{\Rightarrow}_{y=0}y’=0$$ por lo tanto $$f(A_{1})=\left\{(x’,y’)\in\mathbb{R}^{2}~|~0\leq x’\leq 1~,~y’=0\right\}$$ Para $A_{2}$ se tiene $$A_{2}=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq y\leq 1,~x=1\right\}f(x,y)=\left(x^{2}-y^{2},2xy\right)=(x’,y’)$$
$$x’=x^{2}-y^{2}~\underbrace{\Rightarrow}_{x=1}~x’=1-y^{2}~\Rightarrow~y=\sqrt{1-x’}$$ $$y’=2xy\underbrace{\Rightarrow}_{x=1}y’=2y~\Rightarrow~y’=2\sqrt{1-x’}~\Rightarrow~y’^{2}=4(1-x’)$$
por lo tanto
$$f(A_{2})=\left\{(x’,y’)\in\mathbb{R}^{2}~|~y’^{2}=4(1-x’),~0\leq y’\leq 2 \right\}$$
Para $A_{3}$ se tiene
$$A_{3}=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq x\leq 1,~y=1\right\}f(x,y)=\left(x^{2}-y^{2},2xy\right)=(x’,y’)$$
$$x’=x^{2}-y^{2}~\underbrace{\Rightarrow}_{y=1}~x’=x^{2}-1~\Rightarrow~x’+1=x^{2}~\Rightarrow~x=\sqrt{x’+1}$$ $$y’=2xy\underbrace{\Rightarrow}_{y=1}y’=2x~\Rightarrow~y’=2\sqrt{x’+1}~\Rightarrow~y’^{2}=4(x’+1)$$
por lo tanto
$$f(A_{3})=\left\{(x’,y’)\in\mathbb{R}^{2}~|~y’^{2}=4(x’+1),~0\leq y’\leq 2 \right\}$$
Para $A_{4}$ se tiene
$$A_{4}=\left\{(x,y)\in \mathbb{R}^{2}~|~0\leq y\leq 1,~x=0\right\}f(x,y)=\left(x^{2}-y^{2},2xy\right)=(x’,y’)$$
$$x’=x^{2}-y^{2}~\underbrace{\Rightarrow}_{x=0}~x’=-y^{2}ysi0\leq y\leq1~\Rightarrow~0\leq y^{2}\leq 1~\Rightarrow~-1\leq y^{2}\leq 0$$ $$y’=2xy\underbrace{\Rightarrow}_{x=0}y’=0$$
por lo tanto
$$f(A_{4})=\left\{(x’,y’)\in\mathbb{R}^{2}~|~-1\leq x’\leq 0~,~y’=0\right\}$$

Operaciones con Funciones de $\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}$


Definición 1. Sean $f,g:A\subset \mathbb{R}^{n}\rightarrow\mathbb{R}^{m},\alpha\in\mathbb{R}y~~h:D\subset\mathbb{R}^{m}\rightarrow\mathbb{R}^{k}$. Definimos

  1. La suma de f y g que denotamos por f+g como
    $$(f+g)(x)=f(x)+g(x),~~~x\in A$$
  2. El producto del escalar $\alpha$ por la función f que denotamos $\alpha f$ como
    $$(\alpha f)(x)=\alpha f(x),~~~x\in A$$
  3. El producto punto de f por g que denotamos $f\cdot g$ como
    $$(f\cdot g)(x)=f(x)\cdot g(x),~~~x\in A$$
  4. Si $m=3$ el producto cruz de f por g que denotamos $f\times g$ como
    $$(f\times g)(x)=f(x)\times g(x),~~~x\in A$$
  5. Si $m=1$ el cociente de f por g que denotamos $\displaystyle{\frac{f}{g}}$ como
    $$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)},~~~x\in A$$
  6. La composición de h con f, que denotamos como $h\circ f$ como
    $$(h\circ f)(x)=h(f(x))para~cada~~\left\{x\in A~|~f(x)\in D\right\}$$

Gráficas de Funciones de $\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}$

Definición 2. Dada la función $f (f_{1},…,f_{m}):A\subset\mathbb{R}^{n}\rightarrow
\mathbb{R}^{m}$, definimos su gráfica como el subconjunto
$$g_{f}={(x_{1},…,x_{n},f_{1}(x_{1},…,x_{n}),f_{2}(x_{1},…,x_{n}),…,f_{m}(x_{1},…,x_{n}))\in\mathbb{R}^{n+m}|(x_{1},…,x_{n})\in A}$$

{Límite de Funciones de $f:\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}$

Definición 3. $\textcolor{Red}{\textbf{Por sucesiones}}$ Sean $f:A\subset\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}$ y $x_{0}\in A’$. Decimos que f tiene límite en $x_{0}$ y que su límite es $\ell\in\mathbb{R}^{m}$, si para toda sucesión ${x_{k}}$ contenida en $A-{x_{0}}$ que converge a $x_{0}$ se tiene que la sucesión ${f(x_{k})}$ converge a $\ell$. En este caso escribimos
$$\lim_{x\rightarrow x_{0}}f(x)=\ell$$
y decimos que $\ell$ es el límite de f en $x_{0}$.

Definición 4. $\textcolor{Red}{(\epsilon-\delta)}$ Sea $f:A\subset\mathbb{R}^{n} \rightarrow
\mathbb{R}^{m}$, y sea $x_{0}$ un punto de acumulación de A.
Se dice que $\ell\in\mathbb{R}^{m}$ es el límite de $f$ en
$x_{0}$, y se denota por:\ $$\displaystyle\lim_{x\rightarrow
x_{0}}f(x)=\ell$$ Si dado $\forall~\epsilon > 0$, existe $\delta > 0$ tal
que $$|f(x)-\ell|<\epsilon~cuando~0<|x-x_{0}|<\delta$$

Continuidad de Funciones de Varias Variables

Definición 5. Sean $f:\Omega\subset\mathbb{R}^n\rightarrow\mathbb{R}^m$ y
$x_0\in\Omega$. Se dice que $f$ es continua en $x_0$ si dado $\epsilon>0$, $\exists$ $\delta>0$ tal que $|f(x)-f(x_0)|<\epsilon$ siempre que $x\in\Omega$ y $0<|x-x_0|<\delta$

Definición 6. Se dice que un subconjunto $V\subset\mathbb{R}^{n}$ es un entorno del punto $x$, si exite $\epsilon>0$ tal que $B(x,\epsilon)\subset V.$

Definición 7. Sean $f:\Omega\subset\mathbb{R}^n\rightarrow\mathbb{R}^m$ y $x_0\in\Omega$. Se dice que $f$ es continua en $x_0$ cuando $\forall$ entorno V de $f(x_{0})$ existe un entorno U de $x_{0}$ tal que $f(U)\subset V$ es decir para cualquier $x\in U$ se cunple $f(x)\in V$

Proposición 1. Una función $f:D\subset\mathbb{R}^{n}\rightarrow \mathbb{R}^m$ es continua si y solo si
$$f^{-1}(v)=\left\{x\in D\mid f(x)\in v\right\}$$
es un abierto (contenido en $D$) para cada abierto $v\subset\mathbb{R}^m$.

Demostración. $\textcolor{Red}{\Rightarrow}$ Sea $v$ un abierto en $\mathbb{R}^m$ y sea $\overline{x}\in f^{-1}(v)$; tenemos por definición $f(\overline{x})\in v$. Como $v$ es un
conjunto abierto $\exists\ \ r>0$ tal que $B(f(\overline{x}),r)\subset v$ como $f$ es continua $\exists$ $\rho>0$ tal que $f(B(x,\rho))\subset B(f(x),r)$ pero esto significa que $B(x,\rho)\subset f^{-1}(B(f(x),r))\subset f^{-1}(v)$ por lo que cada punto $x\in f^{-1}(v)$ es punto interior lo que prueba que $v$ es abierto.
$\textcolor{Red}{\Leftarrow}$ Supongamos que $f^{-1}(v)$ es un abierto, para cada conjunto abierto $v\subset\mathbb{R}^{m}$\Sea $\epsilon>0$ y $x\in\mathbb{R}^{n}$, hacemos:
$B(f(x),\epsilon)=V$ por lo que$f^{-1}(V)$ es abierto, esto quiere decir que $\exists~\delta>0$ tal que $B(x,\delta)\subset f^{-1}(V)$ esto implica $f(B(x,\delta))\subset V$ esto es $f(B(x,\delta))\subset B(f(x),\epsilon)$ esto muestra que $f$ es continua en $x$.

Proposición 2.

(1) $$f^{-1}(v)=\left\{x\in D\mid f(x)\in v\right\}$$
es un abierto (contenido en $D$) para cada abierto
$v\subset\mathbb{R}^m$.
(2) $$f^{-1}(v)=\left\{x\in D\mid f(x)\in v\right\}$$
es un cerradoo (contenido en $D$) para cada cerradoo
$v\subset\mathbb{R}^m$.

Vamos a probar que $\textcolor{Red}{1\Rightarrow 2}$

Demostración. Si $V=\overline{V}\subset\mathbb{R}^{m}$, consideremos el conjunto $V^{c}$ el cual es abierto y por hipotesis $f^{-1}(V^{c})$ es abierto, pero
$$f^{-1}(V^{c})=\left(f^{-1}(V)\right)^{c}$$
por lo que $\left(f^{-1}(V)\right)^{c}$ es abierto, en consecuencia $f^{-1}(V)$ es cerrado\
Vamos a probar que \textcolor{Red}{$2\Rightarrow 1$}
Si $V=int(V)\subset\mathbb{R}^{m}$ entonces $V^{c}$ es cerrado y por hipotesis $f^{-1}(V^{c})$ es cerrado, pero
$$f^{-1}(V^{c})=\left(f^{-1}(V)\right)^{c}$$
por lo que $\left(f^{-1}(V)\right)^{c}$ es cerradoo, en consecuencia $f^{-1}(V)$ es abierto $\square$