Archivo de la categoría: Sin clasificar

Matemáticas Financieras: Valor presente

Por Erick de la Rosa

Introducción

Es de vital importancia conocer el modelo de interés compuesto, así como su fenómeno de acumulación que es el que lo caracteriza, pero también es igual de importante poder conocer la forma en que se puede calcular el valor de hoy, el valor presente de una obligación futura, saber cuánto se deberá pagar en un futuro cierta deuda adquirida el día de hoy, nos permite conocer cuánto se debe de ahorrar el día de hoy para garantizar el pago de dicha obligación. Por ejemplo, si una persona desea adquirir algún bien, una casa, por ejemplo, o una empresa si desea después de cierto tiempo hacer cambio de su mobiliario o de su maquinaria, o de su equipo de cómputo. Todo lo anterior son ejemplo de la utilidad que tiene el saber calcular el valor presente, que como se observa a simple vista, permite encontrar una solución ante todas éstas situaciones.

Valor Presente

Aunque anteriormente ya se había hecho uso, el modelo que describe el fenómeno de valor presente, es el siguiente:

K=M(1+i)t=M(1+i)t.
Lo anterior se puede expresar de esa forma porque, recordando una de las leyes de los exponentes 1ax=ax.
Por lo tanto, el modelo que se va a estudiar es:

K=M(1+i)t.

Es una ecuación que ya había sido deducida directamente del modelo de interés compuesto, en el tema anterior, y al ser parte de dicho modelo, las reglas que rigen a la fórmula de interés compuesto, rigen de igual forma a ésta expresión. Es importante señalar que la expresión que se acaba de presentar como Valor Presente, es fundamental en muchos cálculos que se estarán obteniendo, es por ésa razón que a continuación se va a establecer una forma más simplificada de expresarla, la cual es la siguiente:

v1=11+i

esto es una expresión cuando t=1.

Ahora cuando expresamos t de forma general, la expresión queda:
vit=1(1+i)t=(1+i)t.

Por último, sustituyendo dicha expresión en el modelo de valor presente:
K=Mvit.

El motivo de usar una v.

Fig. 1.7 Elaboración propia, basado en Cánovas T. Matemáticas Financieras, Fundamentos y Aplicaciones, Ed. Trillas, pag. 36

De acuerdo con la imagen, el valor presente es la función inversa del proceso de acumulación de capital, de manera tal que, mantienen una relación que consiste en, que a mayor tasa de interés corresponde una mayor disminución del valor presente del monto. Además, la imagen anterior muestra el proceso de acumulación en comparación al del valor presente, cada una con sus respectivas expresiones algebraicas que los definen.

Tabla de equivalencias entre periodos

A lo largo de estos temas, se puede hacer notar que cada uno de los negocios, convenios, pactos, préstamos, inversiones, etc. tienen en común que tienen una fecha de vencimiento, una fecha de pago, una fecha de cobro, etc. Entre otras cosas, también aparecen las condiciones en las que se realizará sea cual sea la operación, que como ya se ha visto son: tasa de interés, monto inicial, periodo de tiempo, cada cuando se realizaran los pagos. Debido a lo anterior, es necesario establecer ciertos «convenios» en lo que se refiere a la periodicidad de los pagos, con la finalidad de hacer los cálculos de la forma consistente y que sea aplicable a la realidad que describe el fenómeno que se está estudiando.
Con base a lo ya dicho, se presenta a continuación, la siguiente tabla:

Tabla 1.1 Establece la equivalencia en tiempo, con el que se va a estar usando la periodicidad, para fines prácticos.
Elaboración propia, basada en Cánovas T. Matemáticas Financieras, Fundamentos y aplicaciones, Ed. Trillas, pag. 38.

En la tabla anterior, se establece de forma general el tiempo, para dar a conocer la forma en que se van a estar usando con fines prácticos, sin embargo; es pertinente señalar que cuando se trate de inversiones, por ejemplo, las que manejan los bancos, es necesario hacer uso del total de días que tiene el mes, esto es, 30 o 31 días en algunos meses, ó 28 o 29 en el caso del mes de febrero, esto debido a que los tipos de inversión consideran el pago de intereses el último día de cada mes.

También, es necesario establecer el número de decimales con el cual se estará realizando los cálculos, estos son al menos 5 decimales, con éste último redondeado. Y el resultado final se deberá ser presentado sólo con dos decimales.

Ejercicios resueltos

Ejercicio. Calcular el valor presente o traer a valor presente, a la fecha de hoy, la cantidad de $2000 que deberán pagarse dentro de un año a una tasa de interés efectiva semestral del 7%.

Ejercicio. Para este ejemplo, se va a suponer que el día de hoy es 2 de octubre, y una empresa de ropa tiene contemplado saldar la deuda de un pagaré con un valor de $85000, con fecha de vencimiento 30 de mayo, del siguiente año. En dicha deuda se acordó una tasa efectiva del 10% anual. Dicha empresa se propone saldar su deuda, aprovechando la temporada decembrina que tiene ventas e ingresos extras, para el día 30 de diciembre.

Ejercicio. Se quiere calcular el monto de una cantidad X durante un tiempo cero, t=0 con una tasa de interés i.

Más adelante…

A lo largo de estos temas se ha estudiado cómo el dinero modifica su valor con el paso del tiempo, en particular los dos casos que acaban se ser abordados, proceso de acumulación y valor presente. Se ha visto el comportamiento de las tasas efectivas de interés, dentro del modelo de interés simple como de interés compuesto. Un aspecto importante que no se debe de restar importancia, es al fenómeno en el que queremos calcular el valor presente en un tiempo cero, esto es, el mismo día que se emite el préstamo, fecha en la que cual el monto y el valor presente son el mismo. Lo anterior adquiere mucha importancia sobre todo, cuando se construya una ecuación de valor, tema que pronto será abordado.

Entradas relacionadas

  • Ir a Matemáticas Financieras
  • Entrada anterior
  • Entrada siguiente

Geometría Moderna II: Unidad 4 Razón Cruzada

Por Armando Arzola Pérez

Introducción

Ya se ha visto que en una hilera armónica se tienen cuatro puntos colineales A,B,C,D, donde el segmento AB está dividido por C y D en razones cuya razón es:
ACCB/ADDB=1.
En este caso A y B están separados armónicamente por C y D, pero que pasaría si estos cuatro puntos estuvieran en posiciones cualesquiera en la recta que se encuentran, es aquí donde entra la definición de razón cruzada.

Razón cruzada para hilera y haces

Definición. (Razón Cruzada) Dados cuatro puntos colineales distintos A,B,C,D en una recta, diremos que la razón cruzada es:

ACCB/ADDB={ABCD}=k con k1.

Lo denotaremos {ABCD}.

También se le conoce como razón anarmónica y razón doble.

Observación. Si los cuatro puntos son armónicos, entonces {ABCD}=1, de igual forma inversamente.

Definición. (Razón Cruzada con líneas concurrentes) Sean cuatro rectas concurrentes OA, OB, OC y OD en un punto O, que no se forme un haz armónico, entonces la razón cruzada es:

sen(AOC)sen(COB)/sen(AOD)sen(DOB),

se denotará como O{ABCD}. De igual forma, la razón cruzada de cuatro líneas concurrentes a,b,c,d se denotará {a,b,c,d}.

Observación. Dados cuatro puntos colineales A,B,C,D se tienen estos casos:

1) {ABCC}=1 esto, ya que {ABCC}=ACCB/ACCB=ACCBCBAC=1.

2) {ABCB}=0 esto ya que {ABCB}=ACCB/ABBB=ACBBCBAB=0.

3) {ABCA}= esto ya que {ABCA}=ACCB/AAAB=ACABCBAA=.

Por lo cual se puede demostrar que si la razón cruzada de cuatro puntos tiene uno de los valores 1,0, entonces dos de los puntos coinciden.

Teorema. (Razón Cruzada) Si se tienen cuatro puntos distintos A,B,C,D en una recta y O un punto (no está en la recta) entonces:

{ABCD}=O{ABCD}.

Demostración. Para demostrar el teorema se usará lo siguiente, si dos puntos finitos A y B distintos en una recta, sea P otro punto de la misma recta y C un punto que no está en la recta, entonces

APPB=CAsen(ACP)CBsen(PCB)

Entonces usando lo anterior:

ACCB=OAsen(AOC)OBsen(COB) y ADDB=OAsen(AOD)OBsen(DOB)

{ABCD}=ACCB/ADDB=OAsen(AOC)OBsen(COB)/OAsen(AOD)OBsen(DOB)=sen(AOC)sen(COB)/sen(AOD)sen(DOB)=O{ABCD}.

Razón cruzada

◻

Corolario. Sean dos rectas transversales a cuatro líneas de un haz, de las cuales ninguna pasa por el vértice, cortan a estas líneas en A,B,C,D y A,B,C,D respectivamente, entonces {ABCD}={ABCD}.

Demostración. {ABCD}=O{ABCD}=O{ABCD}={ABCD}.

◻

Corolario. Sean dos haces con vertices en O y O son subtendidos por la misma hilera de puntos A,B,C,D entonces O{ABCD}=O{ABCD}.

Demostración. O{ABCD}={ABCD}=O{ABCD}.

◻

Corolario. Sean l y l dos rectas en posición cualquiera y sean A,B,C,Dl y A,B,C,Dl. Si {ABCD}={ABCD} y O y O son colineales con A y A, entonces las intersecciones OB y OB, OC y OC, OD y OD son colineales.

Demostración. Sea l la recta que contiene a B y C, y sean A=lOO, D=ODOD y sea D=lOD.
Tenemos que {ABCD}={ABCD} entonces {ABCD}={ABCD}.
{ABCD}={ABCD}
O{ABCD}={ABCD}
D=D.

◻

Más adelante…

Se seguirá abordando unas propiedades de la razón cruzada y además se construirá un cuarto elemento dada una razón.

Entradas relacionadas

Geometría Moderna II: Ejercicios Unidad 3 Polos y Polares

Por Armando Arzola Pérez

Introducción

Una vez visto el tema de Polos y Polares y todos los subtemas que conlleva este, es hora de realizar unos ejercicios que se dejaran a continuación, todo con el objetivo de practicar y fortalecer el tema visto.

Ejercicios

1.- Demuestre que cualquier punto en la circunferencia es conjugado a todos los puntos de la tangente en ese punto.

2.- Dados P y Q los polos de dos rectas conjugadas p y q respectivamente, entonces demostrar que el polo de la recta PQ es el punto donde intersecan p y q.

3.- Sean tres puntos no colineales, construir la polar de un cuarto punto con respecto a la circunferencia determinada por los tres puntos dados, sin dibujar la circunferencia o cualquier arco de ella.

4.- Encontrar el lugar geométrico de un punto cuyas polares con respecto a dos circunferencias dadas forman un ángulo fijo entre ellas.

5.- Dados tres puntos colineales A, B y D se deberá encontrar el punto C tal que {ABCD} = -1 usando polos y polares.

6.- Demuestre que dadas dos rectas conjugadas que se intersecan en el exterior de una circunferencia, una es secante y la otra no.

7.- Dado un triángulo con circunferencia polar, el inverso de uno de sus lados con respecto a la circunferencia polar, es la circunferencia cuyo diámetro es la recta que une el vértice opuesto con el ortocentro.

8.- Dado un triángulo autopolar uno de sus vértices está dentro de la circunferencia y los otros dos fuera de esta, demostrarlo.

9.- Resolver el problema 7 de los 10 problemas de Apolonio.

10.- Resolver el Problema 10 de Apolonio usando polos y polares.

Más adelante…

La unidad siguiente es Razón Cruzada.

Entradas relacionadas

Matemáticas Financieras: Interés compuesto

Por Erick de la Rosa

Introducción

Siguiendo una estructura análoga a la anterior, procederemos a desarrollar la ecuación que describe la característica central del modelo de interés compuesto: la capacidad de generar intereses adicionales. Además, sentaremos las bases para abordar la aplicación de tasas de interés y establecer relaciones entre ellas, con el propósito de calcular tasas equivalentes.

El interés compuesto representa la segunda modalidad de pago de intereses. Su rasgo distintivo es la generación de nuevos intereses a medida que transcurre el tiempo o cada período específico. Estos intereses recién generados se suman al capital original, que luego comienza a generar intereses por sí mismo, repitiendo este proceso según lo establecido. Similar al modelo de interés simple, los intervalos de tiempo pueden ser mensuales, anuales, trimestrales, semanales, entre otros.

Interés compuesto

El modelo de interés compuesto es ampliamente empleado en contratos comerciales y operaciones financieras en todo el mundo, e incluso está respaldado por la legislación vigente en nuestro país, como lo establece la Ley Federal de Protección al Consumidor.

Para comenzar con su construcción, se propone el siguiente ejemplo:

A una persona les prestan $100, con una tasa de interés efectiva mensual del 10%, dicho monto al término del primer mes estaría generando $10 por concepto de interés más los $100 pesos originales. La parte interesante comienza a ocurrir a partir del segundo mes, en el que los intereses que ya se habían generado durante el primer mes comienzan a generar nuevos intereses invertidos a la misma tasa, esto es:

Monto del periodo anterior =$110

Intereses del segundo periodo =($110)(0.10)=$11

Lo que nos da un monto total al final del segundo periodo de $121. Es importante hacer mención que el $1 que aparece en nuestro último resultado, representa los intereses generados por los nuevos intereses. En la siguiente gráfica se representa con detalle este proceso.

Fig. 1.4 Elaboración propia, basado en Cánovas T. Matemáticas Financieras, Fundamentos y aplicaciones, Ed. Trillas, pag. 24

Ahora bien, se va a construir el modelo general de Interés compuesto:

Fig. 1.5 Elaboración propia, basado en Cánovas T. Matemáticas Financieras, Fundamentos y aplicaciones, Ed. Trillas, pag, 25

El primer periodo comienza con un capital K, con una tasa de interés i, de tal manera que al final del primer periodo tenemos el capital inicial más los intereses generados durante ése periodo, y nos quedaría una expresión como la siguiente: M=K+Ki.

Por consiguiente, el monto del segundo periodo queda como el capital inicial más los intereses obtenidos en el 1er y 2do periodo.

Es importante recalcar que los intereses se calculan multiplicando el capital por la tasa de interés. Si los intereses generados en el 1er periodo fueron Ki, entonces los intereses generados en el segundo periodo se calcularon a partir de la expresión Kii. De esta forma, el monto obtenido al final del segundo periodo se representa con la expresión: M=K+Ki+Ki+Kii, la cual se reduce a la expresión señalada en la figura 1.5> M=K(1+i)2.

Generalizando la fórmula queda lo siguiente: M=K(1+i)t. En ésta expresión la variable t, es la que va a estar representando el número de periodos, el cual va a estar ligados siempre con el «apellido» de la tasa de interés, este es mensual, semanal, diario, etc. como ya en algunos párrafos anteriores se ha hecho mención.

Las reglas para aplicar correctamente este modelo son semejantes a la del modelo de interés simple, con algunas variantes, pero para no dejar ambigüedad alguna se enuncian a continuación:

  • El valor de las variables K y M se escriben en unidades monetarias, siendo la primera que representa el capital inicial (K), mientras que la segunda representa el monto (M).
  • i es la tasa de interés efectiva por periodo, expresada en %, y al realizar cálculos usada al tanto por uno, es decir ya dividida entre 100.
  • La periodicidad de la tasa determina la unidad de tiempo con la que se va a utilizar la variable t, esto es, en años, meses, bimestres, durante el lapso de tiempo acordado que dure la operación.

Siguiendo una lógica similar al modelo de interés simple, en el caso del modelo de interés compuesto, tenemos la capacidad de expresar cualquier variable en función de las otras tres. Es decir, podemos despejar y expresar cualquier variable en términos de las demás.

Por lo anterior podemos establecer que, partiendo del modelo de interés compuesto, K se puede calcular a partir de la siguiente expresión:

K=M1(1+i)t=M(1+i)t.

Para obtener i, se divide entre K la ecuación de interés compuesto, luego se eleva a la potencia 1t y por último se le resta uno, con lo que se llega a:

i=(M)(K)1t1.

Finalmente, para expresar t es necesario usar algunas propiedades de los logaritmos, como se observa a continuación:

t=logMlogKlog(1+i).

Es fundamental destacar una diferencia significativa en comparación con el modelo de interés simple, que, como ya hemos visto, exhibe un comportamiento lineal. Por otro lado, el modelo de interés compuesto muestra un comportamiento geométrico, como se puede apreciar en el siguiente gráfico:

Figura 1.6 Comportamiento del Modelo de Interés Compuesto, Elaboración propia, basado en Cánovas T. Matemáticas Financieras, Fundamentos y aplicaciones, Ed. Trillas, Pag. 27

En la figura 1.6, se muestra un ejemplo de cómo se comporta el modelo de interés compuesto, bajo una inversión de un capital de $1700 invertido durante 3 años, a una tasa mensual del 12%.

Ejercicios resueltos

Ejercicio. ¿Cuál es el monto que se genera, con un capital inicial de $2500 y lo queremos invertir con las siguientes tasas de interés, durante los periodos que se indican:

  1. A una tasa del 6.5% anual, durante tres años y 6 meses.
  2. 2.4% mensual, luego de haber transcurrido dos años y 8 meses.
  3. 5.8% semestral, después de un periodo de 10 meses.
  4. 0.04% diario, después de un año con 23 días.

Ejercicio. Calcula la tasa de interés anual, que se necesita calcular para los siguientes incisos:

  1. Monto inicial de $1 500, durante un año genera un monto de $1 800.
  2. Monto inicial de $27 500, que durante un lapso de un año y cinco meses genera $30500.
  3. Monto inicial de $22 000, durante un lapso de 7 semestres con 5 meses, genera un monto total de $25 000.

Ejercicio. Dado un capital inicial de $1200 pesos, un monto total de $3500, con una tasa efectiva trimestral de 3.77%, calcular t.

Más adelante…

En este tema, se abordó el modelo de Interés compuesto, mediante el cual se observa el fenómeno mediante el cual, una cantidad de dinero invertida, prestada o depositada en alguna institución bancaria, nos genera intereses con el paso del tiempo, y no sólo eso, sino que, en el caso particular del interés compuesto, los intereses generan más intereses. Éste proceso que se acaba de estudiar de forma implícita es conocido también como acumulación. Con éste modelo nos da una herramienta muy importante para poder tomar mejores decisiones respecto al uso de los recursos que se tienen de manera personal, comercial, social, etc. porque nos sirve para saber cuánto se puede llegar a ahorrar en el caso de querer adquirir un bien o servicio, o unas vacaciones, o comprar un vehículo. En otro caso, cuánto se va a tener que pagar por un cierto préstamo, o incluso cuánto se requiere tener para llevar a cabo un proyecto que requiere cierto financiamiento (es un tipo de préstamo que permite tener recursos, por ejemplo, inversionistas) para conocer cuánto es lo que se va a deber en el futuro.

En el siguiente capítulo, se abordará el proceso inverso que acabamos de estudiar, esto es, describir la metodología que nos permita conocer el valor que al día de hoy tiene una obligación futura, fenómeno que dentro de las Matemáticas Financieras se le conoce como Valor Presente.

Rn como espacio Topológico

Por Ruben Hurtado

Introducción.

La Topología es un área de las matemáticas que se interesa por conceptos como proximidad, continuidad, conexidad, compacidad, y muchos otros mas. Para abordarlos, es necesario establecer un cierto tipo de conjuntos (que en Topología se les conoce como los conjuntos abiertos).
Bola abierta
La bola abierta con centro en x¯0 y radio r>0, es el conjunto:
B(x¯0,r)={x¯Rn | x¯x¯0<r}
Bola Cerrada
La bola cerrada con centro x¯0 y radio r0 es el conjunto:
B¯(x¯0,r)={x¯Rn | x¯x¯0r}
Esfera
La esfera con centro x¯0 y radio r0 es el conjunto:
S(x¯0,r)={x¯Rn | x¯x¯0=r}
Observemos que para la bola abierta r>0 estrictamente, mientras que la bola cerrada y la esfera pueden tener radio cero. En este último caso ambas se reducen a un punto:

B¯(x¯0,0)=x¯0

S(x¯0,0)=x¯0  ◼
Los conjuntos B(x0,r), B¯(x0,r) y S(x¯0,r) son subconjuntos de Rn y su aspecto geométrico depende de la métrica con la cual se midan las distancias.
Ejemplo. B2(0,1)={x¯R2 | x¯21}={x¯R2|x2+y2 1}={(x,y)R2 | x2+y21}
Geométricamente

La periferia de este disco es el circulo que tiene por ecuación
x2+y2=1, que corresponde a la esfera S2(0,1)={x¯R2 | x¯2=1}. ◼

Ejemplo. Sea ahora la bola cerrada
B¯2(0,1)={xR2 | x¯1}={(x,y)R2 | |x|+|y|1}
Geométricamente

Para S1(0,1)={x¯R2 | |x¯|=1}

Para B(0,1)={x¯R2 | x¯1} = {(x,y)R2 | max{|x|,|y|}1}

tenemos entonces que

Las figuras anteriores muestran la situación geométrica, entre las bolas cerradas B1(0,1), B2(0,1), B(0,1) en forma explicita se escriben:
max{|x1|,,|xn|}x12++xn2 |x1|++|xn|
Las contenciones tanto para las bolas abiertas, como para las bolas
cerradas se siguen de las desigualdades

x¯x0x¯x¯02x¯x01
Pues por ejemplo si x¯B2(x¯0,r) entonces x¯x¯02<r luego x¯x0<r

   x¯x¯0<r es decir xB(x0,r) B2(x¯0,r)B(x¯0,r)

Si xB1(x¯0,r) entonces x¯x¯01<r luego xx¯02x¯x¯01<r
xx¯02<r xB2(x0,r) B1(x¯0,r)B2(x0,r)
Para las esferas no hay alguna relación similar, lo que se puede deducir de las desigualdades anteriores son las relaciones siguientes:
S1(x¯0,r)B2(x¯0,r)B(x¯0,r) S2(x¯0,r)B(x¯0,r) S(x¯0,r)B(x¯0,r)

Conjuntos Abiertos y Conjuntos Cerrados


Un concepto importante en la topología de Rn es el de conjunto abierto. Junto con el de conjunto cerrado.
Conjunto abierto y conjunto cerrado dos conceptos duales, en un sentido que trataremos de explicar. Por ahora solamente veremos la definición de cada uno de ellos y alguna de sus propiedades más importantes.
Definición. Un conjunto VRn se dice que es abierto si para cada x¯V existe una bola abierta B(x¯,r) contenida en V. Es decir si para cada x¯V existe r>0 tal que B(x¯,r)V.


Ejemplo. El espacio Rn es un conjunto abierto, pues dado cualquier x¯Rn, toda bola abierta B(x¯,r) esta contenida en Rn.  ◼


Ejemplo .Mostraremos que el es abierto.
Suponemos que el no es abierto x para el cual no es posible hallar una bola abierta B(x¯,r) contenida en . Pero esto no es posible ya que el no tiene elementos.
Entonces debemos suponer que el no es abierto !        es abierto.  ◼


Proposición. Toda bola abierta en Rn es un conjunto abierto.
Demostración. Sea x¯0Rn y r>0. Mostraremos que B(x¯0,r) es un conjunto abierto. Debemos probar que para cada x¯B(x¯0,r), existe una bola abierta B(x¯,r) contenida a su vez en la bola abierta B(x¯0,r). Sea pues x¯B(x¯0,r) y consideremos R=rx¯x¯0. Como x¯B(x¯0,r) se tiene entonces que x¯x¯0<r R>0. Mostraremos que la bola abierta B(x¯,R) esta contenida en B(x¯0,r).


esto prueba que y¯B(x¯0,r).  ◼


Ejemplo.Mostraremos que en R2, el semiplano superior
V={(x,y)R2 | y>0}
es un conjunto abierto respecto a la norma x1
Solución.

Sea v0=(x0,y0)V. Se tiene entonces que y0>0 consideremos r=y0 y consideremos la bola B1(v¯0,y0) y sea v¯=(x,y)B1(v¯0,y0) se tiene que v¯v01<y0, es
decir, |xx0|+|yy0|<y0. Debemos probar que y>0.
(1) y no puede ser cero pues si y=0
|xx0|+|yy0|<y0 |xx0|+|y0|<y0 ! (Falso)
es decir no puede ocurrir que |xx0|+|y0| sea menor que y0.
(2) y no puede ser negativa pues
|xx0|+|yy0|=|xx0|+|y|+y0>y0 ! (Falso)
* y<y0 |yy0|=y+y0=|y|+|y0| y tiene que ser y>0 B1(v¯0,y0) esta en el semiplano superior.  ◼
Definición. Un conjunto FRn se dice que es cerrado si su complemento Fc=RnF es un conjunto abierto.


Ejemplo. Los conjuntos Rn y son cerrados. En efecto Rn es cerrado pues su complemento es abierto. Similarmente es cerrado pues su complemento Rn es abierto. ◼


Ejemplo. Un conjunto con un solo punto 0¯ es cerrado ya que Rn0¯ es abierto.  ◼


Proposición. Toda bola cerrada en Rn es un conjunto cerrado.
Demostración. Sea x¯0Rn y r0. Probaremos que la bola cerrada B¯(x0,r) es un conjunto cerrado, es decir, que su complemento RnB¯(x0,r) es un conjunto abierto. Sea pues x¯RnB¯(x0,r). Mostraremos que existe una bola abierta B(x¯,R) contenida en RnB¯(x0,r). Como x¯ no está en la bola cerrada B¯(x0,r), se tiene entonces que x¯x¯0>r. Definamos R=x¯x¯0r>0, esto equivale a r=x¯x¯0R. Veamos que B(x¯,R)RnB¯(x0,r)

luego x¯x¯0<R+y¯x¯0 x¯x¯0R<y¯x¯0, es decir, r<y¯x¯0. Esto significa que y¯B¯(x¯0,r), es decir, y¯RnB¯(x¯0,R).  ◼


Ejemplo. Muestre que el conjunto V={(x,y)R2 | xy}
es un conjunto cerrado.
Solución. Sea Vc={(x,y)R2 | x>y}. mostraremos que Vc es un conjunto abierto

Sea v0=(x0,y0)Vc entonces x0>y0. Definimos r=x0y0>0 ahora consideramos B(v0,r) vamos probar que B(v0,r)Vc Sea v1=(x,y)B(v0,r) con la norma x1 se tiene v1v01<r  |xx0|+|yy0|<r  |xx0|+|yy0|<x0y0 por lo tanto xy=xx0+y0y+x0y0=x0y0+xx0+y0yx0y0(|xx0|+|yy0|)>0 la última desigualdad se obtiene de la propiedad |xx0|xx0|xx0|. De esta manera xy>0  x>y y en consecuencia v1Vc por lo que Vc es un conjunto abierto y por lo tanto V es un conjunto cerrado. ◼
Ejemplo. Sea V=(x,y)R2 | x+y>0. Demuestre que V es un conjunto abierto

Solución. Sea v¯0=(x0,y0)V entonces x0+y0>0. Definimos r=x0+y0>0 ahora consideramos B(v¯,r) vamos probar que B(v¯,r)V
Sea v¯1=(x,y)B(v¯,r) con la norma .1 se tiene v¯v¯01=|xx0|+|yy0|<r
por lo tanto
x+y=xx0y0+y+x0+y0=x0+y0+xx0y0+yx0y0(|xx0|+|yy0|)>0

de esta manera x+y>0 y en consecuencia v¯1V por lo que V es un conjunto abierto.  ◼


Ejemplo Sea V={(x,y)R2 | y>x2}. Demuestre que V es un conjunto abierto

Solución. Sea v¯0=(x0,y0)V entonces y0>x20. Definimos r=y0+x20>0 y ahora consideramos B(v¯,r)=(xx0)2+(yy0)2=ϵ2

vamos probar que B(v¯,r)V.
Sea v¯1=(x,y)B(v¯,r) cada punto en B(v¯,r) cumple |xx0|<ϵ   |yy0|<ϵ y usando la identidad algebraica x02=x22(xx0)x0(xx0)2
tenemos que
y>y0ϵ=x02+y0x02ϵ=x22(xx0)x0(xx0)2+y0x02ϵ>x22ϵx0ϵ2+y0x02ϵ
Por lo tanto
y>x22ϵx0ϵ2+y0x02ϵ>x2se cumple para ϵ=min{1,yx022|x0|+2}
de esta manera y>x2 y en consecuencia v¯1V por lo que V es un conjunto abierto.  ◼


Ejemplo. Sea V={xR | f(x)>0}. Demuestre que V es un conjunto abierto

Solución. Sea yV entonces f(y)>0. Definimos ϵ=f(y) y como f es continua
si  0<|xy|<δ  |f(x)f(y)|<ϵ=f(y)  f(y)<f(x)f(y)<f(y)  0<f(x)
por lo tanto
 xB(x,δ) se tiene f(x)>0de esta manera B(y,δ)V por lo que V es un conjunto abierto.  ◼

Ejemplo. Sea V={(x,y)R2 | a<x<b , c<y<d}. Demuestre que V es un conjunto abierto.

Solución. Sea X=(x1,y1)V entonces a<x1<b y c<y1<d. Definimos ϵ=min{x1a,bx1,y1c,dy1} por tanto si (x,y)B(X,ϵ)

debe ocurrir
a<x1ϵ<x<x1+ϵ<b  y  c<y1ϵ<y<y1+ϵ<d
por lo tanto
(x,y)V  B(X,ϵ)Vy en consecuencia V es un conjunto abierto.  ◼


Más adelante

Una vez clasificados los puntos de Rn veremos en la siguiente entrada una caracterización topológica de conjuntos de Rn con sus respectivas propiedades.

Tarea Moral

1.- Prueba que si x=(x1,,xn)Rn, entonces |xi|x, |xi|x1 y |xi|x.

2.-Demuestra que dados a1,,an,b1,,bnR tales que aibi para i=1,..,n, el rectángulo [a1,b1]×,[an,bn] es un conjunto cerrado.

3.- Demuestra que (a1,b1)×,(an,bn) es un conjunto abierto.

4.- Si A=([0,1]×[0,1])(Q×Q)={(x,y)R2|x,yQy0x1,0y1}

5.- Para el conjunto A={(m,0)R2|mZ} indica quien es:

a) int(A)

b) Fr(A)

c) ext(A)

d) ¿A es abierto o cerrado?