$\mathbb{R}^{n}$ como espacio Topológico

Por Ruben Hurtado

La Topología es un área de las matemáticas que se interesa por conceptos como proximidad, continuidad, conexidad, compacidad, y muchos otros mas. Para abordarlos, es necesario establecer un cierto tipo de conjuntos (que en Topología se les conoce como los conjuntos abiertos).
$\fbox{Bola abierta}$
La bola abierta con centro en $\bar{x}_0$ y radio $r>0$, es el conjunto:
$$B(\bar{x}_0,r)=\{\bar{x}\in\mathbb{R}^n~|~\|\bar{x}-\bar{x}_0\|<r\}$$
$\fbox{Bola Cerrada}$
La bola cerrada con centro $\bar{x}_0$ y radio $r\geq
0$ es el conjunto:
$$\bar{B}(\bar{x}_0,r)=\{\bar{x}\in\mathbb{R}^n~|~\|\bar{x}-\bar{x}_0\|\leq r\}$$
$\fbox{Esfera}$
La esfera con centro $\bar{x}_0$ y radio $r\geq 0$ es el conjunto:
$$S(\bar{x}_0,r)=\{\bar{x}\in\mathbb{R}^n~|~\|\bar{x}-\bar{x}_0\|=r\}$$
Observemos que para la bola abierta $r>0$ estrictamente, mientras que la bola cerrada y la esfera pueden tener radio cero. En este último caso ambas se reducen a un punto:

\[
\bar{B}(\bar{x}_0,0)={\bar{x}_0}
\]

\[
S(\bar{x}_0,0)={\bar{x}_0}~~\textcolor{orange}{\blacksquare}
\]
Los conjuntos $B(\overline{x}_0,r)$, $\bar{B}(\overline{x}_0,r)$ y $S(\bar{x}_0,r)$ son subconjuntos de $\mathbb{R}^n$ y su aspecto geométrico depende de la métrica con la cual se midan las distancias.
$\textcolor{orange}{Ejemplo}$
\begin{align*} \overline{B}_2(0,1)&=\{\bar{x}\in\mathbb{R}^2\ |\ \|\bar{x}\|_2\leq1\} \\ &=\{\bar{x}\in\mathbb{R}^2|\sqrt{x^2+y^2}\ \leq1\} \\ &=\{(x,y)\in\mathbb{R}^2\ |\ x^2+y^2\leq1\} \end{align*}
Geométricamente

La periferia de este disco es el circulo que tiene por ecuación
$x^2+y^2=1$, que corresponde a la esfera $S_2(0,1)=\{\bar{x}\in \mathbb{R}^2\ |\
\|\bar{x}\|_2=1\}$.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Sea ahora la bola cerrada
\begin{align*} \bar{B}_2(0,1)&=\{\overline{x}\in\mathbb{R}^{2}~|~\|\bar{x}\|\leq1\} \\ &=\{(x,y)\in\mathbb{R}^2\ |\ |x|+|y|\leq1\} \end{align*}
Geométricamente

Para $S_1(0,1)=\{\bar{x}\in\mathbb{R}^2\ |\ |\bar{x}|=1\}$

Para $\overline{B}_{\infty}(0,1)=\{\bar{x}\in\mathbb{R}^2\ |\ \|\bar{x}\|_{\infty}\leq1\}$ = $\{(x,y)\in\mathbb{R}^2\ |\ \max\{|x|,|y|\}\leq1\}$

tenemos entonces que

Las figuras anteriores muestran la situación geométrica, entre las bolas cerradas $\overline{B}_{1}(\overline{0},1),~\overline{B}_{2}(\overline{0},1),~\overline{B}_{\infty}(\overline{0},1)$ en forma explicita se escriben:
\[
\max\{|x_1|,\cdots,|x_n|\}\leq
\sqrt{x_1^2+\cdots+x_n^2}\ \leq
|x_1|+\cdots+|x_n|
\]
Las contenciones tanto para las bolas abiertas, como para las bolas
cerradas se siguen de las desigualdades

\[
\|\bar{x}-x_0\|_{\infty}\leq \|\bar{x}-\bar{x}_0\|_2\leq
\|\bar{x}-x_0\|_1
\]
Pues por ejemplo si $\bar{x}\in B_2(\bar{x}0,r)$ entonces $\|\bar{x}-\bar{x}_0\|_2<r$ luego $\|\bar{x}-\overline{x}_0\|_{\infty}<r$

$\therefore~~~\|\bar{x}-\bar{x}_0\|_{\infty}<r$ es decir $\overline{x}\subset
B_{\infty}(x_0,r)$ $\therefore$ $B_2(\bar{x}0,r)\subset B_{\infty}(\bar{x}_0,r)$

Si $\overline{x}\in B_1(\bar{x}_0,r)$ entonces $\|\bar{x}-\bar{x}_0\|_1<r$ luego $\|x-\bar{x}_0\|_2\leq \|\bar{x}-\bar{x}_0\|_1<r$ $\therefore$
$\|\overline{x}-\bar{x}_0\|_2<r$ $\therefore$ $\overline{x}\in B_2(x_0,r)$ $\therefore$ $B_1(\bar{x}_0,r)\subset B_2(x_0,r)$
Para las esferas no hay alguna relación similar, lo que se puede deducir de las desigualdades anteriores son las relaciones siguientes:
\[S_1(\bar{x}_0,r)\subset \overline{B}_{2}(\bar{x}_0,r)\subset\overline{B}_{\infty}(\bar{x}_0,r)\] \[S_2(\bar{x}_0,r)\subset B_{\infty}(\bar{x}0,r)\hspace{1.7cm}\] \[S_{\infty}(\bar{x}0,r)\subset \overline{B}_{\infty}(\bar{x}_0,r)\hspace{1.8cm}
\]
$\fbox{$\textcolor{red}{Conjuntos~ Abiertos~ y~ Conjuntos~ Cerrados}$}$
Un concepto importante en la topología de $\mathbb{R}^{n}$ es el de conjunto abierto. Junto con el de conjunto cerrado.
Conjunto abierto y conjunto cerrado dos conceptos duales, en un sentido que trataremos de explicar. Por ahora solamente veremos la definición de cada uno de ellos y alguna de sus propiedades más importantes.
$\fbox{$\fbox{Definición}$}$
Un conjunto $V\subset\mathbb{R}^n$ se dice que es $\textbf{abierto}$ si para cada $\bar{x}\in V$ existe una bola abierta $B(\bar{x},r)$ contenida en $V$. Es decir si para cada $\bar{x}\in V$ existe $r>0$ tal que $B(\bar{x},r)\subset V$.
$\fcolorbox{orange}{NombreColorRelleno}{Ejemplo}$
El espacio $\mathbb{R}^n$ es un conjunto abierto, pues dado cualquier $\bar{x}\in \mathbb{R}^n$, toda bola abierta $B(\bar{x},r)$ esta contenida en $\mathbb{R}^n$.$~~\textcolor{orange}{\blacksquare}$
$\fcolorbox{orange}{NombreColorRelleno}{Ejemplo}$
Mostraremos que el $\emptyset$ es abierto.
Suponemos que el $\emptyset$ no es abierto $\therefore$ $\exists$ $x\in
\emptyset$ para el cual no es posible hallar una bola abierta $B(\bar{x},r)$ contenida en $\emptyset$. Pero esto no es posible ya que el $\emptyset$ no tiene elementos.
Entonces debemos suponer que el $\emptyset$ no es abierto ${\large\textbf{!}}$ $~~~\therefore~~~\emptyset$ es abierto.$~~\textcolor{orange}{\blacksquare}$
$\fbox{Proposición}$
Toda bola abierta en $\mathbb{R}^n$ es un conjunto abierto.
$\fbox{Demostración}$
Sea $\bar{x}_0\in\mathbb{R}^n$ y $r>0$. Mostraremos que $B(\bar{x}_0,r)$ es un conjunto abierto. Debemos probar que para cada $\bar{x}\in B(\bar{x}_0,r)$, existe una bola abierta $B(\bar{x},r)$ contenida a su vez en la bola abierta $B(\bar{x}_0,r)$. Sea pues $\bar{x}\in B(\bar{x}_0,r)$ y consideremos $R=r-\|\bar{x}-\bar{x}_0\|$. Como $\bar{x}\in B(\bar{x}_0,r)$ se tiene entonces que $\|\bar{x}-\bar{x}_0\|<r$ $\therefore$ $R>0$. Mostraremos que la bola abierta $B(\bar{x},R)$ esta contenida en $B(\bar{x}_0,r)$.


esto prueba que $\bar{y}\in B(\bar{x}_0,r)$.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Mostraremos que en $\mathbb{R}^2$, el semiplano superior
$$V=\{(x,y)\in\mathbb{R}^2~|~y>0\}$$
es un conjunto abierto respecto a la norma $\|\overline{x}\|_1$
$\textcolor{orange}{Solución}$

Sea $\overline{v}_{0}=(x_{0},y_{0})\in V$. Se tiene entonces que $y_{0}>0$ consideremos $r=y_{0}$ y consideremos la bola $B_{1}(\bar{v}_0,y_0)$ y sea $\bar{v}=(x,y)\in
B_1(\bar{v}_0,y_0)$ se tiene que $\|\bar{v}-\overline{v}_0\|_1<y_0$, es
decir, $|x-x_0|+|y-y_0|<y_0$. Debemos probar que $y>0$.
(1) $y$ no puede ser cero pues si $y=0$
$|x-x_0|+|y-y_0|<y_0$ $\Rightarrow$ $|x-x_0|+|y_0|<y_0$ ${\large\textbf{!}}$ (Falso)
es decir no puede ocurrir que $|x-x_0|+|y_0|$ sea menor que $y_{0}$.
(2) $y$ no puede ser negativa pues
$|x-x_0|+|y-y_0|=|x-x_0|+\underset{*}{\underbrace{|y|+y_0}}>y_0$ ${\large\textbf{!}}$ (Falso)
* $y<y_0$ $\Rightarrow$ $|y-y_0|=-y+y_0=|y|+|y_0|$ $\therefore$ $y$ tiene que ser $y>0$ $\therefore$ $B_1(\bar{v}_0,y_0)$ esta en el semiplano superior.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\fbox{Definición}$}$
Un conjunto $F\subset\mathbb{R}^n$ se dice que es $\textbf{cerrado}$ si su complemento $F^c=\mathbb{R}^n-F$ es un conjunto abierto.
$\textcolor{orange}{Ejemplo}$
Los conjuntos $\mathbb{R}^n$ y $\emptyset$ son cerrados. En efecto $\mathbb{R}^n$ es cerrado pues su complemento $\emptyset$ es abierto. Similarmente $\emptyset$ es cerrado pues su complemento $\mathbb{R}^n$ es abierto.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Un conjunto con un solo punto ${\bar{0}}$ es cerrado ya que $\mathbb{R}^n-{\bar{0}}$ es abierto.$~~\textcolor{orange}{\blacksquare}$
$\fbox{Proposición}$
Toda bola cerrada en $\mathbb{R}^n$ es un conjunto cerrado.
$\textcolor{blue}{Demostración}$ Sea $\bar{x}_0\in \mathbb{R}^n$ y $r\geq0$. Probaremos que la bola cerrada $\bar{B}(x_0,r)$ es un conjunto cerrado, es decir, que su complemento $\mathbb{R}^n-\bar{B}(x_0,r)$ es un conjunto abierto. Sea pues $\bar{x}\in\mathbb{R}^n-\bar{B}(x_0,r)$. Mostraremos que existe una bola abierta $B(\bar{x},R)$ contenida en $\mathbb{R}^n-\bar{B}(x_0,r)$. Como $\bar{x}$ no está en la bola cerrada $\bar{B}(x_0,r)$, se tiene entonces que $\|\bar{x}-\bar{x}_0\|>r$. Definamos $R=\|\bar{x}-\bar{x}_0\|-r>0$, esto equivale a $r=\|\bar{x}-\bar{x}_0\|-R$. Veamos que $B(\bar{x},R)\subset\mathbb{R}^n-\bar{B}(x_0,r)$

luego $\|\bar{x}-\bar{x}_0\|<R+\|\bar{y}-\bar{x}_0\|$ $\therefore$ $\|\bar{x}-\bar{x}_0\|-R<\|\bar{y}-\bar{x}_0\|$, es decir, $r<\|\bar{y}-\bar{x}_0\|$. Esto significa que $\bar{y}\not\in \bar{B}(\bar{x}_0,r)$, es decir, $\bar{y}\in\mathbb{R}^n-\bar{B}(\bar{x}_0,R)$.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Muestre que el conjunto $$V=\{(x,y)\in\mathbb{R}^{2}~|~x\leq y\}$$
es un conjunto cerrado.
$\textcolor{orange}{Solución}$
Sea $V^{c}=\{(x,y)\in\mathbb{R}^{2}~|~x>y\}$. mostraremos que $V^{c}$ es un conjunto abierto

Sea $\overline{v}_{0}=(x_{0},y_{0})\in V^{c}$ entonces $x_{0}>y_{0}$. Definimos $r=x_{0}-y_{0}>0$ ahora consideramos $B(\overline{v}_{0},r)$ vamos probar que $B(\overline{v}_{0},r)\subset V^{c}$ Sea $\overline{v}_{1}=(x,y)\in B(\overline{v}_{0},r)$ con la norma $\|\overline{x}\|_{1}$ se tiene $$\|\overline{v}_{1}-\overline{v}_{0}\|_{1}<r~\Rightarrow~|x-x_{0}|+|y-y_{0}|<r~\Rightarrow~|x-x_{0}|+|y-y_{0}|<x_{0}-y_{0}$$ por lo tanto $$x-y=x-x_{0}+y_{0}-y+x_{0}-y_{0}=x_{0}-y_{0}+x-x_{0}+y_{0}-y\geq x_{0}-y_{0}-\left(|x-x_{0}|+|y-y_{0}|\right)>0$$ la última desigualdad se obtiene de la propiedad $-|x-x_{0}|\leq x-x_{0}\leq |x-x_{0}|$. De esta manera $x-y>0~\Rightarrow~x>y$ y en consecuencia $v_{1}\in V^{c}$ por lo que $V^{c}$ es un conjunto abierto y por lo tanto V es un conjunto cerrado.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Sea $V={(x,y)\in\mathbb{R}^{2}~|~x+y>0}$. Demuestre que V es un conjunto abierto

$\textcolor{orange}{Solución}$
Sea $\bar{v}_{0}=(x_{0},y_{0})\in V$ entonces $x_{0}+y_{0}>0$. Definimos $r=x_{0}+y_{0}>0$ ahora consideramos $B(\bar{v},r)$ vamos probar que $B(\bar{v},r)\subset V$
Sea $\bar{v}_{1}=(x,y)\in B(\bar{v},r)$ con la norma $\|.\|_{1}$ se tiene $$\|\bar{v}-\bar{v}_{0}\|_{1}=|x-x_{0}|+|y-y_{0}|<r$$
por lo tanto
$$x+y=x-x_{0}-y_{0}+y+x_{0}+y_{0}=x_{0}+y_{0}+x-x_{0}-y_{0}+y\geq x_{0}-y_{0}-\left(|x-x_{0}|+|y-y_{0}|\right)>0$$

de esta manera $x+y>0$ y en consecuencia $\bar{v}_{1}\in V$ por lo que V es un conjunto abierto.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Sea $V=\{(x,y)\in\mathbb{R}^{2}~|~y>x^{2}\}$. Demuestre que V es un conjunto abierto

$\textcolor{orange}{Solución}$
Sea $\bar{v}_{0}=(x_{0},y_{0})\in V$ entonces $y_{0}>x^{2}{0}$. Definimos $r=y_{0}+x^{2}{0}>0$ y ahora consideramos $B(\bar{v},r)=(x-x_{0})^{2}+(y-y_{0})^{2}=\epsilon^{2}$

vamos probar que $B(\bar{v},r)\subset V$.
Sea $\bar{v}_{1}=(x,y)\in B(\bar{v},r)$ cada punto en $B(\bar{v},r)$ cumple $$|x-x_{0}|<\epsilon~~~|y-y_{0}|<\epsilon$$ y usando la identidad algebraica $$x_{0}^{2}=x^{2}-2(x-x_{0})x_{0}-(x-x_{0})^{2}$$
tenemos que
$$y>y_{0}-\epsilon=x_{0}^{2}+y_{0}-x_{0}^{2}-\epsilon=x^{2}-2(x-x_{0})x_{0}-(x-x_{0})^{2}+y_{0}-x_{0}^{2}-\epsilon>x^{2}-2\epsilon x_{0}-\epsilon^{2}+y_{0}-x_{0}^{2}-\epsilon$$
Por lo tanto
$$y>x^{2}-2\epsilon x_{0}-\epsilon^{2}+y_{0}-x_{0}^{2}-\epsilon>x^{2}se~cumple~para~\epsilon=\min\left\{1,\frac{y-x_{0}^{2}}{2|x_{0}|+2}\right\}$$
de esta manera $y>x^{2}$ y en consecuencia $\bar{v}_{1}\in V$ por lo que V es un conjunto abierto.$~~\textcolor{orange}{\blacksquare}$
$\textcolor{orange}{Ejemplo}$
Sea $V={x\in\mathbb{R}~|~f(x)>0}$. Demuestre que V es un conjunto abierto

$\textcolor{orange}{Solución}$
Sea $y\in V$ entonces $f(y)>0$. Definimos $\epsilon=f(y)$ y como f es continua
$$si~~0<|x-y|<\delta~\Rightarrow~|f(x)-f(y)|<\epsilon=f(y)~\Rightarrow~-f(y)<f(x)-f(y)<f(y)~\Rightarrow~0<f(x)$$
por lo tanto
$$\forall~x\in B(x,\delta)~se~tiene~f(x)>0$$de esta manera $B(y,\delta)\subset V$ por lo que V es un conjunto abierto.$~~\textcolor{orange}{\blacksquare}$

$\textcolor{orange}{Ejemplo}$
Sea $V={(x,y)\in\mathbb{R}^{2}~|~a<x<b~,~c<y<d}$. Demuestre que V es un conjunto abierto.

$\textcolor{orange}{Solución}$
Sea $X=(x_{1},y_{1})\in V$ entonces $a<x_{1}<b$ y $c<y_{1}<d$. Definimos $\epsilon=\min\{x_{1}-a,b-x_{1},y_{1}-c,d-y_{1}\}$ por tanto si $(x,y)\in B(X,\epsilon)$

debe ocurrir
$$a<x_{1}-\epsilon<x<x_{1}+\epsilon<b~~y~~c<y_{1}-\epsilon<y<y_{1}+\epsilon<d$$
por lo tanto
$$(x,y)\in V~\therefore~B(X,\epsilon)\subset V$$y en consecuencia V es un conjunto abierto.$~~\textcolor{orange}{\blacksquare}$

Propiedades de los conjuntos abiertos y cerrados

$\fbox{$\textcolor{blue}{Proposición}$:Si A y B son subconjuntos abiertos de $\mathbb{R}^{n}$, entonces $A\bigcup B$ es un conjunto abierto de $\mathbb{R}^{n}$.}$
$\fbox{$\textcolor{orange}{Demostración}$}$
Sea $\overline{x}\in A\cup B$. Se tiene entonces que $\overline{x}\in A$ ó $\overline{x}\in B$. Si $\overline{x}\in A$, entonces, puesto que A es abierto existe $r>0$ tal que $B_{r}(\overline{x})\subset A$, luego $B_{r}(\overline{x})\subset A\cup B$ Si $\overline{x}\in B$, entonces, puesto que B es abierto existe $r>0$ tal que $B_{r}(\overline{x})\subset B$, luego $B_{r}(\overline{x})\subset A\cup B$. En cualquiera de los casos, existe una bola abierta $B_{r}$ contenida en $A\cup B$. $\therefore$ $A\cup B$ es abierto.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{blue}{Proposición}$: Si A y B son subconjuntos abiertos de $\mathbb{R}^{n}$, entonces $A\bigcap B$ es un conjunto abierto de $\mathbb{R}^{n}$.}$
$\fbox{$\textcolor{orange}{Demostración}$}$
Sea $\overline{x}\in A\cup B$. Se tiene entonces que $\overline{x}\in A$ y $\overline{x}\in B$. Puesto que A es abierto $\exists~r_{1}>0$ tal que $B(\overline{x},r_{1})\subset A$. Puesto que b es abierto $\exists~r_{2}>0$ tal que $B(\overline{x},r_{2})\subset B$.\Sea $r=\min{r_{1},r_{2}}$, entonces se tiene que
\begin{align*} B(\overline{x},r) & \subset B(\overline{x},r_{1}) \\ B(\overline{x},r) & \subset B(\overline{x},r_{2}) \end{align*}
Por lo tanto $B(\overline{x},r)\subset A$ y $B(\overline{x},r)\subset B$, o sea $B(\overline{x},r)\subset A\cap B$.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{blue}{Proposición}$: Si A y B son subconjuntos cerrados de $\mathbb{R}^{n}$, entonces $A\bigcup B$ es un conjunto cerrado de $\mathbb{R}^{n}$.}$
$\fbox{$\textcolor{orange}{Demostración}$}$
Para mostrar que $A\bigcup B$ es un conjunto cerrado, tenemos que mostrar que $(A\bigcup B)^{c}$ es un conjunto abierto, al ser A, B conjuntos cerrados entonces $A^{c},~B^{c}$ son conjuntos abiertos y por leyes de D’morgan
$$(A\bigcup B)^{c}=A^{c}\bigcap B^{c}$$
ahora bien por el resultado anterior se tiene que la intersección de conjuntos abiertos es un conjunto abierto, esto prueba que $(A\bigcup B)^{c}$ es un conjunto abierto, por lo tanto $A\bigcup B$ es un conjunto cerrado.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{blue}{Proposición}$: Si A y B son subconjuntos cerrados de $\mathbb{R}^{n}$, entonces $A\bigcap B$ es un conjunto cerrado de $\mathbb{R}^{n}$.}$
$\fbox{$\textcolor{orange}{Demostración}$}$
Para mostrar que $A\bigcap B$ es un conjunto cerrado, tenemos que mostrar que $(A\bigcap B)^{c}$ es un conjunto abierto, al ser A, B conjuntos cerrados entonces $A^{c},~B^{c}$ son conjuntos abiertos y por leyes de D’morgan
$$(A\bigcap B)^{c}=A^{c}\bigcup B^{c}$$
ahora bien por el resultado anterior se tiene que la unión de conjuntos abiertos es un conjunto abierto, esto prueba que $(A\bigcap B)^{c}$ es un conjunto abierto, por lo tanto $A\bigcap B$ es un conjunto cerrado.$~~\textcolor{orange}{\blacksquare}$

Generalizaciones de la proposiciones anteriores de la familias de conjuntos.

$\fbox{$\textcolor{blue}{Proposición :}$ La unión arbitraria de conjuntos abiertos en $\mathbb{R}^{n}$ es un conjunto abierto en $\mathbb{R}^{n}$}$
$\textcolor{orange}{Demostración}$
Sea ${A_{\alpha}}$ una colección de subconjuntos de $\mathbb{R}^{n}$ tal que $A_{\alpha}$ es un conjunto abierto en $\mathbb{R}^{n}$. Sea $\displaystyle{A=\bigcup A_{\alpha}}$.
Sea $\overline{x}_{0}\in A$. Entonces existe $\alpha$ tal que $\overline{x}_{0}\in A_{\alpha}$ y como $A_{\alpha}$ es un conjunto abierto, existe $r>0$ tal que
$$B(\overline{x}_{0},r)\subset A{\alpha}\subset \bigcup A_{\alpha}=A$$
Por lo tanto A es abierto.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{blue}{Proposición :}$ La intersección finita de conjuntos abiertos en $\mathbb{R}^{n}$ es un conjunto abierto en $\mathbb{R}^{n}$}$
$\textcolor{orange}{Demostración}$
Sean $A_{1},A_{2},…,A_{k}$ subconjutos abiertos de $\mathbb{R}^{n}$. Sea $\displaystyle{B=\bigcap_{i=1}^{k}A_{i}=A_{1}\cap A_{2}\cap …\cap A_{k}}$.
Sea $\overline{x}_{0}\in B$. Entonces $\overline{x}_{0}\in A_{i}$ para toda $1\leq i\leq k$. Cada $A_{i}$ es un conjunto abierto. Por lo tanto existe $r_{i}>0$ tal que $B(\overline{x}_{0},r{i})\subset A_{i}$ para toda $1\leq i\leq k$. Sea $r=\min{r_{1},r_{2},…,r_{n}}>0$. Entonces
$$B(\overline{x}_{0},r)\subset B(\overline{x}_{0},r_{i})\subset A_{i}~~\forall~i=1,…,n$$
Por lo tanto
$$B(\overline{x}_{0},r)\subset \bigcap_{i=1}^{k}A_{i}=B$$
y por lo tanto B es un conjunto abierto.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{blue}{Proposición :}$La unión finita de conjuntos cerrados en $\mathbb{R}^{n}$ es un conjunto cerrado en $\mathbb{R}^{n}$}$
$\textcolor{orange}{Demostración}$
Sean $A_{1},…,A_{k}\subset \mathbb{R}^{n}$ conjuntos cerrados y sea $\displaystyle{B=\bigcup_{i=1}^{n}A_{i}}$. Entonces
$$B^{c}=\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}A^{c}_{i}$$
el cual es un conjunto abierto de $\mathbb{R}^{n}$. Por lo tanto B es un conjunto cerrado de $\mathbb{R}^{n}$.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{blue}{Proposición :}$La intersección finita de conjuntos cerrados en $\mathbb{R}^{n}$ es un conjunto cerrado en $\mathbb{R}^{n}$}$
$\textcolor{orange}{Demostración}$
Sea ${A_{\alpha}}$ una colección de subconjuntos de $\mathbb{R}^{n}$ tales que cada $A_{\alpha}$ es cerrado en $\mathbb{R}^{n}$. Por lo tanto para cada $\alpha$, $A^{c}{\alpha}$ es un conjunto abierto en $\mathbb{R}^{n}$. Sea $\displaystyle{A=\bigcap{\alpha}A_{\alpha}}$ tal que
$$A^{c}=\left(\bigcap_{\alpha}A_{\alpha}\right)^{c}=\bigcup_{\alpha}A^{c}_{\alpha}$$
es un conjunto abierto en $\mathbb{R}^{n}$. Por lo tanto A es un conjunto cerrado en $\mathbb{R}^{n}$.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{blue}{Definición}$}$
Un elemento $\bar{x}\in A$ se dice que es un $\textbf{punto interior}$ de $A$, si existe una bola abierta con centro en $\bar{x}$ contenida en $A$ es decir si $\exists$ $r>0$ tal que $B(\bar{a},r)\subset A$. Denotamos por $int(A)$ al conjunto formado por todos estos puntos, es decir $$int(A)=\{\overline{x}\in\mathbb{R}^{n}~|~\overline{x}~es~punto~interior~de~A\}$$
y diremos que este conjunto es el interior de A.
$\textcolor{orange}{Ejemplo}$
Determinar el $int(A),~~Fr(A),~~ext(A)$ con
\[
A=\left[0,1\right]\times\left[0,1\right]\cap\left(\mathbb{Q}\times\mathbb{Q}\right)=\left\{ (x,y)\in\mathbb{R}^{2}~\big{|}~(x,y)\in\mathbb{Q}~~y~~0\leq x\leq1~~0\leq y\leq1\right\} .
\]

$\textcolor{orange}{Solución}$
Primero analicemos la figura, ¿qué pasa si tomamos un $(x,y)$ en $A$ y un $r>0$?, ¿qué podemos observar?. Si recordamos la densidad de los irracionales sabemos que podemos encontrar un $x’$ irracional entre $x$ y $x+r$, entonces si tomamos el punto $(x’,y)$ podemos ver que esta dentro de $B_{r}(x,y)$, pero $(x’,y)$ no es un punto de $A$. Esto pasa para toda $r>0$ y todo $(x,y)$ en $A$. Entonces, podemos afirmar que el $int(A)=\emptyset$.
Ademas, podemos decir que para todo $(x,y)$ en $A$ y todo $r>0$ se tiene que $B_{r}(x,y)\cap A^{c}\neq\emptyset$. Usando el mismo argumento, pero ahora para los racionales, podemos decir que para cualquier $(x,y)$ y $r>0$ se tiene que $B_{r}(x,y)\cap A\neq\emptyset$.
Todo esto dentro del cuadrado $\left[0,1\right]\times\left[0,1\right]$. Entonces, podemos afirmar que $Fr(A)=\left[0,1\right]\times\left[0,1\right]$.

¿Que podemos decir del exterior? De lo anterior podemos deducir que
$ext(A)=\mathbb{R}{{}^2}-\left[0,1\right]\times\left[0,1\right]$.
Entonces, demostremos la siguiente afirmación:
$\fbox{$\textcolor{orange}{Afirmación: }$ $int(A)=\emptyset$}$
$\textcolor{orange}{Demostración}$
Sean $(x,y)\in A$ y $r>0$. Mostraremos que $B_{r}(x,y)\cap A^{c}\neq\emptyset$, es decir, que para cualquier punto $(x,y)$ de $A$ y cualquier radio $r>0$, la bola $B_{r}(x,y)$ siempre contiene puntos de $A^{c}$, es decir, que $A$ no tiene puntos interiores.
Como $(x,y)\in A$, entonces $x\in\mathbb{Q}$ y por la densidad de los irracionales sabemos que siempre existe un $x’\notin\mathbb{Q}$ tal que $x<x'<x+r$……$\bigstar$
Tomemos el punto $(x’,y)$ y calculemos su distancia con $(x,y)$:
\[
\| (x,y)-(x’,y)\|=\| (x-x’,0)\|=\sqrt{(x-x’)^{2}}=\underset{**}{\underbrace{\left|x-x’\right|<r}}\text{ esta ultima desigualdad se cumple por }\bigstar
\] Veamos por que se cumple $**$. De $\bigstar$ tenemos que $x<x'<x+r$, restando $x$ tenemos $x-x<x’-x<x+r-x$ $\Longrightarrow0<x’-x<r$ como esto es positivo, le podemos sacar el valor absouto y se mantiene la desigualdad $0<|x’-x|<r$ y sabemos que $|a-b|=|b-a|$. Por lo tanto, $|x-x’|<r$.
Entonces, como $\left\Vert (x,y)-(x’,y)\right\Vert <r$, tenemos que $(x’,y)\in B_{r}(x,y)$, pero como $x’\notin\mathbb{Q}$ esto implica que $(x’,y)\notin\mathbb{Q}\times\mathbb{Q}$. Por lo tanto, $B_{r}(x,y)\cap\left(\mathbb{R}^{2}-\mathbb{Q}\times\mathbb{Q}\right)\neq\emptyset$.
Podemos observar que $A\subset\mathbb{Q}\times\mathbb{Q}$ $\Longrightarrow$ $B_{r}(x,y)\cap\left(\mathbb{R}^{2}-A\right)=B_{r}(x,y)\cap A^{c}\neq\emptyset$,
es decir, que para todo $r>0$ se tiene que $B_{r}(x,y)$ siempre interseca a $A^{c}$. Por lo tanto, $int(A)=\emptyset$.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{orange}{Afirmación :}$ $Fr(A)=\left[0,1\right]\times\left[0,1\right]$}$
$\textcolor{orange}{Demostración}$
Primero mostraremos que $\left[0,1\right]\times\left[0,1\right]\subset Fr(A)$. Sea $(x,y)\in\left[0,1\right]\times\left[0,1\right]$ y $r>0$. Ya probamos que $B_{r}(x’,y’)\cap A^{c}\neq\emptyset$, falta probar que $B_{r}(x,y)\cap A\neq\emptyset$. (Para que se cumpla la definición de frontera). Tenemos varios casos para $x$ y $y$:
$(1)$ Supongamos que $0\leq x<1$ y $0\leq y<1$. Por la densidad de los números racionales, sabemos que existen $x’,y’\in\mathbb{Q}$ tal que:
\[
x<x'<min\left\{1,x+\frac{r}{\sqrt{2}}\right\},\text{y }y<y'<min\left\{1,y+\frac{r}{\sqrt{2}}\right\}…………………\clubsuit
\]
Entonces, $\underset{\spadesuit}{\underbrace{(x’,y’)\in A}}$ y además $\displaystyle{|x-x’|<\frac{r}{\sqrt{2}}}$ y $\displaystyle{|y-y’|<\frac{r}{\sqrt{2}}}$. Así podemos ver lo siguiente:
\[
||(x,y)-(x’,y’)||=\sqrt{(x-x’)+(y-y’)}<\sqrt{\left(\frac{r}{\sqrt{2}}\right)^{2}+\left(\frac{r}{\sqrt{2}}\right)^{2}}=r,
\]
lo que nos dice que el punto $(x’,y’)\in B_{r}(x,y)$, y por $\spadesuit$ tenemos que $B_{r}(x,y)\cap A\neq\emptyset$.
$(2)$ En este caso juntaremos los casos que faltan. Escogiendo a $x’,y’$ como en $\clubsuit$, tenemos lo siguiente:
(a) Si $x=1$ y $y<1$ nos fijamos en la pareja $(1,y’)$,
(b) Si $x<1$ y $y=1$ nos fijamos en la pareja $(x’,1)$, y
(c) Si $x=1$ y $y=1$nos fijamos en la pareja $(1,1)$.
Podemos observar que estos puntos están en $A$, pues sus entradas pertenecen a los racionales. Por lo tanto, $B_{r}(x,y)\cap A\neq\emptyset$. Por lo tanto, $\left[0,1\right]\times\left[0,1\right]\subset Fr(A)$.
$\fbox{$\textcolor{orange}{Afirmación :}$ $ext(A)=\mathbb{R}^{2}-\left[0,1\right]\times\left[0,1\right]$}$
Primero mostremos que $\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}\subset ext(A)$. Sea $(x,y)\in\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}$
y supongamos que $x<0$ ó $1<x$, (la otra posibilidad es que $y<0$ ó $y>1$, pero se hace de manera análoga).
(1) Si $x<0$, entonces tomamos $r=|x|>0$. Vamos a mostrar que $B_{r}(x,y)\subset\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}$. Observemos que $\mathbb{R}^{2}\{\left[0,1\right]\times\left[0,1\right]\}\subset A^{c}…………..\spadesuit$.
Sea $(x’,y’)\in B_{r}(x,y)$, sabemos que
\[
|x-x|\leq\left\Vert (x,y)-(x’,y’)\right\Vert <r
\]
pero $|x|=r$, entonces
\[
|x-x’|<|x|=-x\text{ pues }x<0
\]
entonces
\[
x<x-x'<-x\Longrightarrow-x+x<-x+x-x'<-x-x\Longrightarrow0<-x'<-2x
\]
multiplicando por $(-1)$, tenemos que $x'<0$, lo cual implica que
$(x’,y’)\notin\left[0,1\right]\times\left[0,1\right]$. Así tenemos que $(x’,y’)\in\mathbb{R}^{n}-\left[0,1\right]\times\left[0,1\right]$.
Entonces, $B_{r}(x,y)\subset\mathbb{R}^{n}-\left[0,1\right]\times\left[0,1\right]$.
Por lo tanto, por $\spadesuit$, $B_{r}(x,y)\subset A^{c}$, lo cual implica que $(x,y)\in ext(A)$.
(2) Si $x>1$, entonces tomamos $r=x-1>0$.
Vamos a mostrar que $B_{r}(x,y)\subset\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}$. Observemos que $\mathbb{R}^{2}\{\left[0,1\right]\times\left[0,1\right]\}\subset A^{c}…………..\spadesuit$.
Sea $(x’,y’)\in B_{r}(x,y)$, sabemos que

Vamos a mostrar que $B_{r}(x,y)\subset\mathbb{R}{{}^2}-\left[0,1\right]\times\left[0,1\right]$.
Observemos que $\mathbb{R}{{}^2}\left[0,1\right]\times\left[0,1\right]\subset A^{c}…………..\spadesuit$.\
Sea $(x’,y’)\in B_{r}(x,y)$, sabemos que
\[
|x-x’|\leq\left\Vert (x,y)-(x’,y’)\right\Vert <r=x-1
\]

\[
|x-x’|<x-1\Longrightarrow1-x<x-x'<x-1\Longrightarrow1-2x<x-x-x'<x-x-1
\]

\[
1-2x<-x'<-1\Longrightarrow1<x'<2x-1
\]

entonces tenemos que $x’>1$, lo cual nos dice que $(x’,y’)\notin\left[0,1\right]\times\left[0,1\right]$.
Así tenemos que $(x’,y’)\in\mathbb{R}^{n}-\{\left[0,1\right]\times\left[0,1\right]\}$.
Entonces, $B_{r}(x,y)\subset\mathbb{R}^{n}-\{\left[0,1\right]\times\left[0,1\right]\}$.
Por lo tanto, por $\spadesuit$, $B_{r}(x,y)\subset A^{c}$, lo cual
implica que $(x,y)\in ext(A)$. Por lo tanto, $\mathbb{R}^{2}-\{\left[0,1\right]\times\left[0,1\right]\}\subset ext(A)$.
De la proposición tenemos que $\mathbb{R}^{n}=int(A)\cup ext(A)\cup Fr(A)$,
en nuestro caso obtuvimos que $int(A)=\emptyset$. Entonces,

\[
\mathbb{R}{{}^2}=ext(A)\cup Fr(A)
\]
y de esto obtenemos las siguientes igualdades
\[
\mathbb{R}{{}^2}-ext(A)=Fr(A)………\clubsuit\text{ y }\mathbb{R}{{}^2}-Fr(A)=ext(A)………\clubsuit\clubsuit.
\]
De $\clubsuit$ tenemos $Fr(A)\subset\mathbb{R}{{}^2}-ext(A)$ y de $(2)$ tenemos $\left[0,1\right]\times\left[0,1\right]\subset Fr(A)$, entonces $\left[0,1\right]\times\left[0,1\right]\subset Fr(A)\subset\mathbb{R}{{}^2}-ext(A)………….\maltese$
De $(3)$ tenemos $\mathbb{R}^{2}-\left[0,1\right]\times\left[0,1\right]\subset ext(A)$,
entonces

\[
\left(\mathbb{R}^{2}-\left[0,1\right]\times\left[0,1\right]\right)\cup\left[0,1\right]\times\left[0,1\right]\subset ext(A)\cup\left[0,1\right]\times\left[0,1\right]
\]

entonces
\[
\mathbb{R}^{2}\subset ext(A)\cup\left[0,1\right]\times\left[0,1\right]\Longrightarrow\mathbb{R}^{2}-ext(A)\subset\left(ext(A)\cup\left[0,1\right]\times\left[0,1\right]\right)-ext(A)
\]

así tenemos
\[
\mathbb{R}^{2}-ext(A)\subset\left[0,1\right]\times\left[0,1\right]…………..\maltese\maltese
\]

Entonces, por $\maltese$ y $\maltese\maltese$ tenemos que $Fr(A)=\left[0,1\right]\times\left[0,1\right]$. Y de esta igualdad y de $\clubsuit\clubsuit$ tenemos que $ext(A)=\mathbb{R}^{2}-\left[0,1\right]\times\left[0,1\right]$.$~~\textcolor{orange}{\blacksquare}$
$\fbox{$\textcolor{blue}{Proposición :}$}$
Si $A\subset\mathbb{R}^{n}$, entonces:
(1) $int(A)\subset A$
(2) $ext(A)\subset A^{c}$
(3) (a) $int(A)\cap ext(A)=\emptyset$, (b) $int(A)\cap Fr(A)=\emptyset$ y (c) $Fr(A)\cap ext(A)=\emptyset$
(4) $\mathbb{R}^{n}=int(A)\cup ext(A)\cup Fr(A)$
(5) $int(A^{c})=ext(A)$ y $Fr(A)=Fr(A^{c})$.
$\textcolor{orange}{Demostración}$
(1) Por demostrar que $int(A)\subset A$. Sea $\hat{x}\in int(A)$ $\Longrightarrow$ por definición que existe $r>0$ tal que $B_{r}(\hat{x})\subset A$. Como $\hat{x}\in B_{r}(\hat{x})$ (por definición de bola), entonces $\hat{x}\in A$. Por lo tanto, $int(A)\subset A$.
(2) Por demostrar que $ext(A)\subset A^{c}$. Sea $\hat{x}\in ext(A)$ $\Longrightarrow$ por definición que existe $r>0$ tal que $B_{r}(\hat{x})\subset A^{c}$. Como $\hat{x}\in B_{r}(\hat{x})$ (por definición de bola), entonces $\hat{x}\in A^{c}$. Por lo tanto, $ext(A)\subset A$.
(3_{a}) Por demostrar que $int(A)\cap ext(A)=\emptyset$. Supongamos por contadicción que $int(A)\cap ext(A)\neq\emptyset$, esto implica que existe $\hat{x}\in int(A)\cap ext(A)$ $\Longrightarrow$ $\hat{x}\in int(A)$ y $\hat{x}\in ext(A)$, esto implica por (1) y (2) que $\hat{x}\in A$ y $\hat{x}\in A^{c}$, lo cual es una contradicción. Por lo tanto, $int(A)\cap ext(A)=\emptyset$.
(3_{b}) Por demostrar que $int(A)\cap Fr(A)=\emptyset$. Supongamos por contadicción que $int(A)\cap Fr(A)\neq\emptyset$, esto implica que existe $\hat{x}\in int(A)\cap Fr(A)$ $\Longrightarrow$
$\hat{x}\in int(A)$ y $\hat{x}\in Fr(A)$. Así, tenemos lo siguiente: $(a).$ Existe $r>0$ tal que $B_{r}(\hat{x})\subset A$, y $(b).$ Para todo $r’>0$ se tiene que $B_{r’}(\hat{x})\cap A\neq\emptyset$ y $B_{r’}(\hat{x})\cap A^{c}\neq\emptyset$.
En particular, por $(a)$, para $r>0$ tenemos que $B_{r}(\hat{x})\cap A^{c}=\emptyset$,
lo cual contradice la hipótesis $(b)$. Por lo tanto, $int(A)\cap Fr(A)=\emptyset$.
(3_{c}) Por demostrar que $Fr(A)\cap ext(A)=\emptyset$.
Supongamos por contradicción que $Fr(A)\cap ext(A)\neq\emptyset$,
esto implica que existe $\hat{x}\in Fr(A)\cap ext(A)$ $\Longrightarrow$
$\hat{x}\in Fr(A)$ y $\hat{x}\in ext(A)$. Así, tenemos lo siguiente:
$(a).$ Para todo $r>0$ se tiene que $B_{r’}(\hat{x})\cap A\neq\emptyset$
y $B_{r’}(\hat{x})\cap A^{c}\neq\emptyset$, y
$(b).$ Existe $r’>0$ tal que $B_{r’}(\hat{x})\subset A^{c}$.
Así, por $(b)$tenemos que existe $r’>0$ tal que $B_{r’}(\hat{x})\cap A=\emptyset$,
lo cual contradice la hipótesis $(a)$. Por lo tanto, $Fr(A)\cap ext(A)=\emptyset$.
(4) Por demostrar que $\mathbb{R}^{n}=int(A)\cup Fr(A)\cup ext(A)$.
Como $A\subset\mathbb{R}^{n}$, se tiene que $int(A)\cup Fr(A)\cup ext(A)\subset\mathbb{R}^{n}$. Falta ver que $\mathbb{R}^{n}\subset int(A)\cup Fr(A)\cup ext(A)$. Sea $\hat{x}\in\mathbb{R}^{n}$, como $A\subset\mathbb{R}^{n}$entonces tenemos tres casos:
$(a)$ Existe $r>0$ tal que $B_{r}(\hat{x})\subset A$, entonces por
definición tenemos que $\hat{x}\in int(A)$,
$(b)$ existe $r>0$ tal que $B_{r}(\hat{x})\subset A^{c}$, entonces
por defición tenemos que $\hat{x}\in ext(A)$, o
$(c)$ para todo $r>0$ se tiene que $B_{r}(\hat{x})\cap A^{c}\neq\emptyset$
y $B_{r}(\hat{x})\cap A\neq\emptyset$, entonces por definición $\hat{x}\in Fr(A)$. Así tenemos que, $\mathbb{R}^{n}\subset int(A)\cup Fr(A)\cup ext(A)$. Por lo tanto, $\mathbb{R}^{n}=int(A)\cup Fr(A)\cup ext(A)$.
$(5)$ (a) Por demostrar que $int(A^{c})=ext(A)$.
$\subset\rfloor$ $int(A^{c})\subset ext(A)$
Sea $\hat{x}\in int(A^{c})$, por definición se tiene que existe $r>0$
tal que $B_{r}(\hat{x})\subset A^{c}$, pero esta es la definición
de un punto exterior de $A$. Por lo tanto, $\hat{x}\in ext(A)$.
$\supset\rfloor$ $ext(A)\subset int(A^{c})$.
Sea $\hat{x}\in ext(A)$, por definición se tiene que existe $r>0$
tal que $B_{r}(\hat{x})\subset A^{c}$, pero esta es la definición
de un punto interior de $A^{c}$. Por lo tanto, $\hat{x}\in int(A^{c})$.
Por lo tanto, $int(A^{c})=ext(A)$.$~~\textcolor{orange}{\blacksquare}$
$\fbox{Definición}$
Sea $A\subset \mathbb{R}^{n}$. Definimos la cerradura de A, que denotamos por $\overline{A}$, como $$\overline{A}=int(A)\cup Fr(A)$$
$\fbox{$\textcolor{blue}{Proposición :}$}$ Sea $A\subset \mathbb{R}^{n}$. Las siguientes afirmaciones son ciertas:
(1) $Int(A)$ es un conjunto abierto
(2) $Ext(A)$ es un conjunto abierto
(3) $Fr(A)$ es un conjunto cerrado
(4) $\overline{A}$ es un conjunto cerrado.
$\fbox{$\textcolor{orange}{Demostración}$}$
(1) Sea $\overline{x}\in Int(A)$, entonces existe $r>0$ tal que $B(\overline{x},r)\subset A$. Sea $\overline{y}\in B(\overline{x},r)$, existe $r’>0$ tal que $B(\overline{y},r’)\subset B(\overline{x},r)\subset A$ por lo que $\overline{y}\in Int(A)$ y por tanto $B(\overline{x},r)\subset Int(A)$.
(2) Como $Ext(A)=Int(A^{c})$ y de acuerdo al inciso anterior este conjunto es abierto.
(3) Tenemos que $$(Fr(A))^{c}=\mathbb{R}^{n}-Fr(A)=int(A)\cup Ext(A)$$
ambos conjuntos son conjuntos abiertos y la unión de conjuntos abiertos es abierta, entonces este conjunto es abierto y por tanto $Fr(A)$ es cerrado.
(4) Se tiene que
$$(\overline{A}^{c})=\mathbb{R}^{n}-(int(A)\cup Fr(A))=ext(A)$$
el cual es conjunto abierto, por lo tanto $\overline{A}$ es un conjunto cerrado.$~~\textcolor{orange}{\blacksquare}$

Punto de Acumulación

$\fbox{$\textcolor{blue}{Definición}$}$
Sea $A\subset\mathbb{R}^{n}$ y $\overline{x}\in\mathbb{R}^{n}$. Se dice que
(1) $\overline{x}$ es un $\textit{$\textbf{punto de acumulación}$}$ de A, si toda bola abierta con centro en $\overline{x}$ contiene un punto de A distinto de $\overline{x}$ es decir $$\forall r>0, \quad \left(B(\overline{x},r)-{\overline{x}}\right)\cap A\neq \emptyset$$
Al conjunto de $\textbf{puntos de acumulación}$ de A se le denomina el $\textbf{conjunto derivado}$ de A y se le denota $A’$.
(2) $\overline{x}\in A$ es un \textbf{punto aislado} de A si $\overline{x}$ no es un punto de acumulación de A, es decir, si existe $r>0$ tal que
$$(B(\overline{x},r)-{\overline{x}})\cap A=\emptyset.$$
$\textcolor{orange}{Ejemplo}$
Sea
$$A={(x,y)\in\mathbb{R}^{2}~|~x^{2}+y^{2}<1}$$
Muestre que $\displaystyle{\overline{x}_{0}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)}$ es un punto de acumulación de A.
$\textcolor{orange}{Solución}$
Vamos a considerar el punto $\displaystyle{\overline{x}=\left(\frac{1}{\sqrt{2}(r+1)},\frac{1}{\sqrt{2}(r+1)}\right)}$, para $r>0$.
Tenemos entonces que
(1) $\overline{x}\in A$ pues
\begin{align*} \left(\frac{1}{\sqrt{2}(r+1)}\right)^{2}+\left(\frac{1}{\sqrt{2}(r+1)}\right)^{2} & =\frac{1}{2(r+1)^{2}}+\frac{1}{2(r+1)^{2}} \\ & <\frac{1}{2}+\frac{1}{2}=1 \end{align*}
(2) Tenemos que
\begin{align*} \|\overline{x}-\overline{x}_{0}\| & =\left|\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)-\left(\frac{1}{\sqrt{2}(r+1)},\frac{1}{\sqrt{2}(r+1)}\right)\right| \\ & =\left|\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}(r+1)},\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}(r+1)}\right)\right| \\ &=\left|\frac{r}{\sqrt{2}(r+1)},\frac{r}{\sqrt{2}(r+1)}\right| \\ &=\frac{r}{\sqrt{2}(r+1)}\|(1,1)\| \\ &=\frac{r}{\sqrt{2}(r+1)}\sqrt{2} \\ &=\frac{r}{r+1}<r\end{align*}
Tenemos entonces que $\displaystyle{\overline{x}\in B\left(\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),r\right)}$. Por lo tanto
$$\left[B\left(\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right),r\right)-\left\{\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\right\}\right]\bigcap A\neq \emptyset$$
Por lo tanto $\displaystyle{\overline{x}_{0}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)}$ es un punto de acumulación de A.$~~\textcolor{orange}{\blacksquare}$











Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.