Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Probabilidad I: El Enfoque Frecuentista de la Probabilidad

Por Octavio Daniel Ríos García

Introducción

En la entrada pasada presentamos el primer ejemplo de medida de probabilidad: la probabilidad geométrica. Pasaremos ahora a estudiar una medida de probabilidad con una motivación mucho más empírica.

¡Advertencia! Desde nuestro punto de vista, es muy probable que esta entrada no haga mucho sentido en este momento. Esto se debe a que no contamos con muchos resultados teóricos hasta ahora, y la justificación de este enfoque tiene que ver con las propiedades al límite de algunos conceptos que veremos más adelante. Para acabarla, ciertos aspectos más empíricos de este enfoque se justifican con definiciones y resultados que también veremos más adelante.

En consecuencia, quizás sería buena idea que regreses a esta entrada una vez que hayamos visto los conceptos mencionados. No te preocupes, nosotros colocaremos un enlace en las entradas finales para que puedas revisitar esta entrada en el futuro.

Motivación: Frecuencia relativa de un evento

En la primera entrada del curso y en la entrada sobre las medidas de probabilidad discutimos una de las ideas fundamentales más importantes de una medida de probabilidad: que califica a cada evento $A$ con un valor que representa su «frecuencia». Es decir, en una escala del $0$ al $1$, ¿qué tan frecuentemente ocurre $A$? Al ser un valor entre $0$ y $1$, puede interpretarse como una proporción. A la larga, la proporción entre el número de veces que ocurre el evento $A$ y el número total de realizaciones de un fenómeno aleatorio debería de ser $\Prob{A}$.

Una manera de definir la probabilidad de un evento $A$ sería realizar el fenómeno la mayor cantidad posible de veces, y obtener esa proporción. Esto es, si $n \in \mathbb{N}^{+}$ es el número de veces que repetimos el fenómeno aleatorio, y definimos $n_{A}$ como el número de veces que ocurrió $A$ en esas $n$ realizaciones, obtenemos la proporción mencionada, que es llamada la frecuencia relativa ($\mathrm{FrecRel}$) de $A$:

\[ \mathrm{FrecRel}(A) = \frac{n_{A}}{n}. \]

Ahora, ¿cuál sería el valor de $n$ para afirmar que el fenómeno se repitió la mayor cantidad posible de veces? ¿1,000? ¿10,000? ¿$10^{100}$ veces? Afortunadamente, en el mundo de las matemáticas podemos trabajar con el concepto del infinito. Por ello, en la teoría matemática, «la mayor cantidad de veces posible» de repetir el fenómeno aleatorio sería realizarlo una infinidad de veces. Así, la probabilidad frecuentista será precisamente el límite cuando $n$ tiende a infinito de la frecuencia relativa de $A$.

Definición de la probabilidad frecuentista

Tomando en cuenta la discusión anterior, presentamos la definición de la probabilidad frecuentista.


Definición 1.17. Sea $\Omega$ el espacio muestral de algún fenómeno aleatorio, y sea $\mathscr{F}$ un σ-álgebra sobre $\Omega$. Para cada $A \in \mathscr{F}$, sea $n_{A}$ el número de veces que ocurre el evento $A$ en $n$ realizaciones del fenómeno. Es decir, $n_{A}$ es el número de veces que el resultado del experimento aleatorio es alguno de los elementos de $A$. Así, se define la probabilidad frecuentista para cada $A \in \mathscr{F}$ como sigue:

\[ \Prob{A} = \lim_{n \to \infty} \frac{n_{A}}{n}. \]


La definición de la probabilidad frecuentista está dada por un límite al infinito. Por desgracia, esto es algo que no podemos concretar en la vida real, ya que nunca terminaríamos de repetir el fenómeno aleatorio. Por ello, lo que hacemos es aproximar este límite repitiendo el fenómeno $n \in \mathbb{N}^{+}$ veces, con $n$ lo más grande posible (el número de veces que permitan nuestros recursos, tiempo, voluntad, etc.), y tomamos el cociente

\[ \Prob{A} \approx \frac{n_{A}}{n}. \]

Sin embargo, ten cuidado, esta aproximación no necesariamente es precisa, y no sabemos qué tan rápido converge ese límite a un valor dado. ¡Recuerda que no importa qué tan grande sea el número de veces que repitas el experimento, ese número siempre está más cerca de $0$ que de $\infty$!

Por fortuna, pese a sus limitaciones formales, este enfoque captura una idea fundamental de la probabilidad: es una medida de la frecuencia con la que ocurre un evento.

Visualización mediante el uso «simulación»

Aquí veremos una forma de visualizar la idea de este enfoque. Para ello, simularemos algunos resultados «aleatorios» utilizando un lenguaje de programación. Por el momento no haremos énfasis en cuál lenguaje de programación usamos, simplemente presentaremos los resultados. Más adelante daremos una introducción a un lenguaje de programación en el que se pueden hacer muchas cosas de probabilidad (y estadística).

En el siguiente gráfico presentamos los resultados de $n=150$ simulaciones de un experimento aleatorio cuyo espacio muestral es $\RR$. Cada uno de los puntos en la gráfica es de la forma $(k, \omega_{k})$, con $k\in\{1,\ldots,150 \}$ y donde $\omega_{k}$ es el $k$-ésimo resultado de la simulación.

gráfica de los puntos resultantes de la simulación
Figura. Gráfica de $n=150$ simulaciones de un experimento aleatorio.

Ahora, sea $A$ el siguiente evento:

\[ A = \{ \, \omega \in \RR \mid \omega \leq -0.5 \, \}. \]

Como mencionamos previamente, una manera de aproximar la probabilidad de $A$, desde el enfoque frecuentista, es usando la frecuencia relativa de $A$. Para ello, es necesario calcular $n_{A}$: el número de resultados que satisfacen $A$ dentro de $n$ simulaciones.

repetición de la gráfica anterior, con los resultados que cumplen la condición resaltados en rojo
Figura. Gráfica de las simulaciones. Resaltamos a aquellas simulaciones en las que ocurrió $A$ (es decir, aquellas simulaciones cuyo resultado fue menor o igual a $-0.5$) con color rojo. Además, hemos colocado una línea horizontal en $-0.5$.

Ahora, si cuentas cuántos puntos rojos hay, notarás que son $48$. Es decir, hay $48$ observaciones en las que ocurrió $A$. Por ello, $n_{A} = 48$. Por otro lado, ya habíamos acordado que $n = 150$. Así, nuestra aproximación de la probabilidad de $A$ sería

\[ \Prob{A} \approx \frac{n_{A}}{n} = \frac{48}{150} = 0.32. \]

De hecho, observa cómo se comporta la frecuencia relativa de $A$ al incrementar el número de simulaciones:

gráfica de la aproximación de la probabilidad frecuentista
Figura. Comportamiento de $\mathrm{FrecRel}{\left(A\right)}$ en función de $n$, la cantidad de simulaciones.

Para obtener esta última gráfica, obtuvimos $\mathrm{FrecRel}(A)$ conforme $n$ crece, hasta llegar a $n = 150$. Nota cómo el valor se va estabilizando conforme crece el número de simulaciones.

De momento, esta manera de visualizar el enfoque frecuentista puede parecer «circular», pues al momento de hacer las simulaciones, es necesario darle valores a la computadora para que genere resultados siguiendo una cierta medida de probabilidad, así que el resultado es algo que ya se esperaba… En realidad, este comportamiento es consecuencia de un teorema muy importante que veremos más adelante: la ley de los grandes números.

Tarea moral

  1. Argumenta por qué la probabilidad frecuentista es, efectivamente, una medida de probabilidad.
  2. Para que tú puedas replicar lo visto en esta entrada, toma una moneda y lánzala muchas veces, registrando los resultados. Para el evento $A$ de que el resultado sea «águila», calcula $n_{A}/n$, donde $n$ es el número de lanzamientos que llevas, y $n_{A}$ es el número de veces que ha salido «águila».

Más adelante…

La probabilidad frecuentista es un concepto que resulta fundamental para el desarrollo de la estadística inferencial. El enfoque frecuentista es el que funciona como base para el desarrollo del contenido que se aborda en la materia de Estadística I (llamada Inferencia Estadística en el plan de estudios de la carrera de actuaría de la Facultad de Ciencias de la UNAM).

¡Muy importante! Pese a que aquí abordamos este concepto como una medida de probabilidad, hay un resultado muy importante que veremos cerca del final del curso: la ley de los grandes números. Este teorema es de suma importancia, pues da validez formal a este enfoque de la probabilidad, y en realidad hace innecesaria la definición de este enfoque, pues la teoría naturalmente admite esta interpretación. Por otro lado, más adelante daremos una introducción al lenguaje de programación que usamos para realizar las simulaciones en esta entrada.

Lo siguiente que haremos en el curso será ver el último enfoque de relevancia histórica por el momento: la probabilidad clásica. Sin embargo, para su estudio será necesario presentar varios principios de conteo. Por ende, dedicaremos unas cuantas entradas a algunos de estos principios.

Entradas relacionadas

Geometría Moderna I: Puntos de Fermat y triángulos de Napoleón

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión veremos algunos resultados sobre los puntos de Fermat y los triángulos de Napoleón, objetos que aparecen al construir triángulos equiláteros sobre los lados de un triángulo cualquiera.

Definición. Sean $\triangle ABC$ y puntos $A’$, $B’$, $C’$ tales que los triángulos $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son equiláteros y ninguno se traslapa con $\triangle ABC$, decimos que $ABCA’B’C’$ es una configuración externa de Napoleón.

De manera análoga definimos una configuración interna de Napoleón, si los triángulos $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son equiláteros y todos se traslapan con $\triangle ABC$.

Puntos de Fermat

Teorema 1. Sea $ABCA’B’C’$ una configuración externa de Napoleón, entonces
$i)$ los circuncírculos de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y las rectas $AA’$, $BB’$, $CC’$ son concurrentes, al punto de concurrencia se le conoce como primer punto de Fermat,
$ii)$ $AA’ = BB’ = CC’$.

Demostración. Sea $F_1 = \Gamma(AB’C) \cap \Gamma(ABC’)$ la intersección de los circuncírculos de $\triangle AB’C$ y $\triangle ABC’$ respectivamente.

Como $\square AF_1CB’$ y $\square AF_1BC’$ son cíclicos entonces los pares de ángulos $\angle BC’A$, $\angle AF_1B$ y $\angle AB’C$, $\angle CF_1A$ son suplementarios, por lo tanto, $\angle AF_1B = \angle CF_1A = \dfrac{2\pi}{3}$.

Figura 1

En consecuencia, $\angle BF_1C = \dfrac{2\pi}{3}$, por lo tanto, $\angle BF_1C$ y $\angle PA’B$ son suplementarios, así, $\square F_1BA’C$ es cíclico, es decir $F_1 \in \Gamma(A’BC)$.

Por otra parte, $\angle BF_1A’ = \angle BCA$, pues abarcan el mismo arco, entonces, $\angle AF_1B + \angle BF_1A’ = (\pi – \angle BC’A) + \angle BCA’ = \pi – \dfrac{\pi}{3} + \dfrac{\pi}{3} = \pi$, por lo tanto, $F_1 \in AA’$.

Igualmente podemos ver que $F_1 \in BB’$ y $F_1 \in CC’$.

Finalmente, hagamos una rotación de $\dfrac{\pi}{3}$ en sentido contrario al de las manecillas y centro en $B$, entonces $A$ toma el lugar de $C’$ y $A’$ toma el lugar de $C$, por lo tanto, $AA’ = CC’$.

Con una rotación de $\dfrac{\pi}{3}$ en el sentido de las manecillas, con centro en $C$, $A’$ toma el lugar de $B$ y $A$ el de $B’$, por lo tanto, $CC’ = AA’ = BB’$.

$\blacksquare$

Nota. Si $ABCA’B’C’$ es una configuración interna de Napoleón, los mismos resultados son ciertos y al punto de concurrencia le llamamos segundo punto de Fermat.

Problema de Fermat

Problema de Fermat. Dado un triángulo $\triangle ABC$ tal que ninguno de sus ángulos internos es mayor a $\dfrac{2\pi}{3}$, encuentra el punto $P$ que minimiza la suma de las distancias a los vértices de $\triangle ABC$, $PA + PB + PC$.

Solución. Sea $P$ un punto fuera de $\triangle ABC$ (figura 2), sin pérdida de generalidad supongamos que $P$ y $C$ se encuentran en lados contrarios respecto de $AB$.

Sea $D = PC \cap AB$ aplicando la desigualdad del triángulo tenemos lo siguiente
$PA + PB + PC = P’A + P’B + PC$
$= P’A + P’B + PD + DC$
$= P’A + P’B + P’D + DC$
$\geq P’A + P’B + P’C$.

Figura 2

De lo anterior concluimos que el punto buscado debe estar dentro de $\triangle ABC$.

Ahora supongamos que $P$ está dentro de $\triangle ABC$ (figura 3), sea $\triangle BC’P’$ la imagen de $\triangle BAP$ bajo una rotación de $\dfrac{\pi}{3}$ en sentido contrario al de las manecillas y centro en $B$.

Como $BP = BP’$ y $\angle PBP’ = \dfrac{\pi}{3}$ entonces $\triangle BPP’$ es equilátero y tenemos lo siguiente
$PA + PB + PC = P’C’ + PP’ + PC \geq CC’$.

Figura 3

Por lo tanto, para que la suma de distancias sea mínima es necesario que $P \in CC’$, pero por un razonamiento análogo también es necesario que $P \in AA’$ y $P \in BB’$, donde $ABCA’B’C’$ es una configuración externa de Napoleón.

Por el teorema 1, $P = F_1$, es el primer punto de Fermat.

Sin embargo, notemos que, $\angle BPC = \pi – \angle P’PB = \dfrac{2\pi}{3}$, por lo tanto, por el ejercicio 3 de la entrada desigualdad del triángulo, cualquier ángulo interno de $\triangle ABC$ debe ser menor o igual que $\dfrac{2\pi}{3}$, si esto se cumple entonces $F_1$ es el punto buscado.

$\blacksquare$

Triángulos de Napoleón

Teorema 2, de Napoleón. Sea $ABCA’B’C’$ una configuración externa de Napoleón, entonces los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son los vértices de un triángulo equilátero, conocido como triángulo exterior de Napoleón y su centroide coincide con el centroide de $\triangle ABC$.

Demostración. Sean $G_1$, $G_2$ y $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ respectivamente, $G$ el centroide de $\triangle ABC$ y $M$ el punto medio de $BC$.

Figura 4

Como $\dfrac{MA}{MG} = \dfrac{MA’}{MG_1} = 3$ por el reciproco del teorema de Tales $GG_1 \parallel AA’$, además $AA’ = 3GG_1$.

Igualmente podemos ver que $GG_2 \parallel BB’$, $BB’ = 3GG_2$ y $GG_3 \parallel CC’$ y $CC’ = 3GG_3$.

Como $AA’ = BB’ = CC’$, entonces $GG_1 = GG_2 = GG_3$, por lo tanto, $G$ es el circuncentro de $\triangle G_1G_2G_3$.

Por el teorema 1, $\angle A’F_1B’ = \dfrac{2\pi}{3}$, por lo tanto, $\angle G_1GG_2 = \dfrac{2\pi}{3}$.

Igualmente vemos que $\angle G_2GG_3 = \angle G_3GG_1 = \dfrac{2\pi}{3}$.

Por criterio de congruencia LAL, $\triangle GG_1G_2 \cong \triangle GG_2G_3 \cong \triangle GG_1G_3$.

En consecuencia, $\triangle G_1G_2G_3$ es equilátero, como en un triángulo equilátero el circuncentro y el centroide coinciden entonces $G$ es el centroide de $\triangle G_1G_2G_3$.

$\blacksquare$

Nota. Si $ABCA’B’C’$ es una configuración interna de Napoleón se obtienen los mismos resultados y al triángulo formado por los centroides se le conoce como triángulo interior de Napoleón.

Área del triángulo externo de Napoleón

Teorema 3. El área del triangulo externo de Napoleón es igual a la la mitad del área de su triángulo de referencia mas un sexto de la sumas de las áreas de los triángulos equiláteros construidos.

Demostración. Sea $ABCA’B’C’$ una configuración externa de Napoleón y $G_1$, $G_2$, $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ respectivamente.

Figura 5

Sean $F_1$ el primer punto de Fermat, como $AF_1$ es una cuerda común de $\Gamma(ABC’)$ y $\Gamma(AB’C)$, entonces $G_2G_3$ es la mediatriz de $AF_1$, es decir, la reflexión de $A$ en $G_2G_3$ es $F_1$.

Por lo tanto, $\triangle AG_2G_3$ y $\triangle F_1G_2G_3$ son congruentes.

Similarmente vemos que $\triangle BG_1G_3 \cong \triangle F_1G_1G_3$ y $\triangle CG_1G_2 \cong \triangle F_1G_1G_2$.

Esto implica que,
$(\triangle G_1G_2G_3) = \dfrac{(AG_3BG_1CG_2)}{2} $
$= \dfrac{1}{2} ((\triangle ABC) + (\triangle ABG_3) + (\triangle BCG_1) + (\triangle ACG_2))$
$= \dfrac{1}{6} ((\triangle ABC’) + (\triangle A’BC) + (\triangle AB’C)) + \dfrac{(\triangle ABC)}{2}$.

$\blacksquare$

Área del triángulo interno de Napoleón

Teorema 3. El área del triangulo interno de Napoleón es igual a menos la mitad del área de su triángulo de referencia mas un sexto de la sumas de las áreas de los triángulos equiláteros construidos.

Demostración. Sea $ABCA’’B’’C’’$ una configuración interna de Napoleón, $F_2$ el segundo punto de Fermat y $G’_1$, $G’_2$, $G’_3$ los centroides de $\triangle A’’BC$, $\triangle AB’’C$, $\triangle ABC’’$ respectivamente.

Sea $F_2$ el segundo punto de Fermat, siguiendo un razonamiento análogo al teorema anterior tenemos
$(\triangle G’_1G’_2G’_3) $
$= (\triangle F_2G’_1G’_3) + (\triangle F_2G’_3G’_2) – (\triangle F_2G’_1G’_2)$
$\begin{equation} = (\triangle BG’_1G’_3) + (\triangle AG’_3G’_2) – (\triangle CG’_1G’_2). \end{equation}$.

Figura 6

Por otro lado,
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’))$
$\begin{equation} = (\triangle G’_1BC) + (\triangle AG’_2C) + (\triangle ABG’_3). \end{equation}$.

Sean, $E = AB \cap G’_1G’_3$, $D = BC \cap G’_1G’_3$, $J = BC \cap G’_2G’_3$ e $I = G’_1C \cap G’_2G’_3$, entonces tenemos lo siguiente:

$(\triangle G’_1BC) = (\triangle BED) + (\triangle BEG’_1) + (\triangle CJI) + (\square G’_1DJI)$.

$(\triangle ABG’_3) = (\triangle BEG’_3) + (\triangle AG’_2G’_3) + (AEDJG’_2) + (\triangle DG’_3J)$.

Sustituyendo en $(2)$
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’)) $
$= ((\triangle BEG’_3) + (\triangle BEG’_1)) + (\triangle AG’_2G’_3) + ((\triangle BED) + (AEDJG’_2)$
$+ (\triangle CJI) + (\triangle AG’_2C)) + ((\triangle DG’_3J) + (\square G’_1DJI))$
$= (\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) + ((\triangle ABC) – (\triangle CIG’_2)) + (\triangle IG’_1G’_3)$
$= (\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) + ((\triangle ABC) – (\triangle CIG’_2)) + ((\triangle G’_1G’_2G’_3) – (\triangle G’_1G’_2I))$
$ = (\triangle ABC) + ((\triangle BG’_1G’_3) + (\triangle AG’_2G’_3) – (\triangle CG’_1G’_2)) + (\triangle G’_1G’_2G’_3)$.

Usando $(1)$
$\dfrac{1}{3}((\triangle A’BC) + (\triangle AB’C) + (\triangle ABC’))$
$= (\triangle ABC) + 2(\triangle G’_1G’_2G’_3)$.

Por lo tanto,
$(\triangle G’_1G’_2G’_3) = \dfrac{1}{6} ((\triangle ABC’) + (\triangle A’BC) + (\triangle AB’C)) –  \dfrac{(\triangle ABC)}{2}$.

$\blacksquare$

Corolario. La diferencia entre el área del triángulo externo de Napoleón y el área del triángulo interno de Napoleón es igual al área de su triángulo de referencia.

Como consecuencia de los teorema 3 y 4 tenemos,
$(\triangle G_1G_2G_3) – (\triangle G’_1G’_2G’_3) = (\triangle ABC)$.

$\blacksquare$

Rectas de Euler concurrentes

Proposición 1. Sea $ABCA’B’C’$ una configuración externa de Napoleón y $F_1$ el primer punto de Fermat, entonces las rectas de Euler de $\triangle ABF_1$, $\triangle AF_1C$ y $\triangle F_1BC$ concurren en el centroide de $\triangle ABC$.

Demostración. Sean $G$, $G’$ y $G_3$ los centroides de $\triangle ABC$, $\triangle ABF_1$ y $\triangle ABC’$ respectivamente, consideremos el $M$ el punto medio de $AB$.

Figura 7

Por el teorema 1, $G_3$ es el circuncentro de $\triangle ABF_1$ y $C$, $F_1$ y $C’$ son colineales, como $G_3$, $G’$ y $G$ son los centroides de $\triangle ABC’$, $\triangle AF_1$ y $\triangle ABC$ entonces
$\dfrac{MG_3}{MC’} = \dfrac{MG’}{MF_1} = \dfrac{MG}{MC} = \dfrac{1}{3}$.

Por el reciproco del teorema de Tales $G_3G’ \parallel C’F_1$ y $G’G \parallel F_1C$.

Por lo tanto, $G_3$, $G’$ y $G$ son colineales, y $G_3G’$ es la recta de Euler de $\triangle ABF_1$.

Igualmente podemos ver que las rectas de Euler de $\triangle AF_1C$ y $\triangle F_1BC$ pasan por el centroide de $\triangle ABC$.

$\blacksquare$

Hexágono de Napoleón

Proposición 2. Sea $ABCA’B’C’$ una configuración externa de Napoleón, sean $G_1$, $G_2$, $G_3$ los centroides de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y $G_a$, $G_b$, $G_c$ los centroides de $\triangle AB’C’$, $\triangle A’BC’$, $\triangle A’B’C$, entonces $G_aG_3G_1G_bG_2G_c$ es un hexágono regular.

Demostración. Sea $M$ el punto medio de $CB’$, en $\triangle MAA’$ tenemos
$\dfrac{MG_2}{MA} = \dfrac{MG_c}{MA’} = \dfrac{1}{3}$.

Por lo tanto, $G_2G_c \parallel AA’$ y $3G_2G_c = AA’$.

Figura 8

Análogamente consideremos $N$ el punto medio de $CA’$, en $\triangle NBB’$ tenemos
$\dfrac{NG_c}{NB’} = \dfrac{NG_1}{NB} = \dfrac{1}{3}$.

Por lo tanto, $G_1G_c \parallel BB’$ y $3G_1G_c = BB’$.

Por el teorema 1, $AA’ = BB’$, por lo que $G_1G_c = G_cG_2$, sea $F_1$ el primer punto de Fermat entonces $\angle G_1G_cG_2 = \angle BF_1A = \dfrac{2\pi}{3}$.

Igualmente podemos ver que los demás lados del hexágono son iguales y que el ángulo entre ellos es de $\dfrac{2\pi}{3}$.

En conclusión, $G_aG_3G_1G_bG_2G_c$ es un hexágono regular.

$\blacksquare$

Más adelante…

Con la siguiente entrada daremos inicio a la unidad III y con la ayuda de segmentos dirigidos mostraremos el teorema de Menelao, que nos dice cuando tres puntos sobre los lados de un triángulo son colineales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sea $ABCA’B’C’$ una configuración interna de Napoleón (figura 6), para los ejercicios 1, 2 y 3 demuestra lo siguiente:
    $i)$ los circuncírculos de $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ y las rectas $AA’$, $BB’$, $CC’$ son concurrentes,
    $ii)$ $AA’ = BB’ = CC’$.
  2. Prueba que los centroides de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ son los vértices de un triángulo equilátero y que su centroide coincide con el centroide de $\triangle ABC$ (figura 6).
  3. Considera $F_2$, el segundo punto de Fermat, muestra que las rectas de Euler de $\triangle ABF_2$, $\triangle AF_2C$ y $\triangle F_2BC$ concurren en el centroide de $\triangle ABC$ (figura 6).
  4. Sean $ABCA’B’C’$ una configuración externa de Napoleón y $ABCA’’B’’C’’$ una configuración interna de Napoleón, demuestra que
    $i)$ el punto medio de $CC»$ coincide con el punto medio de $A’B’$,
    $ii)$ el punto medio de $CC’$ coincide con el punto medio de $A»B»$.
  5. Sea $ABCA’B’C’$ una configuración externa de Napoleón demuestra que el centroide de $\triangle A’B’C’$ coincide con el centroide de $\triangle ABC$.
  6. Divide los lados de un triángulo en tres partes iguales, sobre el tercio de en medio de cada lado del triángulo, construye externamente (internamente) triángulos equiláteros, muestra que los terceros vértices construidos son los vértices de un triángulo equilátero (figura 9).
Figura 9
  1. Sea $ABCA’B’C’$ una configuración externa de Napoleón, considera los arcos $\overset{\LARGE{\frown}}{BC}$, $\overset{\LARGE{\frown}}{CA}$ y $\overset{\LARGE{\frown}}{AB}$ de los circuncírculos de $\triangle A’BC$, $\triangle AB’C$ y $\triangle ABC’$ respectivamente que no contienen a los vértices de $\triangle ABC$ (figura 1), sean $P \in \overset{\LARGE{\frown}}{AB}$ arbitrario y $Q = PA \cap \overset{\LARGE{\frown}}{CA}$, muestra que la intersección $R$ de $PB$ y $QC$ esta en el arco $\overset{\LARGE{\frown}}{BC}$ y que $\triangle PQR$ es equilátero.

Entradas relacionadas

Fuentes

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Teorema de existencia y unicidad para sistemas de ecuaciones de primer orden

Por Eduardo Vera Rosales

Introducción

Vamos a concluir la tercera unidad del curso revisando el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden, en su forma general, es decir, para sistemas lineales y no lineales que satisfagan las hipótesis del teorema. Hasta el momento únicamente demostramos el teorema de existencia y unicidad para sistemas lineales con coeficientes constantes, pero es importante demostrar la versión general al igual que hicimos para las ecuaciones de primer orden.

Lo primero que veremos es que un sistema de ecuaciones de la forma $$\begin{alignedat}{4} \dot{x}_{1} &= F_{1}(t,x_{1},x_{2},…,x_{n}) \\ \dot{x}_{2} &= F_{2}(t,x_{1},x_{2},…,x_{n}) \\ & \; \; \vdots \notag \\ \dot{x}_{n} &= F_{n}(t,x_{1},x_{2},…,x_{n}) \end{alignedat}$$ se puede escribir en forma abreviada como sigue: $$\dot{\textbf{X}}(t)=\textbf{F}(t,\textbf{X}(t))$$ donde $\textbf{F}$ es el vector conformado por las funciones $F_{i}$ del sistema, con $i \in \{1,…,n\}$. Si además agregamos la condición inicial $\textbf{X}(t_{0})=\textbf{Y}$, entonces podemos ver que el sistema se reduce a una expresión muy similar al problema de condición inicial $$\frac{dy}{dt}=f(t,y(t)) \,\,\,\,\, ; \,\,\,\,\, y(t_{0})=y_{0}$$ salvo que ahora $\textbf{X}$ es una función que toma valores en $\mathbb{R}^{n}$, y $\textbf{F}$ es una función de $\mathbb{R}^{n+1}$ a $\mathbb{R}^{n}$.

Afortunadamente la mayoría de los lemas y teoremas que usamos para demostrar el teorema de existencia y unicidad para ecuaciones de primer orden se pueden extender a funciones de varias variables, por lo que la demostración será muy similar a la demostración de este último teorema.

Antes de iniciar te dejo la entrada correspondiente al teorema de existencia y unicidad de Picard, para que te familiarices con él y te sea más fácil ver los videos de esta entrada.

El teorema de existencia y unicidad para sistemas de ecuaciones de primer orden. Ecuación integral asociada

Enunciamos el teorema de existencia y unicidad para sistemas de ecuaciones de primer orden, analizamos las similitudes que existen con el teorema de existencia y unicidad de Picard, y vemos que resolver el problema de condición inicial es equivalente a resolver la ecuación integral $$\textbf{X}(t)=\textbf{Y}+\int_{t_{0}}^{t} \textbf{F}(s, \textbf{X}(s)) \, ds.$$

Demostración de la existencia de la solución al problema de condición inicial

Demostramos la existencia de una solución al problema de condición inicial estudiando bajo qué circunstancias converge uniformemente la sucesión de iteraciones de Picard del problema. En dado caso que esto último suceda, la función a la cual convergen las iteraciones será solución a la ecuación integral del video anterior.

Demostración de la unicidad de la solución al problema de condición inicial

Concluimos la demostración del teorema probando la unicidad de la solución al problema de condición inicial.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Sea $\textbf{F}(t,\textbf{X}(t))$ continua en un dominio $E \subseteq \mathbb{R}^{n+1}$ que contenga a $(t_{0},\textbf{Y})$. Demuestra que $\textbf{X}(t)$ es solución al problema de condición inicial $$\dot{\textbf{X}}(t)=\textbf{F}(t,\textbf{X}(t)) \,\,\,\,\, ; \,\,\,\,\, \textbf{X}(t_{0})=\textbf{Y}$$ si y sólo si es solución a la ecuación integral $$\textbf{X}(t)=\textbf{Y}+\int_{t_{0}}^{t} \textbf{F}(s,\textbf{X}(s)) \, ds.$$
  • Considera el problema de condición inicial $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \textbf{X} + \begin{pmatrix} t \\ t \end{pmatrix} \,\,\,\,\, ; \,\,\,\,\, \textbf{X}(0)=\begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$ Calcula las iteraciones de Picard correspondientes al problema. ¿Convergen a alguna función? En caso afirmativo, muestra que dicha función es solución al problema de condición inicial.
  • Supongamos que $\textbf{F}(t,\textbf{X}(t))$ es continua en $$R:=\{(t,x_{1},…,x_{n}) \in \mathbb{R}^{n+1} : |t-t_{0}| \leq a, \lVert \textbf{X}(t) – \textbf{Y} \rVert \leq b, \, \, a, b \in \mathbb{R}\}.$$ Demuestra que existe $M > 0$ y $h \in \mathbb{R}$ tal que $$\lVert \textbf{X}^{n}(t)-Y \rVert \leq M |t-t_{0}|, \forall n \in\mathbb{N}, \forall t \in I_{h} \subseteq \mathbb{R}.$$ Recuerda que $\textbf{X}^{n}(t)$ es la $n$-ésima iteración de Picard correspondientes al problema de condición inicial que estudiamos a lo largo de la entrada. (Hint: La prueba es similar al lema análogo que probamos en este video para el teorema de existencia y unicidad de Picard).
  • Consideremos el problema de condición inicial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=0 \,\,\,\,\, ; \,\,\,\,\, y(t_{0})=y_{0} \,\,\,\,\, ; \,\,\,\,\, \frac{dy}{dt}(t_{0})=y_{1}$$ con $a,b,c$ constantes. ¿Si el sistema de ecuaciones asociado satisface el teorema de existencia y unicidad, entonces el problema de condición inicial original tiene una única solución?

Más adelante

Con este teorema finalizamos la tercera unidad del curso. En la cuarta unidad comenzaremos con la teoría cualitativa de los sistemas de ecuaciones de primer orden.

Veremos que los sistemas tienen puntos de equilibrio, los clasificaremos según su estabilidad. En virtud de esto vamos a analizar el comportamiento de las soluciones cerca de puntos de equilibrio y dibujaremos el plano fase de un sistema.

Abordaremos sistemas no lineales, y aunque no los resolveremos explícitamente, veremos el comportamiento de sus soluciones cerca de sus puntos de equilibrio.

Finalmente, veremos algunos sistemas que satisfacen propiedades interesantes, como los sistemas Hamiltonianos, los disipativos, entre otros.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Derivadas implícitas y de orden superior

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada estudiaremos dos conceptos que probablemente te suenen familiares: las derivadas implícitas y las derivadas de orden superior. Una vez los hayamos comprendido, tendremos muchos más casos en los cuales podremos aplicar la derivada empleando todas las herramientas que se han desarrollado hasta este punto.

Derivadas implícitas

A las funciones que se pueden expresar de la forma $y=f(x)$ definidas en un intervalo las llamamos funciones explícitas; sin embargo, en ocasiones nos encontramos con funciones que no están expresadas de esta forma. Por ejemplo, en un curso de geometría analítica se estudia la ecuación que describe una parábola vertical: $4p(y-k) = (x-h)^2$. Esta forma, la llamaremos función implícita, y aunque en este caso podríamos despejar $y$ para obtener una función explícita, no siempre es posible obtenerla.

Ejemplo 1.

En el siguiente ejemplo, $y$ depende de $x$ y se busca calcular la derivada de $y$.

$$x^3+2x^2y+xy^2+y^3=0.$$

Aunque no tengamos una función explícita, esto no limita la posibilidad de encontrar la derivada de $y$.

\begin{gather*}
(x^3+2x^2y+xy^2+y^3)’=(0)’. \\ \\
(x^3)’+(2x^2y)’+(xy^2)’+(y^3)’ = 0. \\ \\
3x^2+2x^2(y)’+2(x^2)’y+x(y^2)’+(x)’y^2+3y^2y’ = 0. \\ \\
3x^2+2x^2y’+4xy+2xyy’+y^2+3y^2y’=0. \\ \\
\Rightarrow 3x^2+4xy+y^2+ y'(2x^2+2xy+3y^2)=0. \\ \\
\Rightarrow y’ = – \frac{3x^2+4xy+y^2}{2x^2+2xy+3y^2}.
\end{gather*}

Notemos que es complicado saber respecto a que variable estamos derivando, por ello, particularmente para las derivadas implícitas es usual emplear la notación $\frac{dy}{dx} = y’.$

Ejemplo 2. Obtener la derivada implícita $y’ = \frac{dy}{dx}$ de $xsen(y)-cos(2y) = 0$.

\begin{gather*}
\frac{d}{dx} xsen(y)+\frac{d}{dx}cos(3y) = 0. \\ \\
x \frac{d}{dx} sen(y)+ sen(y)\frac{d}{dx} x -sen(3y) \frac{d}{dx} 3y = 0. \\ \\
xcos(y) \frac{dy}{dx} + sen(y)-3sen(3y) \frac{dy}{dx} = 0. \\ \\
\frac{dy}{dx} (xcos(y)-3sen(3y)) = -sen(y). \\ \\
\frac{dy}{dx} = -\frac{sen(y)}{xcos(y)-3sen(3y)}.
\end{gather*}

Derivadas de orden superior

Cuando derivamos una función, tenemos como resultado una nueva función y, por tanto, se podría buscar la derivada de la misma; de esta forma, tal proceso lo podemos hacer iterativamente siempre que la derivada exista y a ello se le conoce como derivadas de orden superior. Así, tenemos la siguiente definición.

Definición. Si $f: A \to \RR$ es una función derivable, entonces se tiene que

$$f'(x) = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}.$$

La función $f’$ es derivable, conocida como segunda derivada y denotada como $f^{(2)}$, si el siguiente límite existe

$$f^{(2)}(x) = \lim_{x \to x_0} \frac{f'(x)-f'(x_0)}{x-x_0}.$$

En general, denotaremos como $f^{(n)}$ a la $n$-ésima derivada de $f$

$$f^{(n)}(x) = \lim_{x \to x_0} \frac{f^{(n-1)}(x)-f^{(n-1)}(x_0)}{x-x_0}.$$

La definición anterior resulta bastante natural y es análoga a la definición de derivada que revisamos anteriormente. Al igual que la primera derivada, puede suceder el caso donde las derivadas de orden superior no existan.

Ejemplo 3.

$$f(x) =
\begin{cases}
x^2sen(\frac{1}{x}) & \text{ si } x \neq 0 \\
0 & \text{ si }x = 0.
\end{cases}$$

Notemos que si $x \neq 0$, podemos encontrar un intervalo $I$ tal que si $x \in I$, entonces

$$f(x) = x^2sen \left( \frac{1}{x} \right).$$

Lo cual implica que su derivada es

$$f'(x) = 2xsen \left( \frac{1}{x} \right) – cos \left( \frac{1}{x} \right).$$

Para el caso particular de $x = 0$, se tiene que

\begin{align*}
f'(x) & = \lim_{x \to 0} \frac{f(x)-f(0)}{x-0} \\ \\
& = \lim_{x \to 0} \frac{x^2 sen(\frac{1}{x})-0}{x} \\ \\
& = \lim_{x \to 0} xsen \left( \frac{1}{x} \right) \\ \\
& = 0.
\end{align*}

Por tanto, se tiene que

$$f'(x) = \begin{cases}
2xsen \left( \frac{1}{x} \right) – cos \left( \frac{1}{x} \right) & \text{ si }x\neq 0 \\
0 & \text{ si }x=0.
\end{cases}$$

Observemos que $f’$ no es continua en cero, puesto que, por las propiedades de continuidad, esto implicaría que la función

$$g(x) = \begin{cases}
cos(\frac{1}{x}) & \text{ si } x \neq 0 \\
0 & \text{ si }x=0.
\end{cases}$$

También es continua en cero, sin embargo, esto no sucede ya que el límite de $cos(\frac{1}{x})$ cuando $x \to 0$ no existe (demostración análoga al tercer ejemplo revisado en esta entrada previa). Como $f’$ no es continua en $x=0$, tampoco es derivable en tal punto.

A continuación se tiene un ejemplo donde se muestra el proceso que se sigue para encontrar una derivada de orden superior.

Ejemplo 4. Obtener la cuarta derivada de la función $f(x) = ln(x)+sen(3x)$.

\begin{gather*}
f'(x) = \frac{1}{x} +3cos(3x). \\ \\
f^{(2)}(x) = -\frac{1}{x^2}-9sen(3x). \\ \\
f^{(3)}(x) = \frac{2}{x^3}-27cos(3x). \\ \\
f^{(4)}(x) = -\frac{6}{x^4}+91sen(3x).
\end{gather*}

Más adelante…

En la siguiente entrada probaremos dos populares resultados de las funciones que son derivables en un intervalo: el teorema de Rolle y el teorema del valor intermedio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra en cada caso la derivada de $y$ respecto a $x$:
    • $\frac{x+y}{x-y}=x+4.$
    • $x^2y^2=ln(xy).$
    • $y = ln(sen(x+y)).$
    • $\frac{y}{tan(xy)} – x = 2.$
  • Encuentra la tercera derivada de las siguientes funciones:
    • $f(x) = 3x^5+2x^3+7x^2+1.$
    • $f(x) = cos(x^3).$
    • $f(x) = sen(x)cos(x).$
    • $f(x) = \frac{ln(x)}{\sqrt{x}}.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Derivadas de las funciones trigonométricas

Por Juan Manuel Naranjo Jurado

Introducción

En esta entrada estudiaremos las derivadas de las funciones trigonométricas, para lo cual haremos uso de las propiedades revisadas al momento de definirlas, así como de las propiedades vistas al momento de estudiar sus límites. Por esta razón se recomienda repasar dichas entradas en caso de no tenerlas presentes.

Funciones trigonométricas

Daremos inicio probando que las funciones trigonométricas $sen(x)$, $cos(x)$ y $tan(x)$ son derivables en todo su dominio.

Teorema. La función $f(x) = sen(x)$ es derivable en $\RR$, más aún $f'(x) =cos(x)$.

Demostración.

En la entrada de funciones trigonométricas se revisó la siguiente identidad:

$$sen(\alpha+\beta) = cos(\alpha)sen(\beta) + cos(\beta)sen(\alpha).$$

De la cual haremos uso para calcular el límite:

\begin{align*} 
f'(x) & = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \\ \\
& = \lim_{h \to 0} \frac{sen(x+h)-sen(x)}{h} \\ \\ 
& = \lim_{ h \to 0} \frac{cos(x)sen(h)+cos(h)sen(x)-sen(x)}{h} \\ \\
& = \lim_{h \to 0} \frac{cos(x)sen(h)+sen(x) (cos(h)-1)}{h} \\ \\
& = \lim_{h \to 0} \left( \frac{sen(h)}{h}cos(x) + \frac{cos(h)-1}{h}sen(x) \right) \\ \\
& = \lim_{h \to 0} \frac{sen(h)}{h}cos(x) + \lim_{h \to 0} \frac{cos(h)-1}{h}sen(x) \\ \\
& = cos(x) \lim_{h \to 0} \frac{sen(h)}{h} + sen(x) \lim_{h \to 0} \frac{cos(h)-1}{h} \\ \\
& = cos(x) \cdot 1 + sen(x) \cdot 0 \\ \\
& = cos(x).
\end{align*}

$$\therefore f'(x)=cos(x).$$

$\square$

Teorema. La función $f(x) = cos(x)$ es derivable en $\RR$, más aún $f'(x) =-sen(x).$

Demostración.

Haremos uso de la siguiente identidad (revisada anteriormente):

$$cos(\alpha+\beta) = cos(\alpha)cos(\beta) – sen(\alpha)sen(\beta).$$

Así, tenemos lo siguiente

\begin{align*} 
f'(x) & = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \\ \\
& = \lim_{h \to 0} \frac{cos(x+h)-cos(x)}{h} \\ \\ 
& = \lim_{ h \to 0} \frac{cos(x)cos(h)-sen(x)sen(h)-cos(x)}{h} \\ \\
& = \lim_{h \to 0} \frac{-cos(x)(1-cos(h))-sen(x) sen(h)}{h} \\ \\
& = \lim_{h \to 0} \left( -\frac{1-cos(h)}{h}cos(x) \text{ } – \text{ } \frac{sen(h)}{h}sen(x) \right) \\ \\
& = -\lim_{h \to 0} \frac{1-cos(h)}{h}cos(x) \text{ } – \text{ } \lim_{h \to 0} \frac{sen(h)}{h}sen(x) \\ \\
& = -cos(x) \lim_{h \to 0} \frac{1-cos(h)}{h} \text{ } – \text{ } sen(x) \lim_{h \to 0} \frac{sen(h)}{h} \\ \\
& = -cos(x) \cdot 0 \text{ } – \text{ } sen(x) \cdot 1 \\ \\
& = -sen(x).
\end{align*}

$$\therefore f'(x)=-sen(x).$$

$\square$

Teorema. La función $f(x) = tan(x)$ es derivable en todo su dominio, más aún $f'(x) = sec^2(x).$

Demostración.

\begin{align*}
f'(x) & = (tan(x))’ \\ \\
& = \left( \frac{sen(x)}{cos(x)} \right)’ \\ \\
& = \frac{(sen(x))’cos(x)-sen(x) (cos(x))’}{cos^2(x)} \\ \\
& = \frac{cos^2(x)+sen^2(x)}{cos^2(x)} \\ \\
& = \frac{1}{cos^2(x)} \\ \\
& = sec^2(x).
\end{align*}

$$\therefore f'(x) = sec^2(x).$$

$\square$

Como corolario, se tiene que estas tres funciones revisadas también son continuas en sus respectivos dominios.

Funciones trigonométricas inversas

Revisaremos qué sucede para el caso de las funciones inversas de $sen(x)$ y $tan(x)$.

Teorema. Sea $f^{-1}(x) = arcsen(x)$, entonces $(f^{-1})'(x) = \frac{1}{\sqrt{1-x^2}}$ para $x \in (-1,1).$

Demostración

Sea $b \in (-1,1)$. Existe un único real $a \in (- \pi/2, \pi/2)$ tal que $f(a) = sen(a) = b$, es decir, $a = arcsen(b)$. Por el teorema de la derivada de la función inversa, tenemos que

\begin{align*}
(f^{-1})'(b) & = (arcsen(b))’ \\
& = \frac{1}{f'(a)} \\
& = \frac{1}{(sen(a)’)} \\ 
& = \frac{1}{cos(a)}.
\end{align*}

Como $sen^2(a)+cos^2(a) = 1$ y $cos(a)>0$ pues $a \in (- \pi/2, \pi/2)$, entonces se sigue que $cos(a)=\sqrt{1-sen^2(a)}$. Es decir $$(arcsen(x))’=\frac{1}{\sqrt{1-b^2}}.$$

$\square$

Teorema. Sea $f^{-1}(x)=arctan(x)$, entonces $(f^{-1})'(x) = \frac{1}{1+x^2}$ para $x \in (-\pi/2, \pi/2).$

Demostración.

Sea $b \in (-\pi/2,\pi/2)$. Existe un único real $a \in (-\pi/2, \pi/2)$ tal que $f(a) = tan(a) = b$. Nuevamente, por el teorema de la derivada de la función inversa, tenemos que

\begin{align*}
(f^{-1})'(b) & = (arctan(b))’ \\
& = \frac{1}{f'(a)} \\
& = \frac{1}{(tan(a))’} \\ 
& = \frac{1}{sec^2(a)}.
\end{align*}

Como $sec^2(a)-tan^2(a) = 1$, se tiene que $sec^2(a) = 1+tan^2(a)$. Así, de la expresión anterior se sigue que $$(arctan(b))’ = \frac{1}{1+b^2}.$$

$\square$

Ejemplos

Ejemplo 1. Encuentra la derivada de la función $f(x) = sen(e^x)cos(x)$.

\begin{align*}
f'(x) & = (sen(e^x)cos(x))’ \\
& = sen(e^x)(cos(x))’+(sen(e^x))’cos(x) \\
& = -sen(e^x)sen(x)+cos(e^x)(e^x)’cos(x) \\
& = -sen(e^x)sen(x)+e^xcos(e^x)cos(x).
\end{align*}

$$\therefore f'(x) =-sen(e^x)sen(x)+e^xcos(e^x)cos(x).$$

Ejemplo 2. Encuentra la derivada de $f(x) = arcsen(x^2)$.

\begin{align*}
f'(x) & = (arcsen(x^2))’ \\ \\
& = \frac{1}{\sqrt{1-(x^2)^2} } \cdot (x^2)’ \\ \\
& = \frac{2x}{\sqrt{1-x^4}}.
\end{align*}

$$\therefore f'(x) = \frac{2x}{\sqrt{1-x^4}}.$$

Más adelante…

En la siguiente entrada estudiaremos dos nuevos conceptos: las derivadas implícitas y las derivadas de orden superior. Éstas nos permitirán extender los casos en los cuales podemos aplicar la derivada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Prueba las siguientes derivadas en sus respectivos dominios:
    • $cot'(x) = -csc^2(x).$
    • $sec'(x) = tan(x) sec(x).$
    • $csc'(x) = -cot(x)csc(x).$
  • Prueba que
    • $(arccos(x))’ = -\frac{1}{\sqrt{1-x^2}}$, con $x \in (-1,1).$
    • $(arccot(x))’ = -\frac{1}{1+x^2}$, con $x \in (-\infty, \infty).$
  • Encuentra la derivada de las siguientes funciones
    • $f(x) = \frac{1}{1+sen(x)}.$
    • $f(x) = cos(2x) tan(2x).$
    • $f(x)=arcsen(\frac{x}{4}).$
    • $f(x)=arccos(\sqrt{1-x^2}).$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»