Cálculo Diferencial e Integral I: Raíz cuadrada y desigualdades

Por Karen González Cárdenas

Introducción

Ahora veremos el concepto de raíz cuadrada, su definición formal, resultados útiles y ejercicios de desigualdades donde se vea involucrada.

Definición de raíz cuadrada de un número real

Definición (Raíz cuadrada): Sea $x,y \in \r$ tal que $x, y \geq 0$. Definiremos a la raíz cuadrada de $x$ como sigue:
$$\sqrt{x}=y \Leftrightarrow x= y^{2}.$$

Para dejar más clara la definición observemos el siguientes ejemplo:

  • Si $x =9$ tenemos que para $\sqrt{9}$:
    $\sqrt{(3)^{2}}= 3$

Observaciones

  1. Para toda $x \in \r$ con $x>0$. Observamos que la raíz cuadra de $x$ cumple con las siguientes desigualdades, es decir, $$-\sqrt{x} \leq 0 , \quad \sqrt{x} \geq 0.$$
  2. Para $y \in \r$ tenemos que $\sqrt{y^{2}} =|y|.$
  3. $|y^{2}|=y^{2};$
    $|y^{2}|=|y|^{2}.$

Demostración de 1: Consideramos $x=y^{2}$ donde $y^{2}\geq 0$. Así al sustituir y aplicar la raíz cuadrada se sigue que:
\begin{equation*}
\sqrt{y^{2}}=
\begin{cases}
y &\text{si $y \geq 0$}\\
-y & \text{si $y< 0$}.
\end{cases}
\end{equation*}

Demostración de 2: Vemos que esto se sigue de la observación anterior ya que
\begin{equation*}
|y|=
\begin{cases}
y &\text{si $y \geq 0$}\\
-y & \text{si $y< 0$}.
\end{cases}
\end{equation*}
$$\therefore \sqrt{y^{2}} =|y|.$$

$\square$

Algunos resultados importantes

Teorema: Para $x,y \in \r$ donde $x \geq 0$ y $y \geq 0$.
$$x \leq y \Leftrightarrow x^{2} \leq y^{2}$$

Demostración:
$\Rightarrow$): Como tenemos por hipótesis $x \leq y$ vemos que al multiplicar por $x$ obtendríamos
$$x \leq y \Rightarrow x^{2} \leq xy$$
Y si multiplicamos por $y$:
$$x \leq y \Rightarrow xy \leq y^{2}$$
Así por transitividad:
$$\Rightarrow x^{2} \leq y^{2}$$
$\Leftarrow$): Ahora tenemos como hipótesis que $x^{2} \leq y^{2}$. Y esto es equivalente a decir
$$0 \leq y^{2}-x^{2} \Leftrightarrow (y+x)(y-x) \geq 0$$

Por lo que debemos considerar los casos en que:
a) $y+x \geq 0$ y $y-x \geq 0$
De la segunda desigualdad concluimos $y \geq x$.

O el caso b) $y+x \leq 0$ y $y-x \leq 0$
Vemos que este caso no tiene sentido.
$$\therefore \quad y \geq x$$

$\square$

Corolario: Para $x \geq 0$, $y \geq 0$.
$$x\leq y \Leftrightarrow \sqrt{x} \leq \sqrt{y}$$
Demostración:
Tomemos $a = \sqrt{x}$ y $b=\sqrt{y}$.
$\Rightarrow$):
Entonces $a^{2}=(\sqrt{x})^{2}$ y $b^{2}=(\sqrt{y})^{2}\Rightarrow a^{2}=x$ y $b^{2}=y$
Y como por hipótesis $x\leq y$
\begin{align*}
&\Rightarrow a^{2} \leq b^{2}\\
&\Rightarrow a \leq b\\
&\Rightarrow \sqrt{x} \leq \sqrt{y}
\end{align*}
$\Leftarrow$):
Ahora como por hipótesis $\sqrt{x} \leq \sqrt{y}$
\begin{align*}
&\Rightarrow a \leq b\\
&\Rightarrow a^{2} \leq b^{2}\\
&\Rightarrow x \leq y
\end{align*}

$\square$

Corolario: Para cualesquiera $x,y \in \r$ donde $y\geq 0$.
$$|x|^{2}\leq y \Leftrightarrow |x| \leq \sqrt{y}$$
Demostración:
Aplicando el corolario anterior tenemos las siguientes equivalencias
\begin{align*}
|x|^{2}\leq y &\Leftrightarrow \sqrt{|x|^{2}} \leq \sqrt{y}\\
&\Leftrightarrow \sqrt{x^{2}} \leq \sqrt{y}\\
&\Leftrightarrow |x| \leq \sqrt{y}\\
\end{align*}

$\square$

A continuación resolveremos ejercicios de desigualdades donde se encontraran involucrados la raíz cuadrada y el valor absoluto.

Ejercicio 1

Encuentra los valores $x$ que cumplan la desigualdad:

$$2x^{2}<|x-1|$$

Por el valor absoluto presente sabemos que debemos tomar casos, por lo que tenemos:

CASO 1: $x-1\geq 0 \Leftrightarrow x\geq 1$

Sustituyendo nos queda:
\begin{align*}
2x^{2}<|x-1|&\Leftrightarrow 2x^{2}< x-1\\
&\Leftrightarrow 2x^{2}- x+1<0\\
\end{align*}
Aplicando la fórmula general para ecuaciones de segundo grado:
\begin{align*}
x &=\frac{1 \pm \sqrt{(-1)^2 -4(2)(1)}}{2(2)}\\
&=\frac{1 \pm \sqrt{1-8}}{4}\\
&=\frac{1 \pm \sqrt{-7}}{4}.\\
\end{align*}
Pero como $\sqrt{-7}$ no tiene solución en $\r$, tenemos que la solución de este caso es:
$$[1,\infty) \cap \emptyset= \emptyset.$$

CASO 2: $x-1\leq 0 \Leftrightarrow x\leq 1$
Por lo que tendríamos:
\begin{align*}
2x^{2}<|x-1|&\Leftrightarrow 2x^{2}< -(x-1)\\
&\Leftrightarrow 2x^{2}+x-1<0\\
\end{align*}

Y por la fórmula general se sigue:
\begin{align*}
x&=\frac{-1\pm \sqrt{(1)^2 -4(2)(-1)}}{2(2)}\\
&=\frac{-1\pm \sqrt{9}}{4}\\
&=\frac{-1\pm 3}{4}.\\
\end{align*}
$$\therefore \quad x_{1}=\frac{1}{2}, \quad x_{2}=-1$$
Sustituyendo lo anterior tenemos que:
$$2x^{2}+x-1<0 \Rightarrow \left(x-\frac{1}{2} \right)(x+1)<0$$

Dado lo anterior notamos que para que el producto satisfaga la desigualdad hay que considerar el siguiente par de casos:
CASO 2.1: $x-\frac{1}{2}>0$ y $ x+1<0$
De donde $x>\frac{1}{2}$ y $ x<-1$. Al considerar la intersección vemos que ocurre:
$$\left(\frac{1}{2}, \infty \right) \cap (-\infty,-1)= \emptyset$$

CASO 2.2: $x-\frac{1}{2}<0$ y $ x+1>0$
Ahora tendríamos que $x<\frac{1}{2}$ y $ x>-1$. Y la solución sería:
$$\left(-1,\frac{1}{2} \right)$$

Concluimos así que la solución del CASO 2 esta dada por:
$$\left[\emptyset \cup \left(-1, \frac{1}{2} \right) \right] \cap (-\infty, 1)=\left(-1,\frac{1}{2} \right)$$

Finalmente la solución total es:
$$\left(-1,\frac{1}{2} \right)\cup \emptyset =\left(-1,\frac{1}{2} \right)$$


Ejercicio 2

$$x^{2}-4x-1 >0$$

Buscando la solución de la ecuación $x^{2}-4x-1 =0$:
\begin{align*}
x &=\frac{-(-4)\pm \sqrt{(-4)^2 -4(1)(-1)}}{2(1)}\\
&=\frac{4\pm \sqrt{16+4}}{2}\\
&=\frac{4\pm \sqrt{20}}{2}\\
&=\frac{4\pm 2\sqrt{5}}{2}\\
&= 2\pm 2\sqrt{5}
\end{align*}
$$\therefore \quad x_{1}=2+\sqrt{5},\quad x_{2}=2-\sqrt{5}$$

Entonces la desigualdad que queremos resolver sería:
$$(x – (2+\sqrt{5}))(x-(2-\sqrt{5}))>0$$

Para que el producto cumpla con la condición de ser mayor que cero debemos considerar los casos:
CASO 1: $x-2-\sqrt{5} >0$ y $x-2+\sqrt{5} >0$
$\Rightarrow x>2+\sqrt{5}$ y $x>2-\sqrt{5}$
$\Rightarrow x>2+\sqrt{5}$

CASO 2: $x-2-\sqrt{5} <0$ y $x-2+\sqrt{5} <0$
$\Rightarrow x<2+\sqrt{5}$ y $x<2-\sqrt{5}$
$\Rightarrow x<2-\sqrt{5}$


De los casos anteriores obtenemos que nuestro conjunto solución es:
$$(-\infty, 2-\sqrt{5}) \cup (2+\sqrt{5}, \infty)$$

Ahora que ya hemos revisado estos ejercicios, te invitamos a poner en práctica los procedimientos vistos con los siguientes ejercicios.

Más adelante

En la siguiente entrada veremos las cotas de un conjunto en $\r$. Definiremos formalmente los conceptos de cota superior e inferior y veremos algunos ejemplos donde los aplicaremos. Estos serán de suma importancia para comenzar a hablar de ínfimos y supremos posteriormente.

Tarea moral

Prueba que:

  • $|y^{2}|=y^{2}$
  • $|y^{2}|=|y|^{2}$

Obtén todos los valores de $x$ que satisfagan las siguientes desigualdades:

  • $-5x^{2} + 2x +|x|-1 \leq 3$
  • $x^{2}-4x-1<0$
  • $-7x^{2}+2x+|x|<-4$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.