Archivo de la etiqueta: Raíz cuadrada

Cálculo Diferencial e Integral: Otros teoremas de funciones continuas

Introducción

Anteriormente revisamos el teorema del valor intermedio y el teorema del máximo-mínimo. En esta entrada será un complemento a las anteriores, pues revisaremos resultados derivados de tales teoremas.

La raíz $k$-ésima

Daremos inicio a esta entrada probando que todo número real positivo tiene raíz cuadrada y, posteriormente probaremos que todo número real positivo tiene raíz $k$-ésima.

Proposición. Para todo $a \in \mathbb{R}$, $a >0$, existe $b >0$ tal que $b^2 = a$. Es decir, todo real positivo tiene raíz cuadrada.

Demostración.

Sea $a > 0$.

Consideremos la función $f(x) = x^2$. Sabemos que $f$ es continua en $\mathbb{R}$. Notemos que $f(0) = 0^2 = 0$. Además, como $\mathbb{N}$ no está acotado por arriba, existe $n \in \mathbb{N}$ tal que $a<n$.

$$\Rightarrow f(n) = n^2 \quad \text{y} \quad a<n \leq n^2 = f(n)$$

Por lo anterior, se tiene que $f$ es continua en $[0, n]$ y $f(0)<a<f(n)$. Por el teorema del valo r intermedio existe $c \in \mathbb{R}$, $0<c<n$ tal que $f(c)=a$, es decir, $c^2 = a$
Consideremos $b = c$, entonces $b^2 = a$

$\square$

Definición. Sean $a > 0$, $b > 0$, $k \in \mathbb{N}$, decimos que $b$ es la raíz $k$-ésima de $a$ si $b^k = a$ y lo denotamos como $b = \sqrt[k]{a}$.

Proposición. Para toda $a >0$, toda $k \in \mathbb{N}$, existe la raíz $k$-ésima de $a$.

Demostración.

Consideremos la función $f(x) = x^k$, continua en $\mathbb{R}$. Entonces, para algún $n \in \mathbb{N}$ se tiene que

$$f(0) = 0^k = 0 < a < n \leq n^k = f(n)$$

Por el teorema del valor intermedio, existe $b$ tal que $0<b<n$ y $f(b) = a$.

$$\therefore b^k = a$$

$\square$

Notemos que en la definición dada consideramos únicamente los valores positivos que cumplen $b^k = a$, de esta forma, $b$ es único.

Proposición. La raíz $k$-ésima es única.

Demostración.

Si existen $b > 0$, $c > 0$ tal que $b^k = a$ y $c^k = a$.
Si $b \neq c$ entonces $b > c$ ó $b<c$.
\begin{gather*}
\text{Si } b < c \Rightarrow b^k < c^k \Rightarrow a < a \text{ (Contradicción)} \\
\text{Si } b > c \Rightarrow b^k > c^k \Rightarrow a > a \text{ (Contradicción)}
\end{gather*}

$$\therefore b = c$$

$\square$

Polinomios

Otro de los resultados derivados del teorema del valor intermedio es la existencia de las raíces para cierto tipo de polinomios.

Teorema. Si $n$ es impar, entonces cualquier ecuación de la forma

$$x^n+a_{n-1}x^{n-1}+ \cdots + a_0 = 0$$

tiene una raíz.

Demostración.

La demostración se basa en probar que existen $x_1$ y $x_2$ tal que la función $f(x) = x^n+a_{n-1}x^{n-1}+ \cdots + a_0$ cumple $f(x_1) < 0$ y $f(x_2)$, es decir, existen un punto donde el polinomio es negativo y un punto donde es positivo y, dado que $f$ es continua, podremos usar el teorema del valor intermedio. Intuitivamente sabemos que mientras $|x| \to \infty$, entonces $f$ se parece mucho a la función $g(x) = x^n$ y considerando que $n$ es impar, entonces para valores positivos lo suficientemente grandes $f$ será positivo, mientras que para valores negativos los suficientemente grandes, $f$ será negativo. Para lograrlo, acotaremos la función

$$ f(x) = x^n+a_{n-1}x^{n-1}+ \cdots + a_0 = x^n \left( 1+\frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \cdots + \frac{a_0}{x^n} \right), \quad \text{para } x \neq 0$$

en términos de $x^n$.

Daremos inicio a la demostración viendo que

$$\left\lvert \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \cdots + \frac{a_0}{x^n} \right\rvert \leq \frac{|a_{n-1}|}{|x|} + \cdots + \frac{|a_{0}|}{|x^n|}$$

Si $$|x| > max\{1, 2n|a_{n-1}|, \dots, 2n|a_0|\} \tag{1}$$
entonces $|x^k|>|x|$ y

$$\frac{|a_{n-k}|}{|x^k|} < \frac{|a_{n-k}|}{|x|} < \frac{|a_{n-k}|}{2n|a_{n-k}|} = \frac{1}{2}$$

es decir,

$$\left\lvert \frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \cdots + \frac{a_0}{x^n} \right\rvert \leq \sum_{i = 1}^{n} \frac{1}{2n} = \frac{1}{2}$$

$$\Rightarrow -\frac{1}{2} \leq \frac{a_{n-1}}{x} + \cdots + \frac{a_0}{x^n} \leq \frac{1}{2}$$

Sumando $1$ a la expresión anterior, se sigue que

$$\frac{1}{2} \leq 1 + \frac{a_{n-1}}{x} + \cdots + \frac{a_0}{x^n}$$

Si consideramos $x_1 < 0$ que satisface $(1)$, entonces $x_1^n < 0$ puesto que $n$ es impar, y multiplicando por $x_1^n$ la expresión anterior se obtiene

$$0 > \frac{x_1^n}{2} \geq x^n \left( 1 + \frac{a_{n-1}}{x} + \cdots + \frac{a_0}{x^n} \right) = f(x_1)$$

Por otro lado, si consideramos $x_2 > 0$ tal que satisface $(1)$, entonces tenemos

$$0 < \frac{x_2^n}{2} \leq x^n \left( 1 + \frac{a_{n-1}}{x} + \cdots + \frac{a_0}{x^n} \right) = f(x_2)$$

Por lo cual $f(x_1) < 0$ y $f(x_2) > 0$. Por el teorema del valor intermedio, concluimos que existe $x_0 \in [x_1,x_2]$ tal que $f(x_0) = 0$.

$\square$

Después de haber probado el teorema anterior, es claro que fue fundamental que $n$ fuese impar. Respecto al caso de $n$ para se convierte en un problema más complejo derivado del hecho de que hay algunos polinomios que no tienen solución en los reales, tal es el caso de $x^2+1 = 0$; sin embargo, sí podemos revisar un resultado para este caso y es el hecho de que tales polinomios tienen tienen un mínimo.

Teorema. Si $n$ es par y $f(x) = x^n+a_{n-1}x^{n-1} + \cdots + a_0$, entonces existe un $x_0$ tal que $f(x_0) \leq f(x)$ para todo $x \in \mathbb{R}$.

Demostración.

Por el teorema del máximo-mínimo, sabemos que toda función continua en un intervalo, tiene un mínimo en el mismo. De esta forma, deberemos enfocarnos en encontrar un mínimo para cuando nuestra función esté fuera de tal intervalo.

Si consideramos $M = max\{1, 2n|a_{n-1}|, \dots, 2n|a_0| \}$, entonces para todo $x$ que satisfaga $|x| \geq M$, se tiene que

$$\frac{1}{2} \leq 1 + \frac{a_{n-1}}{x} + \cdots+ \frac{a_0}{x^n}$$

Como $n$ es par, $x^n>0$ para todo $x$, por tanto

$$\frac{x^n}{2} \leq x^n \left( 1 + \frac{a_{n-1}}{x} + \cdots + \frac{a_0}{x^n} \right) = f(x), \text{si } |x|\geq M$$

Consideremos ahora el número $f(0)$. Sea $b > 0$ un número tal que $b^n \geq 2f(0)$ y $b>M$. Entonces si $x \geq b$, obtenemos

$$f(x) \geq \frac{x^n}{2} \geq \frac{b^n}{2} \geq f(0) \tag{1}$$

Análogamente, si $x \leq -b$, entonces

$$f(x) \geq \frac{x^n}{2} \geq \frac{(-b)^n}{2}= \frac{b^n}{2} \geq f(0) \tag{2}$$

En resumen, si $x \geq b$ o $x \leq -b$, entonces $f(x) \geq f(0)$.

Dado que $f$ es continua, podemos aplicar el teorema del máximo-mínimo en el intervalo $[-b,b]$, por tanto existe un número $x_0$ tal que si $-b \leq x \leq b$, entonces $f(x_0) \leq f(x)$. En particular, $f(x_0) \leq f(0)$.

Además, por $(1)$ y $(2)$ sabemos que si $x \geq b$ o $x \leq -b$, entonces $f(x) \geq f(0) \geq f(x_0)$.

Por lo anterior, podemos concluir que $f(x_0) \leq f(x)$ para todo $x$.

$\square$

Tarea moral

  • Suponga que $f$ es una función continua en $[0,1]$ y que $f(x)$ pertenece al intervalo $[0,1]$ para cada $x$. Demuestre que $f(x) = x$ para algún $x$.
  • Demuestra que existe algún número $x$ tal que $sen(x) = x-1$.
  • Da una una función continua tal que para todo $r \in \mathbb{Q}$, $f(r) > 0$, pero que exista $x_0 \mathbb{R}$ tal que $f(x_0) = 0$. ¿Es posible encontrar una función que cumpla lo anterior y que exista $x_1 \in \mathbb{R}$ tal que $f(x_1) < 0$?
  • Consideremos la ecuación
    $$x^n+a_{n-1}x^{n-1} + \cdots + a_0 = c \tag{1}$$
    y supongamos que $n$ es par. Prueba que existe un número $m$ tal que $(1)$ admite una solución para $c \geq m$ y no tiene solución para $c < m$.
  • Encuentra la solución a la ecuación $x^5+5x^4+2x+1$.

Más adelante…

En la siguiente entrada daremos la definición de continuidad uniforme y veremos su relación con la continuidad. También revisaremos el concepto de funciones de Lipschitz y el papel que juegan dentro de la continuidad.

Entradas relacionadas

Cálculo Diferencial e Integral I: Raíz cuadrada y desigualdades

Introducción

Ahora veremos el concepto de raíz cuadrada, su definición formal, resultados útiles y ejercicios de desigualdades donde se vea involucrada.

Definición de raíz cuadrada de un número real

Definición (Raíz cuadrada): Sea $x \in \r$ tal que $x \geq 0$. Definiremos a la raíz cuadrada de $x$ como sigue:
$$\sqrt{x}=y \Leftrightarrow x= y^{2}$$

Para dejar más clara la definición observemos el siguientes ejemplo:

  • Si $x =9$ tenemos que para $\sqrt{9}$
    • $\sqrt{(3)^{2}}= 3$
    • $\sqrt{(-3)^{2}}= 3$

Observaciones

  1. Para toda $x \in \r$ con $x>0$. Observamos que la raíz cuadra de $x$ tiene una rama positiva y una rama negativa, es decir, $$-\sqrt{x} \leq 0 , \sqrt{x} \geq 0$$.
  2. Para $y \in \r$ tenemos que $\sqrt{y^{2}} =|y|$
  3. $|y^{2}|=y^{2}$
    $|y^{2}|=|y|^{2}$

Demostración de 1: Si consideramos $x=y^{2}$ donde $y^{2}\geq 0$. Así al sustituir y aplicar la raíz cuadrada se sigue que:
\begin{equation*}
\sqrt{y^{2}}=
\begin{cases}
y &\text{si $y \geq 0$}\\
-y & \text{si $y< 0$}
\end{cases}
\end{equation*}

Demostración de 2: Vemos que esto se sigue de a observación anterior ya que
\begin{equation*}
|y|=
\begin{cases}
y &\text{si $y \geq 0$}\\
-y & \text{si $y< 0$}
\end{cases}
\end{equation*}
$$\therefore \sqrt{y^{2}} =|y|$$

$\square$

Algunos resultados importantes

Teorema: Para $x,y \in \r$ donde $x \geq 0$ y $y \geq 0$.
$$x \leq y \Leftrightarrow x^{2} \leq y^{2}$$

Demostración:
$\Rightarrow$): Cómo tenemos por hipótesis $x \leq y$ vemos que al multiplicar por $x$ obtendríamos
$$x \leq y \Rightarrow x^{2} \leq xy$$
Y si multiplicamos por $y$:
$$x \leq y \Rightarrow xy \leq y^{2}$$
Así por transitividad:
$$\Rightarrow x^{2} \leq y^{2}$$
$\Leftarrow$): Ahora tenemos cómo hipótesis que $x^{2} \leq y^{2}$. Y esto es equivalente a decir
$$0 \leq y^{2}-x^{2} \Leftrightarrow (y+x)(y-x) \geq 0$$

Por lo que debemos considerar los casos en que:
I. $y+x \geq 0$ y $y-x \geq 0$
De la segunda desigualdad concluimos $y \geq x$.

O el caso II.$y+x \leq 0$ y $y-x \leq 0$
Vemos que este caso no tiene sentido.
$$\therefore y \geq x$$

$\square$

Corolario: Para $x \geq 0$, $y \geq 0$.
$$x\leq y \Leftrightarrow \sqrt{x} \leq \sqrt{y}$$
Demostración:
Tomemos $a = \sqrt{x}$ y $b=\sqrt{y}$.
$\Rightarrow$):
Entonces $a^{2}=(\sqrt{x})^{2}$ y $b^{2}=(\sqrt{y})^{2}\Rightarrow a^{2}=x$ y $b^{2}=y$
Y cómo por hipótesis $x\leq y$
\begin{align*}
&\Rightarrow a^{2} \leq b^{2}\\
&\Rightarrow a \leq b\\
&\Rightarrow \sqrt{x} \leq \sqrt{y}
\end{align*}
$\Leftarrow$):
Ahora cómo por hipótesis $\sqrt{x} \leq \sqrt{y}$
\begin{align*}
&\Rightarrow a \leq b\\
&\Rightarrow a^{2} \leq b^{2}\\
&\Rightarrow x \leq y
\end{align*}

$\square$

Corolario: Para cualesquiera $x,y \in \r$.
$$|x|^{2}\leq y \Leftrightarrow |x| \leq \sqrt{y}$$
Demostración:
Aplicando el corolario anterior tenemos las siguientes equivalencias
\begin{align*}
|x|^{2}\leq y &\Leftrightarrow \sqrt{|x|^{2}} \leq \sqrt{y}\\
&\Leftrightarrow \sqrt{x^{2}} \leq \sqrt{y}\\
&\Leftrightarrow |x| \leq \sqrt{y}\\
\end{align*}

$\square$

A continuación resolveremos ejercicios de desigualdades donde se encontraran involucrados la raíz cuadrada y el valor absoluto.

Ejercicio 1

Encuentra los valores $x$ que cumplan la desigualdad:

$$2x^{2}<|x-1|$$

Por el valor absoluto presente sabemos que debemos tomar casos, por lo que tenemos:

CASO 1: $x-1\geq 0 \Rightarrow x\geq 1$

Sustituyendo nos queda:
\begin{align*}
2x^{2}<|x-1|&\Rightarrow 2x^{2}< x-1\\
&\Rightarrow 2x^{2}- x+1<0\\
\end{align*}
Aplicando la fórmula general para ecuaciones de segundo grado:
\begin{align*}
x &=\frac{1 \pm \sqrt{(-1)^2 -4(2)(1)}}{2(2)}\\
&=\frac{1 \pm \sqrt{1-8}}{4}\\
&=\frac{1 \pm \sqrt{-7}}{4}\\
\end{align*}
Pero cómo $\sqrt{-7}$ no tiene solución en $\r$. Tenemos que la solución de este caso es:
$$[1,\infty) \cap \emptyset= \emptyset$$

CASO 2: $x-1\leq 0 \Rightarrow x\leq 1$
Por lo que tendríamos:
\begin{align*}
2x^{2}<|x-1|&\Rightarrow 2x^{2}< -(x-1)\\
&\Rightarrow 2x^{2}+x-1<0\\
\end{align*}

Y por la fórmula general se sigue:
\begin{align*}
x&=\frac{-1\pm \sqrt{(1)^2 -4(2)(-1)}}{2(2)}\\
&=\frac{-1\pm \sqrt{9}}{4}\\
&=\frac{-1\pm 3}{4}\\
\end{align*}
$$\therefore x_{1}=\frac{1}{2}, x_{2}=-1$$
Sustituyendo lo anterior tenemos que:
$$2x^{2}+x-1<0 \Rightarrow \left(x-\frac{1}{2} \right)(x+1)<0$$

Dado lo anterior notamos que para que el producto satisfaga la desigualdad hay que considerar el siguiente par de casos:
CASO 2.1: $x-\frac{1}{2}>0$ y $ x+1<0$
De donde $x>\frac{1}{2}$ y $ x<-1$. Al considerar la intersección vemos que ocurre:
$$\left(\frac{1}{2}, \infty \right) \cap (-\infty,-1)= \emptyset$$

CASO 2.2: $x-\frac{1}{2}<0$ y $ x+1>0$
Ahora tendríamos que $x<\frac{1}{2}$ y $ x>-1$. Y la solución sería:
$$\left(-1,\frac{1}{2} \right)$$

Concluimos así que la solución del CASO 2 esta dada por:
$$\left[\emptyset \cup \left(-1, \frac{1}{2} \right) \right] \cap (-\infty, 1)=\left(-1,\frac{1}{2} \right)$$

Finalmente la solución total es:
$$\left(-1,\frac{1}{2} \right)\cup \emptyset =\left(-1,\frac{1}{2} \right)$$


Ejercicio 2

$$x^{2}-4x-1 >0$$

Factorizando:
\begin{align*}
x &=\frac{-(-4)\pm \sqrt{(-4)^2 -4(1)(-1)}}{2(1)}\\
&=\frac{4\pm \sqrt{16+4}}{2}\\
&=\frac{4\pm \sqrt{20}}{2}\\
&=\frac{4\pm 2\sqrt{5}}{2}\\
&= 2\pm 2\sqrt{5}
\end{align*}
$$\therefore x_{1}=2+\sqrt{5}, x_{2}=2-\sqrt{5}$$

Entonces la desigualdad que queremos resolver sería:
$$(x – (2+\sqrt{5}))(x-(2-\sqrt{5}))>0$$

Para que el producto cumpla con la condición de ser mayor que cero debemos considerar los casos:
CASO 1: $x-2-\sqrt{5} >0$ y $x-2+\sqrt{5} >0$
$\Rightarrow x>2+\sqrt{5}$ y $x>2-\sqrt{5}$
$\Rightarrow x>2+\sqrt{5}$

CASO 2: $x-2-\sqrt{5} <0$ y $x-2+\sqrt{5} <0$
$\Rightarrow x<2+\sqrt{5}$ y $x<2-\sqrt{5}$
$\Rightarrow x<2-\sqrt{5}$


De los casos anteriores obtenemos que nuestro conjunto solución es:
$$(-\infty, 2-\sqrt{5}) \cup (2+\sqrt{5}, \infty)$$

Ahora que ya hemos revisado estos ejercicios, te invitamos a poner en práctica los procedimientos vistos con los siguientes ejercicios.

Tarea moral

Prueba que:

  • $|y^{2}|=y^{2}$
  • $|y^{2}|=|y|^{2}$

Obtén todos los valores de $x$ que satisfagan las siguientes desigualdades:

  • $-5x^{2} + 2x +|x|-1 \leq 3$
  • $x^{2}-4x-1<0$
  • $-7x^{2}+2x+|x|<-4$

Más adelante

En la siguiente entrada veremos las cotas de un conjunto en $\r$. Definiremos formalmente los conceptos de cota superior e inferior y veremos algunos ejemplos donde los aplicaremos. Estos serán de suma importancia para comenzar a hablar de ínfimos y supremos posteriormente.

Entradas relacionadas