Archivo del Autor: Eduardo Vera Rosales

Ecuaciones Diferenciales I – Videos: Método de la transformada de Laplace

Por Eduardo Vera Rosales

Introducción

Bienvenidos a la última entrada de la segunda unidad del curso, donde revisaremos el método de la transformada de Laplace para resolver problemas de condición inicial de la forma $$ay^{\prime \prime}+by’+cy=f(t); \,\,\, y(0)=y_{0}, \,\,\, y'(0)=y_{1}$$ con $a$, $b$ y $c$ constantes.

Este método nos permite transformar el problema de resolver la ecuación diferencial por los métodos estudiados en esta misma unidad, por un problema algebraico donde encontraremos la expresión de la transformada de Laplace $\mathscr{L} \{y(t)\}$ de la función solución, y debemos hallar quién es la función $y(t)$ cuya transformada de Laplace es $\mathscr{L} \{y(t)\}$.

Comenzaremos definiendo la transformada de Laplace de una función cuyo dominio es el intervalo $[0, \infty)$, y demostraremos algunas de las propiedades más importantes que cumple esta transformada y que utilizaremos para nuestros propósitos.

Posteriormente resolveremos el problema de condición inicial de manera general, mencionaremos el problema de hallar la transformada inversa de Laplace de una función con ayuda de una tabla de transformadas y transformadas inversas, y revisaremos dos ejemplos particulares donde mostraremos cómo se utiliza el método en la práctica.

Para finalizar consideraremos nuevamente el problema de condición inicial $$ay^{\prime \prime}+by’+cy=f(t); \,\,\, y(0)=y_{0}, \,\,\, y'(0)=y_{1}$$ donde ahora la función $f(t)$ es una función continua por pedazos. Este tipo de problemas suele aparecer con frecuencia en la física, y con la ayuda de la transformada de Laplace vamos a resolver un ejemplo particular, con ayuda de una función auxiliar y un teorema que enunciaremos y probaremos previamente.

Como te podrás dar cuenta, hicimos un cambio en la notación de la derivada de una función. Durante el curso hemos utilizado la notación de Leibniz $\frac{dy}{dt}$, $\frac{d^{2}y}{dt^{2}}$,…, para denotar a las derivadas de la función $y(t)$. Sin embargo, en esta entrada utilizaremos la notación $y'(t)$, $y^{\prime \prime}(t)$,…, para simplificar la escritura.

Transformada de Laplace y sus propiedades

En el primer video de esta entrada definimos la transformada de Laplace $\mathscr{L} \{y(t)\}$ de una función cuyo dominio es el intervalo $[0, \infty)$, y probamos algunas propiedades que cumple esta transformada y que nos servirán para resolver problemas de condición inicial.

Solución a problemas de condición inicial por método de la transformada de Laplace

En el primer video de esta sección resolvemos el problema de condición inicial $$ay^{\prime \prime}+by’+cy=f(t); \,\,\, y(0)=y_{0}, \,\,\, y'(0)=y_{1}$$ por el método de la transformada de Laplace.

En el segundo video resolvemos un par de problemas de condición inicial particulares.

Te presentamos una tabla de transformadas y transformadas inversas de Laplace, que aparece en el libro Elementary Differential Equations and Boundary Value Problems, William E. Boyce y Richard C. DiPrima, para que puedas realizar los cálculos presentados en los videos. Esta tabla no es única, por lo que puedes buscar en textos o en internet tablas diferentes según lo requieras.

Tabla de transformadas de Laplace y transformadas inversas
Tabla de transformadas y transformadas inversas de Laplace. Boyce y DiPrima (2012).

Solución a problemas de condición inicial con funciones discontinuas por método de transformada de Laplace

En el último video de esta entrada resolvemos un problema de condición inicial de la forma $$ay^{\prime \prime}+by’+cy=f(t); \,\,\, y(0)=y_{0}, \,\,\, y'(0)=y_{1}$$ donde $f(t)$ es una función continua por pedazos. Previamente definimos la función auxiliar $$H_{c}(t)= \begin{cases} 1 & 0 \leq t < c \\ 1 & t \geq c \ \end{cases} $$ y probamos un teorema que nos ayudan a resolver el problema de condición inicial.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra la transformada de Laplace de la función $f(t)=t$.
  • Encuentra la transformada de Laplace de la función $f(t)=\cos{\beta t}$, $\beta$ constante.
  • Prueba que $$\mathscr{L} \{f ^{\prime \prime} (t)\}=s^{2}\mathscr{L}\{f(t)\}-sf(0)-f^{\prime}(0)$$ bajo las hipótesis del último teorema del primer video.
  • Resuelve el problema de condición inicial $$y^{\prime \prime}-2y’+2y=\cos{t}; \,\,\,\,\, y(0)=1, \,\,\,\,\, y'(0)=0$$ por el método de la transformada de Laplace.
  • Prueba que bajo las condiciones del primer teorema enunciado en el primer video, se cumplen las siguiente propiedad: $$F^{(n)}(s)=\mathscr{L}\{(-t)^{n}f(t)\}$$ donde $F^{(n)}$ denota a la $n$-ésima derivada de $F$.
  • Resuelve el problema de condiciones iniciales $$y^{\prime \prime}+2y’+2y=f(t); \,\,\,\,\, y(0)=0, \,\,\,\,\, y'(0)=1$$ donde $$f(t)= \begin{cases} 1 & \pi \leq t < 2\pi \\ 0 & 0 \leq t < \pi \ , t \geq 2\pi. \end{cases} $$

Más adelante

Con esta entrada concluimos el estudio a las ecuaciones diferenciales de segundo orden. Como mencionamos en esta entrada, toda la teoría desarrollada en la segunda unidad se puede extender a ecuaciones de orden $n>2$. Sin embargo, a partir de la tercera unidad utilizaremos un método distinto para resolver ecuaciones de orden $n\geq2$.

Lo primero que haremos en la siguiente entrada será transformar una ecuación diferencial que orden $n\geq2$ en un sistema de $n$ ecuaciones diferenciales de primer orden, hablaremos de las ventajas de hacer esta transformación y daremos una introducción a los sistemas de ecuaciones diferenciales de primer orden, que será el objeto de estudio de la tercera unidad del curso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones de Chebyshev e hipergeométrica

Por Eduardo Vera Rosales

Introducción

En las entradas anteriores hemos estudiado y encontrado soluciones en forma de series a algunas ecuaciones especiales de segundo orden. Hasta el momento hemos revisado las ecuaciones de Hermite, Laguerre, Bessel y Legendre, y para finalizar esta serie de entradas, echaremos un vistazo a la ecuación de Chebyshev que debe su nombre al matemático Pafnuty Chebyshev, y a la ecuación hipergeométrica.

Primero encontraremos la solución general a la ecuación de Chebyshev, la cual tiene la forma $$(1-t^{2})\frac{d^{2}y}{dt^{2}}-t\frac{dy}{dt}+\lambda^{2}y=0$$ con $\lambda$ constante y $|t|<1$, alrededor del punto ordinario $t_{0}=0$. Como hicimos para las ecuaciones de Hermite y Legendre, haremos mención de la relación que guarda la solución general con los polinomios de Chebyshev.

Posteriormente revisaremos la ecuación hipergeométrica que es de la forma $$t(1-t)\frac{d^{2}y}{dt^{2}}+(\gamma-(1+\alpha+\beta)t)\frac{dy}{dt}-\alpha \beta y=0$$ con $\alpha$, $\beta$ constantes. Veremos que $t_{0}=0$ es un punto singular regular, encontraremos la ecuación indicial de manera general, es decir, para cualesquiera $\alpha$, $\beta$ y $\gamma$, y para finalizar resolveremos la ecuación para valores fijos de las constantes antes mencionadas.

Con este par de ecuaciones diferenciales finalizaremos la revisión de estas ecuaciones especiales, y entraremos a la recta final de la segunda unidad.

Ecuación de Chebyshev

En el video encontramos la solución general a la ecuación de Chebyshev alrededor del punto ordinario $t_{0}=0$, y mencionamos la relación que tiene la solución general encontrada con los polinomios que llevan el mismo nombre.

Ecuación hipergeométrica

En el último video de esta entrada probamos que $t_{0}=0$ es un punto singular regular para la ecuación hipergeométrica, posteriormente encontramos la ecuación indicial asociada, y posteriormente encontramos una solución a la ecuación diferencial cuando $\gamma=\frac{1}{2}$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Investiga los cuatro primeros polinomios de Chebyshev. Prueba que son solución particular a la ecuación de Chebyshev para $\lambda=0,1,2,3$, respectívamente.
  • Encuentra la solución general a la ecuación de Chebyshev para $\lambda=-1$.
  • En el segundo video mencionamos que para $\gamma=\frac{1}{2}$ la ecuación indicial asociada a la ecuación hipergeométrica tiene raíces $r_{1}=\frac{1}{2}$, $r_{2}=0$, y encontramos una primera solución usando $r_{1}$. Encuentra una segunda solución usando $r_{2}$ (encuentra al menos los primeros tres coeficientes de la serie solución).
  • Encuentra una solución a la ecuación hipergeométrica cuando $\alpha=1$, $\beta=1$, $\gamma=0$.

Más adelante

Con esta entrada finalizamos la revisión de algunas ecuaciones diferenciales especiales de segundo orden que se resuelven por los métodos de series estudiados anteriormente.

Casi concluimos la segunda unidad del curso, pero antes estudiaremos un poco el concepto de la transformada de Laplace, veremos algunas de sus principales propiedades y utilizaremos esta transformada para resolver ecuaciones de segundo orden con coeficientes constantes.

¡Hasta la próxima!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones de Bessel y Legendre

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio a algunas ecuaciones especiales de segundo orden que aparecen con frecuencia en otras áreas de estudio, principalmente en la física. En particular, encontramos soluciones por series a las ecuaciones de Hermite y Laguerre, y mencionamos cómo los polinomios de orden $n$ que llevan los mismos nombres son soluciones particulares a las ecuaciones diferenciales para $\lambda=n$, respectivamente.

Ahora es turno de revisar las ecuaciones de Bessel y Legendre, debidas a los matemáticos Friedrich Wilhelm Bessel y Adrien-Marie Legendre. Resolveremos la ecuación de Bessel alrededor del punto singular regular $t_{0}=0$ para algunos casos del valor $\lambda$. Por otra parte resolveremos la ecuación de Legendre alrededor del punto ordinario $t_{0}=0$, y mencionamos la relación de la ecuación de Legendre con los polinomios que llevan el mismo nombre.

Ecuación de Bessel

En el primer video hallamos la ecuación indicial para la ecuación de Bessel de orden $\lambda$ alrededor del punto singular regular $t_{0}=0$ $$t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{dy}{dt}+(t^{2}-\lambda^{2})y=0, \,\,\, t>0.$$ Posteriormente encontramos una solución a la misma ecuación cuando $\lambda=0$.

En el segundo video resolvemos la ecuación de Bessel de orden $\lambda=1$ bajo las mismas hipótesis del caso anterior.

Ecuación de Legendre

En el último video de la entrada resolvemos la ecuación de Legendre de forma general alrededor del punto ordinario $t_{0}=0$ y hacemos una importante observación acerca de las soluciones a dicha ecuación.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra una segunda solución a la ecuación de Bessel de orden cero $$t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{dy}{dt}+t^{2}y=0$$ cerca del punto singular regular $t_{0}=0$, $t>0$.
  • Encuentra una segunda solución a la ecuación de Bessel de orden uno $$t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{dy}{dt}+(t^{2}-1)y=0$$ cerca del punto singular regular $t_{0}=0$, $t>0$.
  • Halla una solución a la ecuación de Bessel de orden $\frac{1}{2}$ $$t^{2}\frac{d^{2}y}{dt^{2}}+t\frac{dy}{dt}+(t^{2}-\frac{1}{2})y=0$$ cerca del punto singular regular $t_{0}=0$, $t>0$.
  • Investiga los primeros cuatro polinomios de Legendre. Prueba que son solución particular a la ecuación de Legendre $$(1-t^{2})\frac{d^{2}y}{dt^{2}}-2t\frac{dy}{dt}+\lambda(\lambda+1)y=0$$ alrededor del punto ordinario $t_{0}=0$ para los valores $\lambda=0,1,2,3$, respectivamente.
  • Mediante el método de soluciones por series de potencias, halla una solución a la ecuación de Legendre con $\lambda=4$ $$(1-t^{2})\frac{d^{2}y}{dt^{2}}-2t\frac{dy}{dt}+20y=0.$$ En general, el $n$-ésimo polinomio de Legendre es solución a la ecuación de Legendre con $\lambda=n$.
  • Verifica que $t_{0}=1$ es un punto singular regular para la ecuación de Legendre y encuentra una solución cerca de $t_{0}=1$, $t>0$.

Más adelante

Hasta el momento hemos revisado cuatro de las seis ecuaciones especiales de segundo orden que vamos a estudiar. Finalizaremos esta serie de entradas revisando la ecuación de Chebyshev y la ecuación hipergeométrica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones de Hermite y Laguerre

Por Eduardo Vera Rosales

Introducción

En entradas anteriores desarrollamos métodos para resolver la ecuación diferencial lineal de segundo orden con coeficientes variables de la forma $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0$$ alrededor de puntos ordinarios y cerca de puntos singulares regulares.

Utilizaremos estos métodos para resolver en esta y en las próximas dos entradas algunas ecuaciones especiales que se encuentran en otras áreas del conocimiento, principalmente en la física. Nos enfocaremos exclusivamente en encontrar soluciones a dichas ecuaciones, por lo que no hablaremos de las aplicaciones de éstas. Iniciamos en esta entrada con las ecuaciones de Hermite y Laguerre debidas a los matemáticos Charles Hermite y Edmond Laguerre.

La ecuación de Hermite tiene la forma $$\frac{d^{2}y}{dt^{2}}-2t\frac{dy}{dt}+\lambda y=0$$ con $t \in \mathbb{R}$ y $\lambda$ constante. Encontraremos una solución general con desarrollo en serie de potencias alrededor del punto ordinario $t_{0}=0$.

Por otro lado, la ecuación de Laguerre tiene la forma $$t\frac{d^{2}y}{dt^{2}}+(1-t)\frac{dy}{dt}+\lambda y=0$$ con $\lambda$ constante. Encontraremos una solución particular a dicha ecuación cerca del punto singular regular $t_{0}=0$ y tomando $t>0$. Finalmente veremos las dificultades para encontrar de forma explícita una segunda solución linealmente independiente a la primera, según la fórmula que encontramos en el desarrollo general del método de Frobenius.

Ecuación de Hermite

En el video encontramos la solución general a la ecuación de Hermite alrededor del punto ordinario $t_{0}=0$, además de hacer una observación importante acerca de la solución general para los casos cuando $\lambda$ es un entero par no negativo.

Ecuación de Laguerre

En el video encontramos una solución particular a la ecuación de Laguerre cerca del punto singular regular $t_{0}=0$. Posteriormente hablamos de la dificultad para encontrar una segunda solución de manera explícita, aún cuando el método de Frobenius nos ofrece la forma que debe tener esta segunda solución. Finalmente hacemos una importante observación acerca de la solución encontrada para los casos cuando $\lambda$ es un entero positivo.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Investiga los primeros cuatro polinomios de Hermite. Prueba que son solución particular a la ecuación de Hermite cuando $\lambda=0,2,4,6$ respectivamente. En general, el $n$-ésimo polinomio de Hermite será solución particular a la ecuación de Hermite cuando $\lambda=2n$.
  • Resuelve la ecuación de Hermite $$\frac{d^{2}y}{dt^{2}}-2t\frac{dy}{dt}+8y=0$$ alrededor del punto ordinario $t_{0}=0$, siguiendo paso a paso el método utilizado en el primer video (es decir, no uses únicamente la fórmula final del video).
  • Investiga los primeros cuatro polinomios de Laguerre. Prueba que son solución particular a la ecuación de Laguerre cuando $\lambda=0,1,2,3$ respectivamente. En general, el $n$-ésimo polinomio de Laguerre será solución particular a la ecuación de Laguerre cuando $\lambda=n$.
  • Encuentra una solución a la ecuación de Laguerre $$t\frac{d^{2}y}{dt^{2}}+(1-t)\frac{dy}{dt}+4y=0$$ alrededor del punto singular regular $t_{0}=0$, siguiendo paso a paso el método de Frobenius (nuevamente, no utilices únicamente la fórmula final del segundo video).

Más adelante

Hemos encontrado soluciones a dos de las seis ecuaciones especiales que revisaremos en esta serie de entradas. En la próxima continuaremos hablando de estas funciones especiales. En particular estudiaremos las ecuaciones de Bessel y Legendre.

¡Hasta la próxima!

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales de segundo orden con coeficientes variables. Solución por series cerca de un punto singular regular

Por Eduardo Vera Rosales

Introducción

En la entrada anterior resolvimos la ecuación diferencial de Euler, cerca del punto singular $t_{0}=0$, como un caso particular de las ecuaciones que consideraremos en esta ocasión. Vimos que la forma que tenga la solución general depende de las raíces de la ecuación cuadrática $r^{2}+(\alpha -1)r+\beta=0$.

Es turno de revisar el caso cuando queremos encontrar una solución en forma de serie cerca de un punto singular ecuación diferencial $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0.$$ Clasificaremos a los puntos singulares en dos tipos: regulares e irregulares. Debido a la complejidad para encontrar soluciones alrededor de puntos singulares irregulares, nos enfocaremos exclusivamente en los puntos singulares regulares, y trataremos de generalizar el método utilizado para resolver la ecuación de Euler, el cual lleva el nombre de método de Frobenius, gracias al matemático Ferdinand Georg Frobenius.

Para facilitar el desarrollo de la teoría, en esta entrada siempre supondremos que el punto singular regular sobre el que trabajaremos es $t_{0}=0$. En la práctica, si tenemos un punto singular $t_{0}\neq 0$, basta con hacer el cambio de variable $z=t-t_{0}$.

Consideraciones generales. Solución cuando la ecuación indicial tiene dos raíces distintas que no difieren por un entero

En el primer video, damos las definiciones de punto singular regular e irregular y damos las consideraciones generales con las que trabajaremos a lo largo de toda la entrada. Además presentamos la ecuación indicial de la cual depende la forma de la solución general a la ecuación $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0$$ cerca del punto singular regular $t_{0}=0$. Finalmente resolvemos el primer caso del método de Frobenius cuando la ecuación indicial $r^{2}+(b_{0}-1)r+c_{0}=0$ tiene raíces distintas que no difieren por un entero.

Solución cuando la ecuación indicial tienen raíces repetidas

En el segundo video resolvemos el segundo caso del método de Frobenius, cuando la ecuación indicial tiene dos raíces repetidas.

Solución cuando al ecuación indicial tiene raíces que difieren por un entero

Finalizamos esta serie de videos con el último caso del método de Frobenius, cuando la ecuación indicial tiene dos raíces que difieren por un entero.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que si $r_{1}$, $r_{2}$ son raíces complejas de la ecuación indicial $r^{2}+(b_{0}-1)r+c_{0}=0$, entonces $F(r_{1}+k)$ y $F(r_{2}+k)$ no se anulan para cualquier $k\geq1$. Por lo tanto la solución general a la ecuación diferencial tiene la misma forma que cuando consideramos raíces reales que no difieren por un entero, pero con valores complejos.
  • Encuentra una expresión para la solución general del ejercicio anterior pero con valores únicamente reales.
  • Muestra que las soluciones $y_{1}(t)$, $y_{2}(t)$ encontradas en el caso cuando la ecuación indicial tiene raíces repetidas, son linealmente independientes.
  • Encuentra los radios de convergencia para cada solución dada en forma de series en esta entrada. (Hint: Las demostraciones son análogas al caso de radios de convergencia para soluciones por series de potencias alrededor de puntos ordinarios).

Más adelante

Hemos concluido de desarrollar la teoría que involucra soluciones en series, tanto alrededor de un punto ordinario como cerca de un punto singular regular. Como te pudiste dar cuenta en esta entrada no resolvimos ejemplos, ya que en las siguientes entradas emplearemos esta teoría para resolver algunas ecuaciones especiales que se usan principalmente en la física. En la siguiente entrada en particular, estudiaremos las ecuaciones de Hermite y Laguerre.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»