Archivo del Autor: Cecilia del Carmen Villatoro Ramos

Álgebra Moderna I: Introducción al curso

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

¡Un curso salvaje de Álgebra Moderna ha aparecido!

El concepto de grupo como tal se da en el siglo XIX. Nace de varios problemas que se estaban trabajando en distintas áreas de las matemáticas, como por ejemplo, en la Teoría de los números, en la Geometría de transformaciones lineales y en el Análisis de las transformaciones continuas.

Un origen alternativo del término grupo está en la búsqueda de soluciones para ecuaciones de distintos grados. Desde el siglo XVIII a.C. los babilonios tenían su propia manera de encontrar las soluciones de ecuaciones de 1ro y 2do grado. Más adelante, en el siglo III d.C. el matemático Diofanto introduce en Grecia una notación algebraica y avanza con el estudio del problema de las soluciones de ecuaciones de grados mayores a dos.

Siglos después, en el siglo VIII, el árabe Al-Juarismi da métodos básicos para resolver ecuaciones polinomiales usando justificaciones geométricas. Después de él, se da un estancamiento para resolver ecuaciones de grado mayor.

En el siglo XVI se da un avance gracias a cuatro matemáticos: Niccolò Fontana Tartaglia, Gerolamo Cardano, su alumno Lodovico Ferrari y Scipione del Ferro. La historia cuenta que Tartaglia encuentra la forma de resolver ecuaciones de grado tres usando radicales, es decir, una fórmula general para resolverlas a partir de los coeficientes usando operaciones básicas como la suma, la resta, la multiplicación y la división. Después de contarle a Cardano, Tartaglia le pide que guarde el secreto. Pero Del Ferro también encuentra una solución al problema y al igual que Tartaglia se le dice a Cardano, así que Cardano piensa que ya no es necesario guardar el secreto de Tartaglia y decide publicar en su libro Ars Magna las soluciones a las ecuaciones de tercer grado, así como la solución a las ecuaciones de grado cuatro descubiertas por su discípulo Ferrari.

Para las ecuaciones de grado cinco no hay avance en mucho tiempo. Fue en el siglo XVIII Joseph-Louis Lagrange retoma el problema y utiliza permutaciones de las raíces de un polinomio para crear una ecuación auxiliar y tratar de encontrar así la solución a ecuaciones de quinto grado usando radicales. A pesar de que no logra resolver el problema, su trabajo es muy importante y retomado más adelante.

A finales de este mismo siglo, Niels Henrik Abel y Paolo Ruffini retoman el trabajo de Lagrange y se dan cuenta que existen ecuaciones de grado cinco que no son solubles con radicales, su trabajo se resume en el Teorema de Abel-Ruffini.

Quién sí logra entender completamente el problema y definir qué ecuaciones de grado cinco (o mayor) tienen soluciones y cuáles no se pueden resolver con radicales fue Évariste Galois. En este camino descubre lo que ahora conocemos como Teoría de grupos, aunque es hasta 1844 que Augustin Louis Cauchy introduce la notación actual que usamos para esta rama del Álgebra.

Esto es precisamente lo que vamos a estudiar en este semestre, no en sí la resolución de ecuaciones, si no la parte básica de la Teoría de grupos. Es posible que ya estés familiarizado con alguna de las estructuras que trataremos porque daremos por hecho que posees conocimientos de Álgebra Superior I, Álgebra Superior II, Álgebra Lineal I y Álgebra Lineal II.

Sobre la estructura del curso

El curso consiste en 48 entradas divididas por temas importantes y agrupadas en cinco unidades:

  • Unidad 1: Grupos y Subgrupos
  • Unidad 2: Permutaciones
  • Unidad 3: Grupo cociente y Homomorfismos
  • Unidad 4: Acciones y Teoremas de Sylow
  • Unidad 5: Jordan Hölder y el Teorema fundamental

Cada una de las entradas está dividida en cuatro secciones importantes: Introducción, Tarea moral, Más adelante… y Entradas relacionadas.

En la Introducción se pretende dar una motivación a los temas que se verán, además de relacionar la entrada actual con la entrada anterior. Luego, durante el desarrollo de la entrada, el contenido también se divide en secciones, estas secciones dependen de la duración y de los temas que se traten.

En la sección de Tarea moral se dejan ejercicios para que repases los temas de la entrada en la que están. Más adelante… es una sección en la que queremos relacionar los temas vistos con futuras entradas.

Por último, la sección de Entradas relacionadas se explica por sí sola. Ahí podrás encontrar las entradas anterior y siguiente inmediatas a la entrada que estás leyendo, un enlace que te llevará directamente a la lista de otros cursos que pueden serte de utilidad y uno para ir a la página de presentación de este curso.

Materiales o videos recomendados

A lo largo de las entradas dejamos algo de material extra porque te puede proporcionar mejor perspectiva y parecer interesante. Aquí recopilamos todo ese material y agregamos algo más para que puedas acceder a él de manera más fácil.

Unidad 1:
Grupos de Transformadores p(112-115)
Grupo Diédrico – Socratica
Visualización de cuaterniones – 3Blue1Brown (subtítulos en español)

Unidad 2:
¿Cómo tocar un cubo de Rubik como si fuera un piano? – M. Staff
Juego del 15 – Mathologer
Lagrange – Universidad de la Sorbona (subtítulos en español)
Grupo cociente – Mathemaniac

Unidad 3:
Homomorphism – Socratica
Homomorphism – Mathemaniac

Unidad 4:
Teorema de Cayley – Mathemaniac

Unidad 5:
Simple Groups – Socratica
La mitad de este video toca los temas vistos en la unidad 5. El resto del video te puede abrir el panorama sobre otros temas del Álgebra Moderna interesantes que no se cubren en este curso y además sirve como un cierre del curso ya que retoma lo que se menciona en esta introducción y vuelve a mencionar a Galois.

Más adelante…

Esta sección está en cada entrada para motivarte a seguir adelante con el curso y te proporciona vistazos de futuros usos a lo que hayas estudiado en la entrada. En este caso ¡tienes todo un maravilloso curso de Álgebra Moderna por explorar!

Entradas relacionadas

Álgebra Moderna I: Guía de Notación

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En los libros de matemáticas es muy común dedicar algunas páginas a un glosario de notación, que resulta muy útil para recordar la notación del libro o, si sólo estás consultando un capítulo, entenderlo sin que la notación sea un impedimento.

Inspirados por estos libros, se recopiló todos los signos que usamos a lo largo del curso y lo dividimos en distintas secciones que pueden ayudarte a encontrarlos.

Si en algún momento se te olvida lo que significa la notación puedes regresar aquí para refrescar tu memoria y hasta para encontrar la entrada en donde se define el concepto.

Álgebra general: Aquí están los símbolos de conceptos algebraicos que son explicados en algún otro curso. Cabe aclarar que a lo mejor no se usa el mismo símbolo o notación que en otros textos, pero los conceptos son los mismos.

Conjuntos generales: Aquí se enlistan todos los conjuntos que probablemente ya conoces, podemos decir que son los conjuntos básicos como el de los reales, enteros, racionales, etc. Con seguridad, estos conjuntos se definen en algún curso introductorio al Álgebra, como Álgebra Superior I.

Conjuntos especiales y grupos nuevos: Aquí están los conjuntos algebraicos que usamos en este curso y que a lo mejor se mencionan en otros cursos más avanzados. Son conjuntos que definimos o describimos para usarlos y que probablemente no conocías hasta ahora.

Teoría de grupos: Aquí están todos los símbolos y notaciones propias del curso, es decir, las que vamos definiendo formalmente y forman parte del contenido de Álgebra Moderna I. Se encuentran en orden de aparición. Observarás que hay algunos grupos y conjuntos. A diferencia de los conjuntos especiales, estos conjuntos nacen de la teoría de grupos. Es decir, suelen ser subconjuntos o subgrupos que dependen de un grupo $G$. Aquí encontrarás los enlaces a las entradas en donde dicho concepto se define.

Álgebra general

SímboloSignificado
$(n;m)$Máximo común divisor
$(n;m)=1$$n$ y $m$ son primos relativos
$a \thicksim b$$a$ está relacionado con $b$
$\varphi(d)$Phi de Euler
$\therefore$Por lo tanto
$A\;\dot\cup\; B$Unión disjunta de $A$ y $B$
$A \setminus B$Diferencia de conjutos. Los elementos de $A$ que no pertenecen a $B$
$m!$Factorial de $m$
$\ln$Logaritmo natural

Conjuntos generales

SímboloSignificado
$\emptyset$Conjunto vacío
$\r$Números Reales
$\z$Números Enteros
$\mathbb{Q}$Números Racionales
$\n$Números Naturales
$\mathbb{C}$Números Complejos
$\mathbb{C}^*$Números Complejos sin el cero
$\r^+$Números Reales positivos
$\z^+$Números Enteros positivos
$\z^+ \cup \{0\}$Enteros positivos con el 0
$\z_m$Enteros módulo $m$
$\z_p$Enteros módulo $p$, con $p$ primo
$\mathcal{M}_{2\times2}(\z)$Matrices $2\times 2$ con coeficientes enteros
$\mathcal{M}_{n\times n}(\r)$Matrices $n\times n$ con coeficientes reales
$\mathcal{P}(X)$Conjunto potencia del conjunto $X$

Conjuntos especiales y grupos nuevos

SímboloSignificadoDefinición en…
$S_3$Funciones biyectivas de ${1,2,3}$ en sí mismoOperación binaria
$S_n$Grupo simétrico de $n$ símbolosPermutaciones y Grupo Simétrico
$GL(n,\r)$Grupo lineal generalDefinición de Grupos
$SL(n,\r)$Grupo lineal especialDefinición de Grupos
$SO(n,\r)$Grupo ortogonal especialDefinición de Grupos
$O(n,\r)$Grupo ortogonalDefinición de Grupos
$D_{2(n)}$Grupo diédrico, $2n$ simetrías de un polígono de $n$ ladosDihedral Group de Socratica
$V$Grupo de KleinOrden de un elemento y Grupo cíclico
$U(\z_m)$Conjunto de unidades de $\z_m$Orden de un elemento y Grupo cíclico
$Q$, $Q_8$Grupo de los cuaterniosPalabras
$A_n$Grupo alternanteParidad de una permutación

Teoría de grupos

SímboloSignificadoAparece en…
$*$Operación binariaOperación binaria
$(G, *)$Grupo $G$Definición de Grupos
$\bar{a},\, a^{-1}$Elemento inverso de $a$, bajo $*$Definición de Grupos
$e$Elemento neutro del grupo $G$Definición de Grupos
$\circ$Composición de funciones, $f\circ g(x)= f(g(x))$Definición de Grupos
$\text{id}_\r$Función identidad de $\r$ en $\r$Definición de Grupos
$H\leq G$$H$ es subgrupo de $G$Subgrupos
$o(a)$Orden de un elemento $a$ de un grupo finitoOrden de un elemento y Grupo cíclico
$\left< a \right>$Subgrupo cíclico de $G$ generado por $a$Orden de un elemento y Grupo cíclico
$|G|$Orden de $G$, con $G$ grupoOrden de un grupo
$\#A$Orden o cardinalidad de un conjunto $A$Paridad de una permutación
$\left< X \right>$Subgrupo de $G$ generado por $X$Teoremas sobre subgrupos y
Subgrupo generado por $X$
$W_X$Conjunto de todas las palabras de $X$Palabras
$\text{sop}\;\alpha$Soporte de $\alpha$Permutaciones y Grupo Simétrico
$\text{long} \; \alpha$Longitud de un ciclo $\alpha$Permutaciones y Grupo simétrico
$\sigma_{\alpha,i}$Ciclo definido por $\alpha$ y por $i$Permutaciones disjuntas
$V(x_1,\dots, x_n)$Polonomio de VandermondeMisma Estructura Cíclica, Permutación
Conjugada y Polinomio de Vandermonde
$sgn \: \alpha$Función signo de $\alpha$Paridad de una permutación
$aH$, $Ha$Clase lateral izquierda/derecha de $H$ en $G$ con representante $a$.Producto de subconjuntos y Clases Laterales
$[G:H]$Índice de $H$ en $G$Relación de equivalencia dada por un subgrupo e índice de $H$ en $G$
$\text{gen }C$Conjunto de generadores del grupo cíclico $C$Caracterización de grupos cíclicos
$aHa^{-1}$Conjugado de $H$ por el elemento $a$Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial
$N\unlhd G$, $G\unrhd N$$N$ es subconjunto normal de $G$Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial
$G/N$Grupo cociente de $G$ módulo $N$Grupo Cociente
$[a,b]$El conmutador de $a$ y $b$Subgrupo Conmutador
$G’$Subgrupo conmutador de $G$Subgrupo Conmutador
$G \cong \bar{G}$$G$ es isomorfo a $\bar{G}$Homomorfismo, Monomorfismo, Epimorfismo, Isomorfismo y Automorfismo
$\text{Núc}\; \varphi$, $\text{Ker}\; \varphi$Núcleo de $\varphi$, Kernel de $\varphi$Núcleo e Imagen de un Homomorfismo
$\text{Im} \; \varphi$Imagen de $\varphi$Núcleo e Imagen de un Homomorfismo
$\text{Sub}_N^G$Conjunto de subgrupos de $G$ que contienen a $N$ como subgrupoCuarto Teorema de Isomorfía
$\text{Sub}_{ G/N}$Conjunto de subgrupos de $G/N$Cuarto Teorema de Isomorfía
$\mathcal{O}(x)$Órbita de $x$Órbita de $x$ y tipos de acciones
$G_x$Estabilizador de $x$Órbita de $x$ y tipos de acciones
$x^G$Clase de conjugación de $x$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$C_G(x)$Centralizador de $x$ en $G$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$Z(G)$Centro de $G$Clase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$X_G$El conjunto de elementos de $X$ que quedan fijos sin importar qué elemento de $G$ actúe sobre ellosClase de Conjugación, Centro de $G$, Ecuación de Clase y $p-$Grupo
$N_G(H)$Normalizador de $H$ en $G$$p-$Subgrupo de Sylow y el Normalizador de $H$ en $G$ 
$r_p$, $r_p(G)$Número de $p-$subgrupos de Sylow de $G$Teoremas de Sylow
$\text{inc}_i$Inclusión natural del elemento en la $i-$ésima posiciónProducto directo externo
$\pi_i$Proyección natural del $i-$ésimo elementoProducto directo externo

Entradas relacionadas

Álgebra Moderna I: Teorema de Jordan-Hölder

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Éste es un momento emotivo. Hemos llegado a la última entrada del curso. Así que sin mucho preámbulo comencemos a hablar del tema que nos compete.

El Teorema de Jordan-Hölder nos dice que cada par de series de composición de un grupo $G$ siempre son del mismo tamaño y con factores de composición isomoforfos entre sí. De nuevo, es un teorema que nos describe cómo es un grupo y los subgrupos que lo conforman.

Debido a que los factores de composición son grupos simples, obtenemos una descomposición del grupo $G$ en elementos mínimos (en el sentido de que no tienen una subestructura del mismo tipo) y de nuevo, podemos hacer una analogía con el Teorema fundamental de la aritmética, aunque esto se ve mejor cuando $G = \z_n.$

Por último, así como el Cuarto teorema de isomorfía justifica que los factores de composición son simples, en la demostración del Teorema de Jordan-Hölder usamos mucho el Segundo teorema de isomorfía para justificar la isomorfía que existe entre los factores de composición, así que es recomendable repasarlo.

El último teorema del curso

Teorema. (de Jordan – Hölder) Sean $G$ un grupo finito y
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$. Entonces $s = t$ y existe una permutación $\sigma \in S_t$ tal que para toda $i\in\{1,2,\dots ,s\}$
\begin{align*}
G_i/G_{i+1} \cong H_{\sigma(i)}/ H_{\sigma(i)+1}.
\end{align*}

Demostración.

Sea $G$ un grupo finito.
Por inducción sobre $|G|$.

H.I. Supongamos que el resultado se cumple si el orden del grupo es menor que $|G|.$

Sean
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$.

Caso 1. $G_2 = H_2$, entonces
\begin{align*}
G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son series de composición de $G_2$.

Dado que $G_1/G_2$ es simple, en particular $G_1/G_2\neq \{e_{G_1/G_2}\}$ y así $G=G_1\neq G_2$. En consecuencia $G_2\leq G$ y $|G_2|<|G|$ y por H.I. $s-1 = t-1$ y existe $\sigma\in S_{t-1}$ tal que
\begin{align*}
G_i/ G_{i+1} \cong H_{\sigma(i)} / H_{\sigma(i) + 1} \quad \forall i\in\{2,\dots,t\}.
\end{align*}

Como $G_1 = G = H_1$ y $G_2 = H_2$, entonces $G_1/G_2 = H_1/H_2$.

Así, $s=t$ y $\alpha\in S_t$ con $\alpha(1) = 1$, $\alpha(i) = \sigma(i)$ para $i\in\{2,\dots, t\}$ cumple que
\begin{align*}
G_i/G_{i+1} \cong H_{\alpha(i)} / H_{\alpha(i)+1} \quad \forall i \in \{1,\dots, t\}.
\end{align*}

Caso 2. $G_2 \neq H_2$

Como $G_2 \unlhd G$ y $H_2 \unlhd G$ se tiene que $G_2H_2 \unlhd G$.

Además
\begin{align*}
G_2 &\leq G_2H_2 \unlhd G \\
H_2 &\leq G_2H_2 \unlhd G.
\end{align*}

Como $G/G_2$ es simple, por el ejercicio 2 de Grupos simples y series de grupos se tiene que $G_2$ es un subgrupo normal de $G$ máximo. Así, $G_2H_2 = G$ ó $G_2H_2 = G_2$. Análogamente $G_2H_2 = G$ ó $G_2H_2 = H_2$. Pero si $G_2H_2 = G_2$ y $G_2H_2 = H_2$ tendríamos que $G_2=H_2$, lo que es una contradicción. Por lo tanto \begin{equation}\label{ec1}G_2H_2 = G.\end{equation}

Como $G_2\unlhd G$ entonces usamos el 2do Teorema de Isomorfía y nos dice que $G_2\cap H_2 \unlhd H_2$ y

\begin{align*}
G_2H_2/G_2 \cong H_2/(G_2\cap H_2).
\end{align*}

Pero, como también $H_2 \unlhd G$, el 2do teorema de isomorfía también nos dice que $G_2 \cap H_2 \unlhd G_2$ y
\begin{align*}
G_2H_2/H_2 \cong G_2/(G_2\cap H_2).
\end{align*}

Por (\ref{ec1}) tenemos que $G = G_2H_2$ obteniendo así que

\begin{align*}
G/G_2 &\cong H_2/(G_2\cap H_2)\\
G/H_2 &\cong G_2/(G_2\cap H_2).
\end{align*}

Diagrama de retícula para el Segundo Teorema de Isomorfía.

Como $G/G_2$ es simple, $H_2/(G_2\cap H_2)$ también lo es. Así, $G_2\cap H_2$ es un subgrupo normal máximo de $H_2$.

Análogamente como $G/H_2$ es simple, $G_2/(G_2\cap H_2)$ también lo es. Así, $G_2 \cap H_2$ es un subgrupo normal máximo de $G_2$.

Sea $K_3 = G_2\cap H_2$. Consideremos una serie de composición para $K_3$
\begin{align*}
K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}.
\end{align*}

Tenemos las siguientes series de composición
\begin{align}
G &= G_1\unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\} \\
G &= G_1 \unrhd G_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align}

Por el caso 1 aplicado a $(2)$ y $(3)$, $s= r$ y los factores de composición de
\begin{align*}
G_2 &\unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.

Por el caso 1 aplicado a $(4)$ y $(5)$, $r=t$ y los factores de composición de
\begin{align*}
H_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}\\
H_2 &\unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.
Tenemos entonces que $s = t$.

Consideremos $G_i/G_{i+1}$ con $i\in\{2,\dots,t\}$:

Si $G_i/G_{i+1} \cong K_j/K_{j+1}$ con $j\in \{3,\dots, t\}$, entonces sabemos que existe $l\in\{2,\dots, t\}$ tal que $K_j/K_{j+1} \cong H_l/H_{l+1}.$

Por otro lado si $G_i/ G_{i+1} \cong G_2/K_3$, entonces $G_2/K_3=G_2/(G_2\cap H_2) \cong G/H_2=H_1/H_2.$

Entonces, para $i\in\{2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Finalmente consideremos el cociente $G/G_2$. Tenemos que $G/G_2\cong H_2/(G_2\cap H_2)=H_2/K_3 \cong H_m/H_{m+1}$, para alguna $m\in \{2,\dots, t\}$.

Por lo tanto para $i\in\{1,2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Así, los factores de composición de las series $(1)$ y $(4)$ son isomorfos salvo por el orden en que aparecen.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que el Teorema de Jordan-Hölder induce el Teorema fundamental de la aritmética.
    1. Toma el grupo cíclico $\z_n$ con $n \in \z$ no necesariamente primo.
    2. Encuentra el orden de un subgrupo máximo de $\z_n$.
    3. Observa la forma de las series de composición de $\z_n$.
    4. Usa el teorema de Jordan-Hölder para concluir el Teorema fundamental de la aritmética.

Más adelante…

Nuestro curso abarca hasta este teorema, pero el estudio del álgebra continúa en un curso de Álgebra Moderna II donde se estudia la Teoría de anillos y la Teoría de Galois. Estas dos teorías son igualmente interesantes y apasionantes y tienen muchas aplicaciones.

Entradas relacionadas

Álgebra Moderna I: Grupos simples y series de grupos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como hemos visto en las entradas anteriores, muchas pruebas de grupos se realizan por inducción sobre $|G|$ usando información de un subgrupo normal $N$ y el cociente $G/N$.

Pero para poder usar $G/N$ se requiere que exista un subgrupo normal $N$ de $G$ con $1\lneq |N| \lneq |G|.$ Y en ocasiones no existe un $N$ normal que no sea el mismo $G$ o $\{e_G\}$, entonces conviene estudiar a los grupos $G$ no triviales tales que tienen sólo dos subgrupos normales.

Por otro lado, ¿es posible tener una serie de grupos normales contenidos entre sí? A esta situación lo conocemos como una serie de composición.

Esta entrada está dedicada a los conceptos de Grupos simples y Series de composición de grupos, será útil para que, más adelante, entendamos el Teorema de Jordan Hölder.

Qué simples son los grupos simples

Definición. Sea $G$ un grupo con $G\neq \{e\}$. Decimos que $G$ es simple si sus únicos subgrupos normales son $G$ y $\{e\}$.

Ejemplo.
Sea $p\in \z^+$ un número primo, $G$ un grupo con $|G| = p$. Entonces $G$ es un grupo simple ya que si $N\unlhd G$ se tiene que $|N| \Big| |G| = p$ y así $|N| = 1$ ó $|N| = p$, esto implica que $N = \{e\}$ ó $N = G$.

Observación. Todo grupo finito simple abeliano es isomorfo a $\z_p$.

Demostración.
Sea $G$ un grupo finito simple abeliano. Dado que $G\neq\{e\}$ consideremos $a\in G, a\neq e$. Como $G$ es abeliano, todo subgrupo es normal, así
\begin{align*}
\{e\} \lneq \left< a \right> \unlhd G
\end{align*}
pero $G$ es simple, entonces $\left< a \right> = G$ y $G$ es cíclico.

Más aún, $G\cong \z_n$ con $n= |G|$. Veamos que $n$ es primo.

P. D. $n$ es primo.

Supongamos por reducción al absurdo que $n$ es compuesto, es decir $n = st$ con $s,t\in \z^+$, donde $s<n$ y $t< n$.

Entonces $a^s \neq e$ ya que $s<n = o(a)$, por lo que $\{e\} \lneq \left< a^s\right>$.

Además $$(a^s)^t = e$$ y así $o(a^s)\Big| t$, lo que implica que $o(a^s) \leq t < n$ y en consecuencia $\left< a^s\right> \lneq \; G$.

Por lo tanto $\{e\} \lneq \left< a^s\right> \lneq \; G$. Pero como $G$ es un grupo abeliano todos sus subgrupos son normales, por lo que $\left< a^s\right>$ sería un subgrupo normal de $G$ distinto de $\{e\} $ y de $G$, lo que es una contradicción.

Concluimos que $n$ es primo y así $G\cong \z_n$ con $n$ primo.

$\blacksquare$

Nota. Hay grupos simples no abelianos finitos e infinitos.

Series de grupos

Definición. Sea $G$ un grupo. Una secuencia de subgrupos
\begin{align*}
G = G_1 \geq G_2 \geq \cdots \geq G_{k+1} = \{e\}
\end{align*}
es una serie de composición para $G$ si $G_{i+1} \unlhd G_{i}$ y $G_i/G_{i+1}$ es simple para toda $i\in\{1,\dots, k\}$.
Esto cocientes se llaman factores de composición.

A pesar de que estamos dando una definición, es importante señalar que en el caso de un grupo finito es el Cuarto teorema de isomorfía el que justifica que en efecto estas series de composición existen:

Observación 1. Sean $G$ un grupo finito y $N$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad, es decir tal que si $N\leq H\lneq G$ con $H$ normal en $G$, entonces $N=H$. Se tiene que $G/N$ es simple.

Demostración.

Sean $G$ un grupo finito y $N$ un subgrupo normal de $G$ tal que es máximo con esta propiedad. Supongamos que $\mathcal{H}$ es un subgrupo normal de $G/N$ con $$\{e_{G/N}\}\leq \mathcal{H}\lneq G/N.$$ Por el Cuarto teorema de isomorfía sabemos que $\mathcal{H}=H/N$ para algún $N\leq H\lneq G.$ Además, como $\mathcal{H}\unlhd G/N$ sabemos que $H\unlhd G$. Pero al ser $N$ un subgrupo normal máximo tenemos que $N=H$ por lo cual $\mathcal{H}=N/N=\{e_{G/N}\}$. Así, $G/N$ es simple.

Observación 2. Si $G$ es finito, estas series de composición existen.

Demostración (sencilla).

Si $G$ es trivial entonces $G$ mismo es una serie de composición para $G$.

Supongamos entonces que $G$ es no trivial. Consideramos $G_1=G$ y $G_2$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad. Entonces por la observación 1 $G_1/G_2$ es simple.

Si $G_2=\{e\}$, $G_1\geq G_2$ es una serie de composición para $G$.

Si $G_2\neq\{e\}$ tomamos $G_3$ un subgrupo normal propio de $G_2$, máximo, y así sucesivamente. Como $G$ es finito este proceso termina y da lugar a una serie de composición para $G$.

$\blacksquare$

Ejemplos

Ejemplo 1. Tomemos $\z_{12}$. Notemos que en este caso el grupo es abeliano por lo que todos sus subgrupos son normales. Proponemos
\begin{align}\label{ejemplo1}
\z_{12} \unrhd \left<\bar{3}\right> \unrhd \left<\bar{6}\right> \unrhd\{\bar{0}\}.
\end{align}

Como $\left| \left<\bar{3}\right>\right| = 4$, entonces $\left| \z_{12} \Big/ \left<\bar{3}\right>\right| = \frac{12}{4} = 3$ y así $\z_{12} \Big/ \left<\bar{3}\right> \cong \z_3$ que es simple.

Sabemos que $\left| \left<\bar{6}\right> \right|= 2$, así $\left| \left<\bar{3}\right> \Big/ \left<\bar{6}\right>\right| = \frac{4}{2} = 2$ y entonces $ \left<\bar{3}\right> \Big/ \left<\bar{6}\right> \cong \z_2$ que es simple.

Finalmente $ \left<\bar{6}\right> \Big/ \{\bar{0}\} \cong \left<\bar{6}\right> \cong \z_2$ que es simple. Así $(\ref{ejemplo1})$ es una serie de composición para $\z_{12}$.

También $\z_{12} \unrhd \left<\bar{2}\right> \unrhd \left<\bar{6}\right> \unrhd \{\bar{0}\}$ lo es.

Ejemplo 2. Tomemos $D_{2(4)} = \{\text{id}, a, a^2, a^3, b, ab, a^2b, a^3b\}$. Donde $a$ es la rotación de $\frac{\pi}{4}$ y $b$ es la reflexión respecto al eje $x$.

Tenemos que
\begin{align*}
\left<a^2,b\right> = \{\text{id}, a^2, b, a^2b\}
\end{align*}
es de orden cuatro, entonces $\left[ D_{2(4)} : \left<a^2,b\right> \right] = 2$. Así $D_{2(4)} \unrhd \left< a^2, b \right>$ y $D_{2(4)}/ \left< a^2,b \right> \cong \z_2$ que es simple.

También $\left[ \left<a^2,b\right> : \left< b \right> \right] = 2$ y $ \left<a^2,b\right> / \left<b\right>\cong \z_2$ que es simple. Finalmente $\left< b \right> / \{\text{id}\} \cong \z_2$ que es simple.

Así,
\begin{align*}
D_{2(4)} \unrhd \left< a^2, b\right> \unrhd \left<b\right> \unrhd \{\text{id}\}
\end{align*}
es una serie de composición para $D_{2(4)}$.

También
\begin{align*}
D_{2(4)} \unrhd \left< a \right> \unrhd \left< a^2 \right> \unrhd \{\text{id}\}.
\end{align*}

Observación 3. En una serie de composición $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.

Observación 4. Puede ser que dos grupos no isomorfos tengan los mismos factores de composición salvo isomorfía.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera la nota que aparece en esta entrada: hay grupos simples no abelianos finitos e infinitos.
    • Encuentra un grupo simple no abeliano finito.
    • Encuentra un grupo simple no abeliano infinito.
    • ¿Qué pasará con los grupos abelianos infinitos? ¿existirán los grupos abelianos infinitos simples?
  2. Encuentra un grupo $G$ que cumpla la observación: $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.
  3. Describe un ejemplo de grupos tales que no sean isomorfos y tengan los mismos factores de composición salvo isomorfía.
  4. En cada uno de los siguientes casos encuentra todas las series de composición de $G$ y compara los factores de composición obtenidos:
    • $G = \z_{60}$.
    • $G = \z_{48}$.
    • $S_3 \times \z_2.$

Más adelante…

Estos conceptos que pueden parecer muy sencillos, al combinarlos nos dan el último teorema que veremos en este curso: el Teorema de Jordan-Hölder. Una poderosa herramienta que nos dice que los factores de composición de dos series distintas de un mismo grupo son los mismos salvo isomorfía.

Entradas relacionadas

Álgebra Moderna I: Teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El temario de este curso consiste principalmente en el estudio de la Teoría de grupos, comenzamos su construcción desde las operaciones binarias, estudiamos distintos tipos de grupos y funciones entre ellos (homomorfismos) y seguimos intentando describir a los grupos. El primer gran escalón de nuestro curso fueron los Teoremas de isomorfía, luego los Teoremas de Sylow y ahora llegamos al tercero: el Teorema fundamental de los grupos abelianos finitos.

Otros dos teoremas fundamentales que seguramente conoces son el Teorema fundamental del álgebra y el Teorema fundamental de la aritmética, conviene recordar el segundo. Básicamente nos dice que a todo número entero lo podemos ver como un producto de primos, además nos dice que estos primos son únicos excepto por el orden en que aparecen. Este teorema es importante porque intuitivamente nos dice que los números primos son los ladrillos básicos para construir a cualquier número.

¿Cuáles son estos mismos ladrillos para los grupos abelianos finitos? En la entrada de Producto directo interno vimos un teorema en el que para ciertos casos podemos descomponer a un grupo finito $G$ en sus $p$-subgrupos de Sylow, donde cada $p$ corresponde a un factor primo del orden del grupo. ¿Qué podría ser más fundamental que eso?

Usaremos el teorema que vimos en Producto directo interno y veremos que un grupo abeliano finito $G$ es isomorfo a un producto directo de grupos ajenos a $G$ en lugar de los $p$-subgrupos de Sylow que dependen del grupo que los contiene. ¿Qué grupos finitos relacionados con primos conocemos aparte de los $p$-subgrupos? Los candidatos ideales son $\z_n$, con $n$ una potencia de un primo, que de acuerdo a lo que hemos estudiado son abelianos y finitos.

Así, el Teorema fundamental de los grupos abelianos finitos nos presenta a los $\z_n$, con $n$ una potencia de un primo, como nuestros ladrillos elementales para describir cualquier grupo abeliano finito $G$.

Último lema numerado

Como prometimos en la entrada anterior, aquí está el tercer lema numerado que usaremos para demostrar el Teorema fundamental de los grupos abelianos finitos.

Lema 3. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Tenemos que $G$ es un producto directo interno de grupos cíclicos.

Demostración.
Por el segundo principio de inducción.

Sea $p\in\z^+$ un primo, $G$ un $p$-grupo abeliano.

Sea $g\in G$ un elemento de orden máximo (podemos suponer que $g\neq e$ ya que si $g = e$, entonces $G = \{e\}$).

H.I. Supongamos que todo $p$-grupo abeliano de orden menor que el orden de $G$ es un producto directo interno de grupos cíclicos.

Por el lema 2, $G$ es el producto directo de $\left< g \right>$ y un subgrupo $H$ de $G$. Entonces $|G| = |\left< g \right>|\,|H|$ lo que implica que $\displaystyle |H| = \frac{|G|}{|\left< g \right>|}$ y, esto implica que $ \displaystyle |H| < |G|$.

Además, $H$ también es un $p$-grupo abeliano. Así que por la hipótesis de inducción $H$ es el producto directo de grupos cíclicos.

Por lo tanto $G$ es producto directo de grupos cíclicos, a saber $\left< g \right>$ y los grupos cíclicos cuyo producto directo es $H$.

$\blacksquare$

Teorema fundamental de los grupos abelianos finitos

Recordemos que los isomorfismos preservan la estructura algebraica de los grupos. Recordemos que los grupos $\z_n$, con $n$ una potencia de un primo, son abelianos y finitos, por lo que sólo pueden ser isomorfos a otros grupos abelianos y finitos. Más aún, todo grupo abeliano finito es isomorfo a un producto directo de este tipo de grupos.

Teorema. (Fundamental de los Grupos Abelianos Finitos) Todo grupo abeliano finito $G$ es isomorfo a un producto directo de grupos cíclicos de la forma $$\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}$$ con $p_1,\dots, p_r,\alpha_1,\dots, \alpha_r \in \z^+$ y $p_1,\dots,p_r$ primos no necesariamente distintos.

Demostración.

Sea $G$ un grupo abeliano finito. Por ser $G$ abeliano todos sus subgrupos son normales, en particular sus subgrupos de Sylow.

Por el teorema de la entrada Producto directo interno, $G$ es isomorfismo al producto directo de sus subgrupos de Sylow, y por el lema 3 cada uno de ellos es un producto directo de subgrupos cíclicos. Además, como los subgrupos de Sylow son de orden una potencia de un primo, sus subgrupos también, por lo que son isomorfos a $\z_{p^\alpha}$ con $p,\alpha \in \z^+$ y $p$ un primo.

Así, $G$ es isomorfo a un producto directo de la forma
\begin{align*}
\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}
\end{align*}
con $p_1,\dots,p_r,\alpha_1,\dots, \alpha_r \in\z^+$, $p_1,\dots,p_r$ primos no necesariamente distintos.

$\blacksquare$

Apreciemos cómo la demostración de los lemas anteriores, nos facilitaron la demostración de este teorema fundamental.

Ejemplo.

Sea $G$ un grupo abeliano de orden $180 = 4\cdot 45 = 2^2\cdot 3^2 \cdot 5$.

Entonces, de acuerdo con el Teorema fundamental de los grupos abelianos finitos, $G$ es isomorfo a alguno de

  • $\z_2\times\z_2\times\z_3\times\z_3\times\z_5$,
  • $\z_4\times\z_3\times\z_3\times\z_5$,
  • $\z_2\times\z_2\times\z_9\times\z_5$ ó
  • $\z_4\times\z_9\times\z_5$.

Podría ser isomorfo a cualquiera de ellos, pero para saber a cuál requeriríamos más información. De cualquier modo este primer análisis nos ayuda mucho a entender cómo debe ser el grupo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si $G$ es un grupo abeliano finito, definimos $v_k(G)$ como el número de elementos de $G$ de orden $k$.
    Prueba que si dos grupos finitos abelianos, $G$ y $G^*$ son isomorfos si y sólo si $v_k(G) = v_k(G^*)$ para todo entero $k$. (Este resultado no es cierto para grupos no abelianos).
  2. Prueba el Teorema Fundamental de la Aritmética aplicando el Teorema Fundamental de Grupos Abelianos Finitos a $G = \z_n$, con $n\in\n$.
  3. Usa el Teorema Fundamental de Grupos abelianos finitos para describir a…
    • Un grupo de orden $144.$
    • Un grupo de orden $360.$
    • Un grupo de orden $2783.$
  4. Encuentra para cuáles $n \in \z^+$ los grupos de orden $n$ son cíclicos.
  5. Prueba que $A$ es un grupo abeliano finito de orden $n$ si y sólo si para cada $d$ divisor de $n$, hay a lo más $d$ elementos $a\in A$ tales que $a^d = 1_A.$

Más adelante…

Esta entrada fue un tema muy anticipado. Ahora comenzaremos otro tema que, aunque sea corto, es igual de importante que el Teorema fundamental de grupos finitos abelianos. De hecho, comparte que también es semejante con el Teorema fundamental de la aritmética. Comenzaremos a estudiar el Teorema de Jordan-Hölder

Entradas relacionadas