Archivo del Autor: Cecilia del Carmen Villatoro Ramos

Álgebra Moderna I: Teorema de Jordan-Hölder

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Éste es un momento emotivo. Hemos llegado a la última entrada del curso. Así que sin mucho preámbulo comencemos a hablar del tema que nos compete.

El Teorema de Jordan-Hölder nos dice que cada par de series de composición de un grupo $G$ siempre son del mismo tamaño y con factores de composición isomoforfos entre sí. De nuevo, es un teorema que nos describe cómo es un grupo y los subgrupos que lo conforman.

Debido a que los factores de composición son grupos simples, obtenemos una descomposición del grupo $G$ en elementos mínimos (en el sentido de que no tienen una subestructura del mismo tipo) y de nuevo, podemos hacer una analogía con el Teorema fundamental de la aritmética, aunque esto se ve mejor cuando $G = \z_n.$

Por último, así como el Cuarto teorema de isomorfía justifica que los factores de composición son simples, en la demostración del Teorema de Jordan-Hölder usamos mucho el Segundo teorema de isomorfía para justificar la isomorfía que existe entre los factores de composición, así que es recomendable repasarlo.

El último teorema del curso

Teorema. (de Jordan – Hölder) Sean $G$ un grupo finito y
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$. Entonces $s = t$ y existe una permutación $\sigma \in S_t$ tal que para toda $i\in\{1,2,\dots ,s\}$
\begin{align*}
G_i/G_{i+1} \cong H_{\sigma(i)}/ H_{\sigma(i)+1}.
\end{align*}

Demostración.

Sea $G$ un grupo finito.
Por inducción sobre $|G|$.

H.I. Supongamos que el resultado se cumple si el orden del grupo es menor que $|G|.$

Sean
\begin{align*}
G & = G_1 \unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G & = H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
dos series de composición de $G$.

Caso 1. $G_2 = H_2$, entonces
\begin{align*}
G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\}\\
H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son series de composición de $G_2$.

Dado que $G_1/G_2$ es simple, en particular $G_1/G_2\neq \{e_{G_1/G_2}\}$ y así $G=G_1\neq G_2$. En consecuencia $G_2\leq G$ y $|G_2|<|G|$ y por H.I. $s-1 = t-1$ y existe $\sigma\in S_{t-1}$ tal que
\begin{align*}
G_i/ G_{i+1} \cong H_{\sigma(i)} / H_{\sigma(i) + 1} \quad \forall i\in\{2,\dots,t\}.
\end{align*}

Como $G_1 = G = H_1$ y $G_2 = H_2$, entonces $G_1/G_2 = H_1/H_2$.

Así, $s=t$ y $\alpha\in S_t$ con $\alpha(1) = 1$, $\alpha(i) = \sigma(i)$ para $i\in\{2,\dots, t\}$ cumple que
\begin{align*}
G_i/G_{i+1} \cong H_{\alpha(i)} / H_{\alpha(i)+1} \quad \forall i \in \{1,\dots, t\}.
\end{align*}

Caso 2. $G_2 \neq H_2$

Como $G_2 \unlhd G$ y $H_2 \unlhd G$ se tiene que $G_2H_2 \unlhd G$.

Además
\begin{align*}
G_2 &\leq G_2H_2 \unlhd G \\
H_2 &\leq G_2H_2 \unlhd G.
\end{align*}

Como $G/G_2$ es simple, por el ejercicio 2 de Grupos simples y series de grupos se tiene que $G_2$ es un subgrupo normal de $G$ máximo. Así, $G_2H_2 = G$ ó $G_2H_2 = G_2$. Análogamente $G_2H_2 = G$ ó $G_2H_2 = H_2$. Pero si $G_2H_2 = G_2$ y $G_2H_2 = H_2$ tendríamos que $G_2=H_2$, lo que es una contradicción. Por lo tanto \begin{equation}\label{ec1}G_2H_2 = G.\end{equation}

Como $G_2\unlhd G$ entonces usamos el 2do Teorema de Isomorfía y nos dice que $G_2\cap H_2 \unlhd H_2$ y

\begin{align*}
G_2H_2/G_2 \cong H_2/(G_2\cap H_2).
\end{align*}

Pero, como también $H_2 \unlhd G$, el 2do teorema de isomorfía también nos dice que $G_2 \cap H_2 \unlhd G_2$ y
\begin{align*}
G_2H_2/H_2 \cong G_2/(G_2\cap H_2).
\end{align*}

Por (\ref{ec1}) tenemos que $G = G_2H_2$ obteniendo así que

\begin{align*}
G/G_2 &\cong H_2/(G_2\cap H_2)\\
G/H_2 &\cong G_2/(G_2\cap H_2).
\end{align*}

Diagrama de retícula para el Segundo Teorema de Isomorfía.

Como $G/G_2$ es simple, $H_2/(G_2\cap H_2)$ también lo es. Así, $G_2\cap H_2$ es un subgrupo normal máximo de $H_2$.

Análogamente como $G/H_2$ es simple, $G_2/(G_2\cap H_2)$ también lo es. Así, $G_2 \cap H_2$ es un subgrupo normal máximo de $G_2$.

Sea $K_3 = G_2\cap H_2$. Consideremos una serie de composición para $K_3$
\begin{align*}
K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}.
\end{align*}

Tenemos las siguientes series de composición
\begin{align}
G &= G_1\unrhd G_2 \unrhd \cdots \unrhd G_{s+1} = \{e\} \\
G &= G_1 \unrhd G_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\} \\
G &= H_1 \unrhd H_2 \unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align}

Por el caso 1 aplicado a $(2)$ y $(3)$, $s= r$ y los factores de composición de
\begin{align*}
G_2 &\unrhd \cdots \unrhd G_{s+1} = \{e\}\\
G_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.

Por el caso 1 aplicado a $(4)$ y $(5)$, $r=t$ y los factores de composición de
\begin{align*}
H_2 &\unrhd K_3 \unrhd K_4 \unrhd \cdots \unrhd K_{r+1} = \{e\}\\
H_2 &\unrhd \cdots \unrhd H_{t+1} = \{e\}
\end{align*}
son isomorfos salvo por el orden en el que están colocados.
Tenemos entonces que $s = t$.

Consideremos $G_i/G_{i+1}$ con $i\in\{2,\dots,t\}$:

Si $G_i/G_{i+1} \cong K_j/K_{j+1}$ con $j\in \{3,\dots, t\}$, entonces sabemos que existe $l\in\{2,\dots, t\}$ tal que $K_j/K_{j+1} \cong H_l/H_{l+1}.$

Por otro lado si $G_i/ G_{i+1} \cong G_2/K_3$, entonces $G_2/K_3=G_2/(G_2\cap H_2) \cong G/H_2=H_1/H_2.$

Entonces, para $i\in\{2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Finalmente consideremos el cociente $G/G_2$. Tenemos que $G/G_2\cong H_2/(G_2\cap H_2)=H_2/K_3 \cong H_m/H_{m+1}$, para alguna $m\in \{2,\dots, t\}$.

Por lo tanto para $i\in\{1,2,\dots,t\}$ se tiene que $G_i/G_{i+1}$ es isomorfo a $ H_l/H_{l+1}$ para alguna $l\in\{1,2,\dots, t\}$.

Así, los factores de composición de las series $(1)$ y $(4)$ son isomorfos salvo por el orden en que aparecen.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que el Teorema de Jordan-Hölder induce el Teorema fundamental de la aritmética.
    1. Toma el grupo cíclico $\z_n$ con $n \in \z$ no necesariamente primo.
    2. Encuentra el orden de un subgrupo máximo de $\z_n$.
    3. Observa la forma de las series de composición de $\z_n$.
    4. Usa el teorema de Jordan-Hölder para concluir el Teorema fundamental de la aritmética.

Más adelante…

Nuestro curso abarca hasta este teorema, pero el estudio del álgebra continúa en un curso de Álgebra Moderna II donde se estudia la Teoría de anillos y la Teoría de Galois. Estas dos teorías son igualmente interesantes y apasionantes y tienen muchas aplicaciones.

Entradas relacionadas

Álgebra Moderna I: Grupos simples y series de grupos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como hemos visto en las entradas anteriores, muchas pruebas de grupos se realizan por inducción sobre $|G|$ usando información de un subgrupo normal $N$ y el cociente $G/N$.

Pero para poder usar $G/N$ se requiere que exista un subgrupo normal $N$ de $G$ con $1\lneq |N| \lneq |G|.$ Y en ocasiones no existe un $N$ normal que no sea el mismo $G$ o $\{e_G\}$, entonces conviene estudiar a los grupos $G$ no triviales tales que tienen sólo dos subgrupos normales.

Por otro lado, ¿es posible tener una serie de grupos normales contenidos entre sí? A esta situación lo conocemos como una serie de composición.

Esta entrada está dedicada a los conceptos de Grupos simples y Series de composición de grupos, será útil para que, más adelante, entendamos el Teorema de Jordan Hölder.

Qué simples son los grupos simples

Definición. Sea $G$ un grupo con $G\neq \{e\}$. Decimos que $G$ es simple si sus únicos subgrupos normales son $G$ y $\{e\}$.

Ejemplo.
Sea $p\in \z^+$ un número primo, $G$ un grupo con $|G| = p$. Entonces $G$ es un grupo simple ya que si $N\unlhd G$ se tiene que $|N| \Big| |G| = p$ y así $|N| = 1$ ó $|N| = p$, esto implica que $N = \{e\}$ ó $N = G$.

Observación. Todo grupo finito simple abeliano es isomorfo a $\z_p$.

Demostración.
Sea $G$ un grupo finito simple abeliano. Dado que $G\neq\{e\}$ consideremos $a\in G, a\neq e$. Como $G$ es abeliano, todo subgrupo es normal, así
\begin{align*}
\{e\} \lneq \left< a \right> \unlhd G
\end{align*}
pero $G$ es simple, entonces $\left< a \right> = G$ y $G$ es cíclico.

Más aún, $G\cong \z_n$ con $n= |G|$. Veamos que $n$ es primo.

P. D. $n$ es primo.

Supongamos por reducción al absurdo que $n$ es compuesto, es decir $n = st$ con $s,t\in \z^+$, donde $s<n$ y $t< n$.

Entonces $a^s \neq e$ ya que $s<n = o(a)$, por lo que $\{e\} \lneq \left< a^s\right>$.

Además $$(a^s)^t = e$$ y así $o(a^s)\Big| t$, lo que implica que $o(a^s) \leq t < n$ y en consecuencia $\left< a^s\right> \lneq \; G$.

Por lo tanto $\{e\} \lneq \left< a^s\right> \lneq \; G$. Pero como $G$ es un grupo abeliano todos sus subgrupos son normales, por lo que $\left< a^s\right>$ sería un subgrupo normal de $G$ distinto de $\{e\} $ y de $G$, lo que es una contradicción.

Concluimos que $n$ es primo y así $G\cong \z_n$ con $n$ primo.

$\blacksquare$

Nota. Hay grupos simples no abelianos finitos e infinitos.

Series de grupos

Definición. Sea $G$ un grupo. Una secuencia de subgrupos
\begin{align*}
G = G_1 \geq G_2 \geq \cdots \geq G_{k+1} = \{e\}
\end{align*}
es una serie de composición para $G$ si $G_{i+1} \unlhd G_{i}$ y $G_i/G_{i+1}$ es simple para toda $i\in\{1,\dots, k\}$.
Esto cocientes se llaman factores de composición.

A pesar de que estamos dando una definición, es importante señalar que en el caso de un grupo finito es el Cuarto teorema de isomorfía el que justifica que en efecto estas series de composición existen:

Observación 1. Sean $G$ un grupo finito y $N$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad, es decir tal que si $N\leq H\lneq G$ con $H$ normal en $G$, entonces $N=H$. Se tiene que $G/N$ es simple.

Demostración.

Sean $G$ un grupo finito y $N$ un subgrupo normal de $G$ tal que es máximo con esta propiedad. Supongamos que $\mathcal{H}$ es un subgrupo normal de $G/N$ con $$\{e_{G/N}\}\leq \mathcal{H}\lneq G/N.$$ Por el Cuarto teorema de isomorfía sabemos que $\mathcal{H}=H/N$ para algún $N\leq H\lneq G.$ Además, como $\mathcal{H}\unlhd G/N$ sabemos que $H\unlhd G$. Pero al ser $N$ un subgrupo normal máximo tenemos que $N=H$ por lo cual $\mathcal{H}=N/N=\{e_{G/N}\}$. Así, $G/N$ es simple.

Observación 2. Si $G$ es finito, estas series de composición existen.

Demostración (sencilla).

Si $G$ es trivial entonces $G$ mismo es una serie de composición para $G$.

Supongamos entonces que $G$ es no trivial. Consideramos $G_1=G$ y $G_2$ un subgrupo normal propio de $G$ tal que es máximo con esta propiedad. Entonces por la observación 1 $G_1/G_2$ es simple.

Si $G_2=\{e\}$, $G_1\geq G_2$ es una serie de composición para $G$.

Si $G_2\neq\{e\}$ tomamos $G_3$ un subgrupo normal propio de $G_2$, máximo, y así sucesivamente. Como $G$ es finito este proceso termina y da lugar a una serie de composición para $G$.

$\blacksquare$

Ejemplos

Ejemplo 1. Tomemos $\z_{12}$. Notemos que en este caso el grupo es abeliano por lo que todos sus subgrupos son normales. Proponemos
\begin{align}\label{ejemplo1}
\z_{12} \unrhd \left<\bar{3}\right> \unrhd \left<\bar{6}\right> \unrhd\{\bar{0}\}.
\end{align}

Como $\left| \left<\bar{3}\right>\right| = 4$, entonces $\left| \z_{12} \Big/ \left<\bar{3}\right>\right| = \frac{12}{4} = 3$ y así $\z_{12} \Big/ \left<\bar{3}\right> \cong \z_3$ que es simple.

Sabemos que $\left| \left<\bar{6}\right> \right|= 2$, así $\left| \left<\bar{3}\right> \Big/ \left<\bar{6}\right>\right| = \frac{4}{2} = 2$ y entonces $ \left<\bar{3}\right> \Big/ \left<\bar{6}\right> \cong \z_2$ que es simple.

Finalmente $ \left<\bar{6}\right> \Big/ \{\bar{0}\} \cong \left<\bar{6}\right> \cong \z_2$ que es simple. Así $(\ref{ejemplo1})$ es una serie de composición para $\z_{12}$.

También $\z_{12} \unrhd \left<\bar{2}\right> \unrhd \left<\bar{6}\right> \unrhd \{\bar{0}\}$ lo es.

Ejemplo 2. Tomemos $D_{2(4)} = \{\text{id}, a, a^2, a^3, b, ab, a^2b, a^3b\}$. Donde $a$ es la rotación de $\frac{\pi}{4}$ y $b$ es la reflexión respecto al eje $x$.

Tenemos que
\begin{align*}
\left<a^2,b\right> = \{\text{id}, a^2, b, a^2b\}
\end{align*}
es de orden cuatro, entonces $\left[ D_{2(4)} : \left<a^2,b\right> \right] = 2$. Así $D_{2(4)} \unrhd \left< a^2, b \right>$ y $D_{2(4)}/ \left< a^2,b \right> \cong \z_2$ que es simple.

También $\left[ \left<a^2,b\right> : \left< b \right> \right] = 2$ y $ \left<a^2,b\right> / \left<b\right>\cong \z_2$ que es simple. Finalmente $\left< b \right> / \{\text{id}\} \cong \z_2$ que es simple.

Así,
\begin{align*}
D_{2(4)} \unrhd \left< a^2, b\right> \unrhd \left<b\right> \unrhd \{\text{id}\}
\end{align*}
es una serie de composición para $D_{2(4)}$.

También
\begin{align*}
D_{2(4)} \unrhd \left< a \right> \unrhd \left< a^2 \right> \unrhd \{\text{id}\}.
\end{align*}

Observación 3. En una serie de composición $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.

Observación 4. Puede ser que dos grupos no isomorfos tengan los mismos factores de composición salvo isomorfía.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera la nota que aparece en esta entrada: hay grupos simples no abelianos finitos e infinitos.
    • Encuentra un grupo simple no abeliano finito.
    • Encuentra un grupo simple no abeliano infinito.
    • ¿Qué pasará con los grupos abelianos infinitos? ¿existirán los grupos abelianos infinitos simples?
  2. Encuentra un grupo $G$ que cumpla la observación: $G_{i-1} \unrhd G_i$ pero no necesariamente $G \unrhd G_i$.
  3. Describe un ejemplo de grupos tales que no sean isomorfos y tengan los mismos factores de composición salvo isomorfía.
  4. En cada uno de los siguientes casos encuentra todas las series de composición de $G$ y compara los factores de composición obtenidos:
    • $G = \z_{60}$.
    • $G = \z_{48}$.
    • $S_3 \times \z_2.$

Más adelante…

Estos conceptos que pueden parecer muy sencillos, al combinarlos nos dan el último teorema que veremos en este curso: el Teorema de Jordan-Hölder. Una poderosa herramienta que nos dice que los factores de composición de dos series distintas de un mismo grupo son los mismos salvo isomorfía.

Entradas relacionadas

Álgebra Moderna I: Teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El temario de este curso consiste principalmente en el estudio de la Teoría de grupos, comenzamos su construcción desde las operaciones binarias, estudiamos distintos tipos de grupos y funciones entre ellos (homomorfismos) y seguimos intentando describir a los grupos. El primer gran escalón de nuestro curso fueron los Teoremas de isomorfía, luego los Teoremas de Sylow y ahora llegamos al tercero: el Teorema fundamental de los grupos abelianos finitos.

Otros dos teoremas fundamentales que seguramente conoces son el Teorema fundamental del álgebra y el Teorema fundamental de la aritmética, conviene recordar el segundo. Básicamente nos dice que a todo número entero lo podemos ver como un producto de primos, además nos dice que estos primos son únicos excepto por el orden en que aparecen. Este teorema es importante porque intuitivamente nos dice que los números primos son los ladrillos básicos para construir a cualquier número.

¿Cuáles son estos mismos ladrillos para los grupos abelianos finitos? En la entrada de Producto directo interno vimos un teorema en el que para ciertos casos podemos descomponer a un grupo finito $G$ en sus $p$-subgrupos de Sylow, donde cada $p$ corresponde a un factor primo del orden del grupo. ¿Qué podría ser más fundamental que eso?

Usaremos el teorema que vimos en Producto directo interno y veremos que un grupo abeliano finito $G$ es isomorfo a un producto directo de grupos ajenos a $G$ en lugar de los $p$-subgrupos de Sylow que dependen del grupo que los contiene. ¿Qué grupos finitos relacionados con primos conocemos aparte de los $p$-subgrupos? Los candidatos ideales son $\z_n$, con $n$ una potencia de un primo, que de acuerdo a lo que hemos estudiado son abelianos y finitos.

Así, el Teorema fundamental de los grupos abelianos finitos nos presenta a los $\z_n$, con $n$ una potencia de un primo, como nuestros ladrillos elementales para describir cualquier grupo abeliano finito $G$.

Último lema numerado

Como prometimos en la entrada anterior, aquí está el tercer lema numerado que usaremos para demostrar el Teorema fundamental de los grupos abelianos finitos.

Lema 3. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Tenemos que $G$ es un producto directo interno de grupos cíclicos.

Demostración.
Por el segundo principio de inducción.

Sea $p\in\z^+$ un primo, $G$ un $p$-grupo abeliano.

Sea $g\in G$ un elemento de orden máximo (podemos suponer que $g\neq e$ ya que si $g = e$, entonces $G = \{e\}$).

H.I. Supongamos que todo $p$-grupo abeliano de orden menor que el orden de $G$ es un producto directo interno de grupos cíclicos.

Por el lema 2, $G$ es el producto directo de $\left< g \right>$ y un subgrupo $H$ de $G$. Entonces $|G| = |\left< g \right>|\,|H|$ lo que implica que $\displaystyle |H| = \frac{|G|}{|\left< g \right>|}$ y, esto implica que $ \displaystyle |H| < |G|$.

Además, $H$ también es un $p$-grupo abeliano. Así que por la hipótesis de inducción $H$ es el producto directo de grupos cíclicos.

Por lo tanto $G$ es producto directo de grupos cíclicos, a saber $\left< g \right>$ y los grupos cíclicos cuyo producto directo es $H$.

$\blacksquare$

Teorema fundamental de los grupos abelianos finitos

Recordemos que los isomorfismos preservan la estructura algebraica de los grupos. Recordemos que los grupos $\z_n$, con $n$ una potencia de un primo, son abelianos y finitos, por lo que sólo pueden ser isomorfos a otros grupos abelianos y finitos. Más aún, todo grupo abeliano finito es isomorfo a un producto directo de este tipo de grupos.

Teorema. (Fundamental de los Grupos Abelianos Finitos) Todo grupo abeliano finito $G$ es isomorfo a un producto directo de grupos cíclicos de la forma $$\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}$$ con $p_1,\dots, p_r,\alpha_1,\dots, \alpha_r \in \z^+$ y $p_1,\dots,p_r$ primos no necesariamente distintos.

Demostración.

Sea $G$ un grupo abeliano finito. Por ser $G$ abeliano todos sus subgrupos son normales, en particular sus subgrupos de Sylow.

Por el teorema de la entrada Producto directo interno, $G$ es isomorfismo al producto directo de sus subgrupos de Sylow, y por el lema 3 cada uno de ellos es un producto directo de subgrupos cíclicos. Además, como los subgrupos de Sylow son de orden una potencia de un primo, sus subgrupos también, por lo que son isomorfos a $\z_{p^\alpha}$ con $p,\alpha \in \z^+$ y $p$ un primo.

Así, $G$ es isomorfo a un producto directo de la forma
\begin{align*}
\z_{p_1^{\alpha_1}} \times \cdots \times \z_{p_r^{\alpha_r}}
\end{align*}
con $p_1,\dots,p_r,\alpha_1,\dots, \alpha_r \in\z^+$, $p_1,\dots,p_r$ primos no necesariamente distintos.

$\blacksquare$

Apreciemos cómo la demostración de los lemas anteriores, nos facilitaron la demostración de este teorema fundamental.

Ejemplo.

Sea $G$ un grupo abeliano de orden $180 = 4\cdot 45 = 2^2\cdot 3^2 \cdot 5$.

Entonces, de acuerdo con el Teorema fundamental de los grupos abelianos finitos, $G$ es isomorfo a alguno de

  • $\z_2\times\z_2\times\z_3\times\z_3\times\z_5$,
  • $\z_4\times\z_3\times\z_3\times\z_5$,
  • $\z_2\times\z_2\times\z_9\times\z_5$ ó
  • $\z_4\times\z_9\times\z_5$.

Podría ser isomorfo a cualquiera de ellos, pero para saber a cuál requeriríamos más información. De cualquier modo este primer análisis nos ayuda mucho a entender cómo debe ser el grupo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Si $G$ es un grupo abeliano finito, definimos $v_k(G)$ como el número de elementos de $G$ de orden $k$.
    Prueba que si dos grupos finitos abelianos, $G$ y $G^*$ son isomorfos si y sólo si $v_k(G) = v_k(G^*)$ para todo entero $k$. (Este resultado no es cierto para grupos no abelianos).
  2. Prueba el Teorema Fundamental de la Aritmética aplicando el Teorema Fundamental de Grupos Abelianos Finitos a $G = \z_n$, con $n\in\n$.
  3. Usa el Teorema Fundamental de Grupos abelianos finitos para describir a…
    • Un grupo de orden $144.$
    • Un grupo de orden $360.$
    • Un grupo de orden $2783.$
  4. Encuentra para cuáles $n \in \z^+$ los grupos de orden $n$ son cíclicos.
  5. Prueba que $A$ es un grupo abeliano finito de orden $n$ si y sólo si para cada $d$ divisor de $n$, hay a lo más $d$ elementos $a\in A$ tales que $a^d = 1_A.$

Más adelante…

Esta entrada fue un tema muy anticipado. Ahora comenzaremos otro tema que, aunque sea corto, es igual de importante que el Teorema fundamental de grupos finitos abelianos. De hecho, comparte que también es semejante con el Teorema fundamental de la aritmética. Comenzaremos a estudiar el Teorema de Jordan-Hölder

Entradas relacionadas

Álgebra Moderna I: Lemas previos al teorema fundamental de los grupos abelianos finitos.

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Como dijimos en la primera entrada de esta unidad, uno de los temas a los que queremos llegar es el Teorema fundamental de los grupos abelianos finitos. En esta entrada enumeramos tres lemas para que sea más sencillo identificarlos y que serán útiles en la demostración del Teorema fundamental. En los tres lemas se considerará $G$ un $p$-grupo abeliano y se hablará de elementos de orden máximo (o mínimo) en algún grupo refiriéndose a elementos cuyo orden es mayor (o menor) o igual que el orden de los demás elementos del grupo en cuestión.

El primer lema nos dice que si tomamos un elemento de orden máximo $g$ en $G$ y un $p$-subgrupo, tal que $\left< g\right>$ no es todo $G$ y luego tomamos un elemento de orden mínimo $h$ en $G\setminus\left< g\right>$, entonces el orden de $h$ es $p$.

El segundo lema nos dice que si tenemos un elemento de orden máximo $g$ en $G$, podemos ver a $G$ como el producto directo interno del generado de $g$ y un $H$ subgrupo de $G$.

El tercer lema nos dice que cualquier $p$-subgrupo abeliano es producto directo interno de grupos cíclicos.

En esta entrada enunciamos y probamos los primeros dos lemas, el tercero está en la siguiente entrada.

El orden de un elemento mínimo

Lema 1. Sean $p\in\z^+$ un primo y $G$ un $p$-grupo abeliano. Sea $g\in G$ un elemento de orden máximo. Si $\left<g\right> \lneq G$ ($\left<g\right>$ es subgrupo propio de $G$) y $h$ es un elemento de orden mínimo en $G\setminus \left<g\right>$, entonces $o(h)=p$ y $\left< g\right> \cap \left< h\right> = \{e\}$.

Demostración.
Sean $p\in \z^+$ un primo y $G$ un $p$-grupo abeliano.

Por la definición de $p$-grupo $|G| = p^n$ para algún $n\in \n$.

Sea $g\in G$ de orden máximo. Como $|G|=p^n$, sabemos que $o(g)$ divide a $ |G| = p^n$ y así $o(g) = p^m$ con $m\leq n$.

Observemos que
\begin{align}\label{eq:uno}
a^{p^m} = e \text{ para toda } a\in G,
\end{align}
ya que para toda $a\in G$, $o(a)=p^l$ con $l\leq m$ (debido a que $o(g)=p^m$ es máximo).

Supongamos que $\left< g \right> \lneq G$. Consideremos un elemento $h$ de orden mínimo en $G\setminus \left< g \right>$.

Veamos primero que $o(h)=p$.

Sabemos que $o(h) = p^t$ para alguna $t\leq n$.

Sabemos que $o(h^p) = p^{t-1} < p^t = o(h)$. Así, por la elección de $h$, $h^p\in\left< g \right>$ y en consecuencia tenemos que
\begin{align}\label{eq:dos}
h^{p} = g^s \text{ para algún } s\in \mathbb{N}.
\end{align}

Entonces $(g^s)^{p^{m-1}} = (h^p)^{p^{m-1}} = h^{p^m} = e$ por (\ref{eq:uno}). Así,
\begin{align}\label{eq:tres}
o(g^s) < p^m \text{ y } g^s \text{ no genera a } \left< g \right>.
\end{align}

Sabemos que $\displaystyle o(g^s) = \frac{o(g)}{(s,o(g))}$. Si $p$ no divide a $s$, como $o(g)$ es una potencia de $p$ tendríamos que $(s, o(g)) = 1$ y así $o(g^s) = o(g) = p^m$ contradiciendo (\ref{eq:tres}). Concluimos entonces que $p|s$ es decir $s = pq$ para algún $q\in\z$.

Consideremos $a = g^{-q}h$. Tenemos que
\begin{align*}\label{eq:cuatro}
a^p = g^{-pq} h^p = g^{-s} h^p &= g^{-s}g^s &\text{ por (\ref{eq:dos})} \\
& = e.
\end{align*}

Además, si $a\in \left< g \right>$ tendríamos que $h = ag^q \in\left< g\right>$ lo cual contradice la elección de $h$.

Hemos encontrado entonces un elemento $a\not\in \left< g \right>$ con $a^p = e$. Notamos que $a\neq e$ ya que $a\not\in \left< g \right>$, entonces $a$ debe ser un elemento de orden $p$. Pero $h$ es un elemento de orden mínimo en $G\setminus \left< g \right>$ y $a\in G\setminus \left< g \right>$ con $o(a) = p$. Así, $h$ debe ser también de orden $p$.

Veamos ahora que $\left< g \right> \cap \left< h\right> = \{e\}$.

Sabemos que $\left<g\right>\cap\left<h\right>$ es un subgrupo de $\left<h\right>$ y $\left<h\right>$ es de orden $p$, entonces $\left<g\right>\cap \left<h\right>$ es de orden $1$ o $p$. Si $|\left<g\right>\cap \left<h\right>|= p$ tendríamos que $\left<g\right>\cap \left<h\right>\leq \left<h\right>$ con $|\left<g\right>\cap \left<h\right>|= p=|\left<h\right>|$, entonces $\left<g\right>\cap \left<h\right>=\left<h\right>$ lo que implica que $\left<h\right>\subseteq \left<g\right>$. En consecuencia tendríamos que $h \in \left<g\right>$, lo que contradice la elección de $h$.

Concluimos que $\left<g\right>\cap \left<h\right> = \{e\}$.

$\blacksquare$

$G$ como producto de $\left< g\right>$ y un subgrupo cualquiera

Lema 2. Sean $p\in \z^+$ un primo y $G$ un $p$-grupo abeliano. Supongamos que $g\in G$ es un elemento de orden máximo. Entonces $G$ es el producto directo interno de $\left< g\right>$ y un subgrupo $H$ de $G$.

Demostración.
Sean $p\in\z^+$ primo.

Realizaremos la demostración por el segundo principio de inducción.

H.I. Supongamos que para todo grupo abeliano $\tilde{G}$ con $|\tilde{G}| = p^k$ y $0\leq k < n$ se tiene que si $\tilde{g}\in \tilde{G}$ es de orden máximo, entonces $\tilde{G}$ es el producto directo interno de $\left< \tilde{g}\right>$ y un subgrupo $\tilde{H}$ de $\tilde{G}$.

Sea $G$ un $p$-grupo abeliano con $|G| = p^n$ para algún $n\in\n$.

Sea $g\in G$ de orden máximo. Como $|G| = p^n$, sabemos que $o(g)$ divide a $|G| = p^n$ y así $o(g) = p^m$ con $m\leq n$.

Si $G = \left<g\right>$ el resultado se cumple considerando $H=\{e\}$.

Si $\left< g \right> \lneq G$ consideremos un elemento $h$ de orden mínimo en $G\setminus \left<g\right>.$

Por el lema 1, sabemos que $o(h) = p$ y que $\left<g\right> \cap \left<h\right> = \{e\}$. Sea $H = \left< h \right>.$

Observemos que $gH$ es un elemento de orden máximo en $G/H$ ya que por (\ref{eq:uno}), $(aH)^{p^m} = a^{p^m}H = H$ para todo $a\in G$. Además $(gH)^{o(g)} =g^{o(g)}H = H $ por lo que $o(gH) \leq o(g) = p^m$, y si $o(gH)< p^m$ tendríamos que
\begin{align*}
H = (gH)^{p^{m-1}} = g^{p^{m-1}} H
\end{align*}
y así $g^{p^{m-1}} \in \left< g \right> \cap H = \{e\}$, es decir $g^{p^{m-1}}=e$ contradiciendo que $o(g) = p^m$.

Concluimos así que $gH$ es un elemento de orden máximo en $G/H$, con $G/H$ un $p$-grupo abeliano de orden $|G/H|=|G|/|H|=\frac{p^n}{p}=p^{n-1}$ que es menor que el orden de $G$.

Por H.I. sabemos que $G/H$ es el producto directo interno de $\left<gH \right>$ y un subgrupo $\tilde{H}$ de $G/H$.

Por el teorema de la correspondencia $\tilde{H} = K/H$ para algún $H\leq K \leq G$.

Veamos que $G$ es el producto directo interno de $\left< g\right>$ y $K$.

Veamos primero que $\left<g\right> \cap K = \{e\}$.

Si $x\in \left<g\right> \cap K$, entonces $xH\in \left<gH\right>\cap K/H = \left<gH\right> \cap \tilde{H}$ y como $G/H$ es el producto directo de $\left<gH\right>$ y $\tilde{H}$, entonces $\left<gH\right>\cap \tilde{H} = \{H\}$. Así, $xH \in \{H\}$, entonces $xH=H$ lo que implica que $x\in H$.

Tenemos que $x\in \left<g\right>\cap H = \{e\}$ probando que $x = e$. Así, $\left<g\right> \cap K = \{e\}$.

Veamos ahora que $G=\left<g\right> K $.

Sea $y\in G$, sabemos que $yH\in G/H = \left<gH\right>\tilde{H} = \left<gH\right>K/H$. Esto implica que
\begin{align*}
yH &= (gH)^tkH \text{ para algunos } t\in\z, k\in K\\
&= g^tkH.
\end{align*}

Entonces $(g^tk)^{-1}y = \hat{h}$ con $\hat{h}\in H$. Así $y = g^t k \hat{h}$. Como $H\leq K$ tenemos que $k\hat{h} \in K$, entonces $y\in\left<g\right>K$.

Concluimos que $\left<g\right> \cap K = \{e\}$ y $\left<g\right> K = G$.

Así, $G$ es el producto directo interno de $\left<g\right>$ y $K$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Considera los siguientes grupos y realiza para cada uno los ejercicios descritos a continuación:

  • $S_4.$
  • $\z_{11}.$
  • $A_5.$
  • $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}.$
  1. Determina si los grupos anteriores son $p$-grupos abelianos. De no serlo, considera un $p$-subgrupo abeliano de ellos.
  2. Busca (en el grupo o en el $p$-subgrupo abeliano) un elemento $g$ de orden máximo tal que $\left< g\right>$ sea un subgrupo propio y encuentra $h$ elemento de orden mínimo en el complemento de $\left< g \right>$ tal que su orden sea $p$.
  3. Describe al grupo o al $p$-subgrupo abeliano como el producto directo interno $\left<g\right>$ y un subgrupo $H$.

Más adelante…

Aunque estos lemas pueden parecer muy técnicos, su función es clara y se verá en la siguiente entrada. Como estos lemas ya están demostrados, la prueba del Teorema fundamental de los grupos abelianos finitos es bastante directa. En la siguiente entrada enunciaremos y demostraremos el tercer lema que se requiere y por fin podremos enfrentarnos al Teorema fundamental de los grupos abelianos finitos.

Entradas relacionadas

Álgebra Moderna I: Producto directo interno

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Continuamos con el estudio del producto de grupos. En la entrada anterior definimos el producto directo externo de grupos, luego vimos unas funciones naturales y definimos los subgrupos $G^*_i$. Demostramos que para un grupo $G = G_1 \times \dots \times G_n$ se cumple que:

  1. $G_i^* \unlhd G \quad \forall i\in\{1,\dots,n\}$.
  2. $\displaystyle G_i^* \cap \left( \prod_{j\neq i} G_j^*\right) = \{e_G\} \text{ para toda }i\in\{1,\dots,n\}$.
  3. $\displaystyle G = \prod_{i = 1}^n G_i^*$.

En resumen, esta proposición nos dice que si $G$ es el producto directo externo de varios grupos, también lo podemos ver como producto de subgrupos normales que cumplen el inciso 2.

En esta entrada queremos generalizar esta idea: ahora $G$ será un grupo cualquiera, tomaremos subgrupos normales $H_i$, con $i\in \{1,\dots,n\}$ de $G$ que cumplan estas propiedades y probaremos que $G$ se puede ver como el producto directo externo de estos subgrupos.

En el producto directo externo, construíamos $G$ a partir de otros grupos que pudieran incluso no estar relacionados entre sí. Ahora intentaremos describir a un grupo $G$ como producto de algunos de sus subgrupos normales, por eso llamaremos a este concepto el producto directo interno.

Producto directo interno de subgrupos

Comencemos definiendo nuestro nuevo producto entre subgrupos normales de $G$.

Definición. Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Decimos que $G$ es el producto directo interno de $H_1,\dots, H_n$ si

  1. $H_i \unlhd G$ para toda $i\in\{1,\dots, n\}$.
  2. $\displaystyle H_i\cap \left(\prod_{j\neq i} H_j\right) = \{e\}$ para toda $i\in\{1,\dots, n\}$.
  3. $\displaystyle G = \prod_{i=1}^n H_i$.

Observación 5. $G_1\times\cdots\times G_n$ es el producto directo interno de los $G_i^*$.

Observación 6. Si $G$ es el producto directo interno de $H_1,\cdots,H_n$, entonces $xy=yx$ para toda $x\in H_i, y\in H_j$ con $i\neq j$.

Demostración.
Sea $G$ producto directo de $H_1,\dots, H_n$, sean $x\in H_i, y\in H_j$, con $j\neq i$, entonces
\begin{align*}
xyx^{-1}y^{-1} = x(yx^{-1}y^{-1}) \in H_i,
\end{align*}
porque $x \in H_i$ y $yx^{-1}y^{-1}\in H_i$ pues $H_i \unlhd G$.

Por otro lado,
\begin{align*}
xyx^{-1}y^{-1} = (xyx^{-1})y^{-1} \in H_j,
\end{align*}
ya que, análogamente, $xyx^{-1} \in H_j$ debido a que $H_j\unlhd G$ y $y^{-1} \in H_j.$

Así, $\displaystyle xyx^{-1}y^{-1} \in H_i \cap H_j \subseteq H_i\cap \prod_{k\neq i} H_k = \{e\}$. Entonces $xyx^{-1}y^{-1} = e$.

Por lo tanto $xy = yx$.

$\blacksquare$

Ejemplo. Sea $G = \left< a \right>$ con $o(a) = 12$. Busquemos subgrupos $H_1, \dots, H_n$ para alguna $n\in \n$ tales que $G$ sea el producto directo interno de estos subgrupos.

Sean $H_1 = \left< a^3\right>, H_2 = \left< a^4\right>$. Como $G$ es abeliano, $H_1\unlhd G, H_2 \unlhd G$. Además
\begin{align*}
H_1\cap H_2 = \{e,a^3,a^6, a^9\} \cap \{e, a^4, a^8\} = \{e\}.
\end{align*}

Como
\begin{align*}
a = ae = a a^{12} = a^{13} = a^9a^4 \in H_1H_2
\end{align*}
tenemos que $G = \left< a \right> \subseteq H_1H_2$. Por la cerradura del producto en $G$ se tiene además que $H_1H_2 \subseteq G$, entonces $G=H_1H_2$.

Por lo tanto $G$ es el producto directo interno de $H_1$ y $H_2$.

Observación 7. Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Si $G$ es el producto directo interno de $H_1,\dots, H_n$, entonces
\begin{align*}
\varphi : H_1\times \cdots \times H_n \to G
\end{align*}
con $\varphi(h_1,\dots,h_n) = h_1\cdots h_n$ para toda $(h_1,\dots,h_n) \in H_1\times\cdots\times H_n$ es un isomorfismo.

Es consecuencia, si $G$ es finito tenemos que $|G| = |H_1|\cdots|H_n|$.

Descomposición de $G$ en $p$-subgrupos

Algunos subgrupos importantes que vimos son los $p$-subgrupos de Sylow, para $p$ primo. Ahora los usaremos junto con el producto directo interno para describir a $G$ como el producto de sus $p$-subgrupos de Sylow, esto nos recuerda mucho al Teorema Fundamental de la Aritmética.

Teorema. Sea $G$ un grupo finito con $p_1,\dots, p_t$ los distintos factores primos del orden de $G$ y $P_1, \dots, P_t$ subgrupos de Sylow de $G$ asociados a $p_1,\dots,p_t$ respectivamente. Si $P_i\unlhd G$ para toda $i\in\{1,\dots, t\}$, entonces $G$ es el producto directo interno de $P_1,\dots, P_t$.

Demostración.
Sea $G$ un grupo finito de orden $n$. Sean $p_1,\dots, p_t$ los distintos factores primos de $n$ con $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_t^{\alpha_t}$. Sean $P_1,\dots, P_t$ subgrupos de $G$ con $P_i$ un $p_i$-subgrupo de Sylow de $G$ y $P_i \unlhd G$ para toda $i\in \{1,\dots, t\}$.

Veamos que para todo $S\subseteq \{1,\dots, t\}$, $\displaystyle \prod_{j\in S} P_j$ es un producto directo interno por inducción sobre $\# S$.

Caso Base. Supongamos que $\# S = 1$,
$S = \{i\} \subseteq \{1,\dots, t\}$ y $P_i$ es el producto directo interno de $P_i$.

H.I. Supongamos que si $T\subseteq \{1,\dots, t\}$ con $\# T < \# S$, entonces $\displaystyle \prod_{j\in T} P_j$ es un producto directo interno.

Sea $\displaystyle H = \prod_{j\in S}P_j$. Veamos que $H$ es el producto directo interno de los $P_j$ con $j\in S$.

Por hipótesis se cumplen las condiciones $1$ y $3$ de la definición de producto directo interno. Veamos que se cumple $2$.

Sean $i\in S$, $\displaystyle x\in P_i\cap \prod_{\substack{j\in S\\ j\neq i}} P_j$.

Como $x\in P_i$, entonces $o(x) $ divide a $ |P_i|$.

Como $\displaystyle x\in \prod_{\substack{j\in S\\ j\neq i}} P_j$, entonces el orden de $x$ divide al orden del producto: $\displaystyle o(x) \Big| \left|\prod_{\substack{j\in S\\ j\neq i}} P_j\right| = \prod_{\substack{j\in S\\ j\neq i}} |P_j|$ donde la última igualdad se debe a que $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} P_j$ es un producto directo interno por H.I. y por la observación 7.

Pero $|P_i| = p_i^{\alpha_i}$ y $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} |P_j| = \prod_{\substack{j\in S\\ j\neq i}} p_j^{\alpha_j}$ con $\alpha_j\in \n^+$ para toda $j\in S$, entonces $|P_i|$ y $\displaystyle \prod_{\substack{j\in S\\ j\neq i}} |P_j|$ son primos relativos. Así, $o(x) = 1$. Por lo que $\displaystyle P_i \cap \prod_{\substack{j\in S\\ j\neq i}} P_j = \{e\}$.

Hemos probado entonces que $\displaystyle \prod_{\substack{j\in S}} P_j$ es un producto directo interno para toda $S\subseteq \{1,\dots,t\}$. En particular para $S = \{1,\dots, t\}$ tenemos que $\displaystyle \prod_{j = 1}^t P_j$ es un producto directo interno. Por la observación 7,
\begin{align*}
\left| \prod_{j = 1}^t P_j \right| = \prod_{j=1}^t |P_j| = n = |G|
\end{align*}
ya que $P_1,\dots,P_t$ son subgrupos de Sylow asociados a los distintos factores primos de $G$.

Como $\displaystyle \prod_{j=1}^t P_j$ es un subgrupo de $G$ de orden $|G|$ tenemos que $\displaystyle G = \prod_{j=1}^t P_j$.

Por lo tanto $G$ es el producto directo interno de $P_1,\dots, P_t$.

$\blacksquare$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra las observaciones 5 y 7.
    • $G_1\times\cdots\times G_n$ es el producto directo interno de los $G_i^*$.
    • Sean $G$ un grupo, $H_1,\dots, H_n$ subgrupos de $G$. Si $G$ es el producto directo interno de $H_1,\dots, H_n$, entonces
      \begin{align*}
      \varphi : H_1\times \cdots \times H_n \to G
      \end{align*}
      con $\varphi(h_1,\dots,h_n) = h_1\cdots h_n$ para toda $(h_1,\dots,h_n) \in H_1\times\cdots\times H_n$ es un isomorfismo.
  2. Regresa a la entrada de Ejemplo de Sylow y considera $S_4$.
    • De existir, busca $H_1, \dots, H_n$ tal que $S_4$ sea producto directo de $H_1,\dots , H_n.$
    • Usando los $p$-subgrupos de Sylow que encontramos, describe a $S_4$ como producto directo interno de ellos. Aplica el último teorema visto.
  3. Aplica el último teorema visto a los grupos $\z_6$ y $T = S_3 \times \z_4$. Para cada uno encuentra los primos $p_1, \dots , p_n$ que conforman al orden del grupo y los $P_1, \dots , P_n$ subgrupos de Sylow que corresponden a estos primos. Al final, representa a cada grupo como producto directo interno de estos $p$-subgrupos de Sylow.

Más adelante…

La descomposición de un grupo en $p$-subgrupos que vimos es una probada de lo que veremos en el Teorema fundamental de grupos abelianos finitos, la relación de los primos que componen al orden del grupo con los $p$-subgrupos del mismo grupo. Pero antes de poder enunciarlo, necesitamos enunciar algunos teoremas que nos ayudarán y que se sirven de los productos directos interno y externo que hemos estado viendo.

Entradas relacionadas