Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En la entrada anterior platicamos acerca de eigenvectores, eigenvalores y eigenespacios de matrices y transformaciones lineales. Vimos algunos ejemplos básicos. En esta entrada profundizaremos en el estudio de estos objetos y exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

Primeras observaciones

A partir de la proposición de la entrada anterior que nos dice cómo calcular eigenvalores se desprenden algunas consecuencias sencillas pero útiles.

Por ejemplo, recuerda que el determinante de una matriz y su transpuesta es igual. En particular, si AMn(F) entonces

det(λIn tA)=det( t(λInA))=det(λInA).

Luego det(λInA)=0 si y sólo si det(λIn tA)=0. Recordando que las raíces de estos polinomios son precisamente los eigenvalores, se sigue que los eigenvalores de A y tA son iguales.

Por otro lado, como los eigenvalores son las raíces de un polinomio de grado n, sabemos que hay a lo más n soluciones. Entonces toda matriz tiene a lo más n eigenvalores.

Esto también ocurre para transformaciones lineales en espacios de dimensión finita y lo podemos enunciar como sigue:

Corolario. Sea V un espacio de dimensión finita sobre F y T:VV lineal. Entonces T tiene a lo más dimV eigenvalores distintos.

Sin embargo, si el espacio no es de dimensión finita no podemos hacer tal afirmación. Si V es el espacio de todas las funciones suaves (es decir con derivadas de todos los órdenes) de R en R y T:VV es la función lineal que a cada función la manda en su derivada, entonces tenemos «muchos» eigenvalores. Haciendo esto más preciso, para cada real r la función erx es un eigenvector con eigenvalor r puesto que

T(erx)=(erx)=rerx.

Así, tenemos al menos tantos eigenvalores como números reales. De hecho, estos son exactamente los eigenvalores de T, lo cual puede demostrarse mediante el teorema de existencia y unicidad de soluciones de ecuaciones diferenciales, que estudiarás en otro momento de tu formación matemática.

Matrices triangulares superiores

Parte del interés de «triangular» matrices (es decir, encontrar una matriz similar que sea triangular superior) está dada por la facilidad de calcular sus eigenvalores. Exploramos esto mediante los siguientes dos problemas.

Problema 1. Sea A=[aij] una matriz triangular superior en Mn(F). Demuestra que los eigenvalores de A son precisamente los elementos en la diagonal.

Solución. Ya establecimos que encontrar los valores propios se reduce a encontrar las raíces del polinomio det(λInA). Notamos que si A es triangular superior, entonces λInA también es triangular superior. Más aún, las entradas de la diagonal son simplemente λaii. Pero sabemos que el determinante de una matriz triangular superior es el producto de sus entradas diagonales. Así

det(λInA)=(λa11)(λa22)(λann)

cuyas raíces son exactamente los elementos aii.

◻

Podemos combinar el resultado anterior con otras propiedades de matrices triangulares superiores para resolver a mano algunos problemas que de entrada parecen complicados.

Problema 2. Encuentra los eigenvalores de A3 donde

A=(12340567008900010)M4(R).

Solución. En realidad no hace falta hacer el producto de matrices para encontrar la matriz A3. Sabemos que el producto de dos matrices triangulares superiores es triangular superior y que de hecho las entradas de la diagonal son solo el producto de las entradas correspondientes. Es decir, si [aij] y [bij] son dos matrices triangulares superiores, las entradas de la diagonal son aiibii. En nuestro caso, las entradas de la diagonal son 13,53,83 y 103, y por el problema anterior, estos son precisamente los eigenvalores de A3.

Relaciones con independencia lineal y combinaciones polinomiales

El resultado principal de esta entrada es el siguiente teorema, que en particular afirma que si dos eigenvalores son distintos, sus eigenvectores son linealmente independientes. En realidad, el resultado es un poco más general y lo enunciamos a continuación

Teorema. Sean λ1,,λk eigenvalores distintos dos a dos de una transformación lineal T:VV. Entonces los λi-eigenespacios están en posición de suma directa.

Demostración. Por definición, tenemos que demostrar que si tenemos una colección {vi} de vectores con T(vi)=λivi y v1++vk=0 entonces v1==vk=0. Procedemos por inducción sobre k.

Nuestro caso base es una tautología, pues si k=1 entonces tenemos que mostrar que si v1=0 entonces v1=0.

Asumamos que el resultado se cumple para k1 y verifiquemos que se cumple para k. Supongamos que v1++vk=0. Aplicando T de ambos lados de esta igualdad llegamos a

T(v1++vk)=T(v1)++T(vk)=λ1v1++λkvk=0.

Por otro lado, si multiplicamos a la igualdad v1++vk=0 por λk de ambos lados llegamos a

λkv1++λkvk=0.

Sustrayendo y factorizando estas dos igualdades se sigue que

(λkλ1)v1++(λkλk1)vk1=0.

Esto es una combinación lineal de los primeros k1 vectores vi igualada a cero. Luego, la hipótesis inductiva nos dice que (λkλi)vi=0 para todo i=1,,k1. Como λkλi entonces λkλi0 y entonces vi=0. Sustituyendo en la igualdad original, esto implica que vk=0 inmediatamente.

◻

Enseguida veremos que si formamos un polinomio P(T), entonces P(λ) es un eigenvalor de P(T) para cualquier eigenvalor λ de T. Esto lo veremos en el siguiente problema.

Problema. Sea λ un eigenvalor de T:VV y sea P un polinomio en una variable con coeficientes en F. Demuestra que P(λ) es un eigenvalor de P(T).

Solución. Como λ es un eigenvalor de T, existe v un vector no cero tal que T(v)=λv. Inductivamente, se cumple que Tk(v)=λkv. En efecto

Tk+1(v)=T(Tk(v))=T(λkv)=λkT(v)=λk+1v.

Usando esto, si P(X)=anXn++a1X+a0 se tiene que

P(T)(v)=anTn(v)++a1T(v)+a0v=anλnv++a1λv+a0v=(anλn++a1λ+a0)v=P(λ)v.

Esto muestra que P(λ) es un eigenvalor de P(T).

◻

Relación con el polinomio mínimo

Una consecuencia del problema previo es la siguiente proposición.

Proposición. Sea AMn(C) una matriz y PC[X] un polinomio tal que P(A)=On. Entonces cualquier eigenvalor λ de A satisface P(λ)=0.

Solución. Por el problema anterior, P(λ) es un eigenvalor de P(A), pero P(A)=On y el único eigenvalor de la matriz cero es 0. Luego P(λ)=0.

◻

De esto, podemos por fin establecer una conexión con el polinomio mínimo, que enunciamos en forma de teorema.

Teorema. Sea T:VV una transformación lineal sobre un espacio de dimensión finita sobre un campo F. Los eigenvalores de T son precisamente las raíces en F del polinomio mínimo μT.

Demostración. Dado que μT(T)=0, el problema que acabamos de resolver nos dice que todos los eigenvalores de T son raíces de μT.

Conversamente, supongamos que existe λ una raíz de μT que no es eigenvalor. Entonces la transformación TλId es invertible. Como μT(λ)=0, podemos factorizar la raíz y escribir μT(X)=(Xλ)Q(X) para algún QF[X]. Dado que μT(T)=0 deducimos que

(TλId)Q(T)=0.

Recordando una vez más que TλId es invertible, esta ecuación implica que Q(T)=0. Ya que μT es el polinomio mínimo, por una propiedad que mostramos anteriormente obtendríamos que μT divide a Q. Pero esto se contradice con la igualdad μT(X)=(Xλ)Q(X), que nos dice que μT tiene grado mayor. Esto concluye la demostración.

◻

Ejercicios

Terminamos con un par de ejercicios para repasar el material de estas secciones. El primero de entre ellos toma prestados nombres de la probabilidad (lo lo cuál puede sugerirte en qué tipo de texto te podrías encontrar con estas matrices).

Problema 1. Una matriz AMn(R) se dice estocástica si aij0 para todo i,j{1,,n} y j=1naij=1 para todo i{1,,n}.

Demuestra que 1 es un eigenvalor de cualquier matriz estocástica.

Solución. Consideremos el vector v=(1,,1). Nota que

Av=(a11a12a1na21a22a2nan1an2ann)(111)=(a11+a12++a1na21+a22++a2nan1+an2++ann)=(111).

Es decir Av=v, por lo que v es un eigenvector de A con eigenvalor asociado 1.

◻

Problema 2. Sea V el espacio de todos los polinomios con coeficientes reales. Sea T:VV la transformación lineal dada por P(X)P(1X). ¿Cuáles son los eigenvalores de T?

Solución. Observa que
T2(P)=TT(P)=T(P(1X))=P(1(1X))=P(X). Así T2=Id, o bien T2Id=0. Luego, el polinomio mínimo μT tiene que dividir al polinomio X21. Sin embargo, los únicos factores de este polinomio son X1 y X+1. Dado que T±Id se tiene que μT(X)=X21. Por el último teorema que vimos, los eigenvalores de T son precisamente las raíces de μT en R, es decir ±1.

Más adelante…

En las entradas subsecuentes iremos más a fondo en el concepto de polinomio característico, para eventualmente llegar al teorema de Cayley-Hamilton. Para eso tendremos que equiparnos de bastante teoría y repasar varias propiedades de dicho polinomio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea V el espacio de polinomios con coeficientes reales de grado a lo más n. Encuentra los eigenvalores de la transformación T:P(X)P(X)(1+X)P(X).
  • Si V es el espacio de polinomios con coeficientes reales, encuentra los eigenvalores de T:P(X)P(3X).
  • Sean A,B matrices en Mn(C) tales que ABBA=B. Demuestra que para todo k1 se cumple que ABkBkA=kBk y de esto deduce que B es nilpotente: existe m tal que Bm=0. Sugerencia: ¿Cuántos eigenvalores puede tener T:XAXXA?
  • ¿Puedes generalizar el último problema de la sección de matrices triangulares superiores?
  • Sea A una matriz cuadrada con entradas reales. Supón que λ es un real positivo que es eigenvalor de A2. Demuestra que λ o λ es un eigenvalor de A. ¿Sucederá a veces que sólo una de estas es eigenvalor?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

7 comentarios en “Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

  1. Antonio Mayorquin

    Hola,
    Para la demostración del Teorema donde los eigenvectores de eigenvalores distintos son linealmente independiente, ¿Por qué debemos que tener que v1+v2+…+vn=0? Tengo entendido que esto quiere resumir que cualquier eigenvector ui de λi es multiplicado por un escalar αi≠0, entonces este nuevo vector vi=αiui es eigenvector de λi. Lo que no veo es cómo evitar que no exista ningún αj=0 que ya evite a vj ser un eigenvector.

    Responder
    1. Antonio Mayorquin

      Ya entiendo. Es porque estamos haciendo inducción fuerte, y por lo tanto tenemos que ya todo subconjunto de {vi} de menor cardinalidad debe ser linealmente independiente. Con esto, no puede ser el caso que exista un αj=0, ya que esto contradice la hipótesis de inducción fuerte al estar trabajando en k.

      Me disculpo por gastar su tiempo con pregunta anterior.
      Que tenga un buen día.

      Responder
    2. Leonardo Ignacio Martínez SandovalLeo

      Hola Antonio. La demostración aquí está escrita un poquito diferente a como la vimos en el curso. Lo que sucede es que aquí está enunciada en términos de «sumas directas» de subespacios y por eso basta considerar que tengan coeficiente 1. Por ejemplo, si quisieras pensar en alpha_1v_1, entonces mejor lo nombras w_1=alpha_1v_1 y con eso w_1 vuelve a estar en el subespacio (recuerda que son cerrados bajo multiplicación escalar) y de ahí trabajas como en la demostración.

      Responder
  2. Eduardo

    Tengo una duda en el teorema que dice lo siguiente Teorema. Sean \lambda_1,\dots, \lambda_k eigenvalores distintos dos a dos de una transformación lineal T:V\to V. Entonces los \lambda_i-eigenespacios están en posición de suma directa. La demostración empieza diciendo que {v_i} colección de eigenvectores pero después llegamos que v_k = 0 pero que no se supone que el vector 0 no puede ser un eigenvector?

    Responder
    1. Leonardo Ignacio Martínez SandovalLeo

      Hola Eduardo. En efecto, ahí no debe decir «eigenvectores», sino simplemente «vectores», pero que sí cumplan la condición T(vi)=λvi que ahí se pone. Esto casi casi es que sean eigenvectores, pero también da chance a que sean el vector cero. Esto es pues precisamente los eigenespacios tienen a los eigenvectores, y al vector cero.

      Responder
  3. Nico Quijada

    Hola. Tengo otra duda del desarrollo de la teoría hasta este punto.
    Cuando pasamos de hablar de polinomio mínimo a eigen-cosas vimos que no teníamos muchas prácticas para encontrar el polinomio mínimo, así que nos salimos de ese tema. También, en la entrada anterior, se mencionaba que si encontrábamos los eigenvalores de una t.l. podíamos asociarle su forma matricial y teníamos inmediatamente los eigenvalores (pues eran los mismos) pero al revés no (pues podíamos tomar diferentes bases), que estos dependían de la base elegida.

    Entonces en el último teorema de esta entrada, ¿estamos encontrando una forma de hallar los eigenvalores de T sin necesidad de pasarnos al mundo de las matrices? Porque hasta ahora, entiendo, solo tenemos forma de calcular los eigenvalores a partir de la matriz asociada.

    Responder
  4. Nico Quijada

    Reescribo esta duda porque me parece que no se posteó:

    Cuando probábamos que si A tiene asociado un eigenvalor lambda y dado P en F[x] tal que P(A)=On, entonces P(T) tiene asociado el eigenvalor P(lambda) se está diciendo que el único eigenvalor de la matriz On es el lambda=0, ¿pero no se supone que los eigenvalores tienen que ser distintos de cero?

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.