Introducción
Anteriormente conocimos dos operaciones que podemos realizar utilizando vectores o matrices: la suma entre vectores/matrices y el producto escalar. Como recordarás, estas operaciones involucran exclusivamente vectores o exclusivamente matrices. En esta entrada veremos una operación que involucra a ambos objetos matemáticos a la vez: el producto de una matriz por un vector.
Definición de producto de matrices con vectores
Una condición indispensable para poder realizar el producto matriz-vector es que la cantidad de columnas de la matriz sea la misma que la cantidad de entradas del vector. Basándonos en esto, podríamos multiplicar
\[
\begin{pmatrix}
3 & \tfrac{1}{2} \\
2 & 5
\end{pmatrix}
\begin{pmatrix}
\pi \\
4
\end{pmatrix}
\qquad
\text{o}
\qquad
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
-3 \\
\tfrac{2}{3} \\
5
\end{pmatrix},
\]
pero no podríamos realizar la operación
\[
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
\pi \\
4
\end{pmatrix}.
\]
Como te habrás podido dar cuenta, en este tipo de producto es usual representar los vectores en su forma de “vector vertical” o “vector columna”.
El resultado de multiplicar una matriz por un vector será un nuevo vector, cuyo tamaño corresponde a la cantidad de filas de la matriz original.
Para obtener este nuevo vector, se sigue un algoritmo especial, el cual conocerás en entradas futuras. Sin embargo, a continuación te presentamos las fórmulas que definen a algunos casos especiales de esta operación, lo cual te permitirá obtener el producto en casos con una cantidad pequeña de entradas.
- Producto de una matriz de tamaño $2 \times 2$ por un vector de tamaño $2$:
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 \\
a_{21}u_1 + a_{22}u_2
\end{pmatrix}.
\]
- Producto de una matriz de tamaño $3 \times 2$ por un vector de tamaño $2$:
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 \\
a_{21}u_1 + a_{22}u_2 \\
a_{31}u_1 + a_{32}u_2
\end{pmatrix}.
\]
- Producto de una matriz de tamaño $2 \times 3$ por un vector de tamaño $3$:
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3
\end{pmatrix}.
\]
- Producto de una matriz de tamaño $3 \times 3$ por un vector de tamaño $3$:
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3 \\
a_{31}u_1 + a_{32}u_2 + a_{33}u_3
\end{pmatrix}.
\]
¿Observas algún patrón en estas fórmulas?
Veamos algunos ejemplos numéricos de cómo usar estas fórmulas:
\(
\bullet
\begin{pmatrix}
3 & \tfrac{1}{2} \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
-\tfrac{1}{3} \\
4
\end{pmatrix}
=
\begin{pmatrix}
(3)(-\tfrac{1}{3}) + (\tfrac{1}{2})(4) \\
(2)(-\tfrac{1}{3}) + (1)(4)
\end{pmatrix}
=
\begin{pmatrix}
-1 + 2 \\
-\tfrac{2}{3} + 4
\end{pmatrix}
=
\begin{pmatrix}
1 \\
\tfrac{10}{3}
\end{pmatrix}
\)
\(
\bullet
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
-3 \\
\tfrac{2}{3} \\
5
\end{pmatrix}
=
\begin{pmatrix}
(1)(-3) + (7)(\tfrac{2}{3}) + (\sqrt{2})(5) \\
(9)(-3) + (\tfrac{1}{3})(\tfrac{2}{3}) + (-2)(5)
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{5+15\sqrt{2}}{3} \\
-\tfrac{331}{3}
\end{pmatrix}.
\)
Breve exploración geométrica
Como probablemente hayas visto en tu curso de Geometría Analítica I, el producto de matrices por vectores se puede emplear para representar distintas transformaciones de vectores en el plano y en el espacio.
Si multiplicamos una matriz diagonal por un vector, entonces el resultado corresponderá a “redimensionar” el vector en sus distintas direcciones. Por ejemplo, observamos que el producto
\[
\begin{pmatrix}
3 & 0 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
3 \\
3
\end{pmatrix}
=
\begin{pmatrix}
9 \\
6
\end{pmatrix}
\]
corresponde a redimensionar el vector original al triple de manera horizontal y al doble de manera vertical.
Por otra parte, multiplicar por una matriz de la forma
\[
\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}
\]
ocasiona que el vector rote un ángulo $\theta$ en sentido contrario a las manecillas del reloj; por ejemplo,
\[
\begin{pmatrix}
\cos(30º) & -\sin(30º) \\
\sin(30º) & \cos(30º)
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{\sqrt{3}}{2} & -\tfrac{1}{2} \\
\tfrac{1}{2} & \tfrac{\sqrt{3}}{2}
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
=
\begin{pmatrix}
(\tfrac{\sqrt{3}}{2})(5) + (-\tfrac{1}{2})(4) \\
(\tfrac{1}{2})(5) + (\tfrac{\sqrt{3}}{2})(4)
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{5\sqrt{3}-4}{2} \\
\tfrac{5+4\sqrt{3}}{2}
\end{pmatrix}.
\]
Propiedades algebraicas del producto de una matriz por un vector
A continuación, exploraremos algunas de las propiedades que cumple el producto matriz-vector. Estas propiedades las deduciremos para matrices de $2 \times 3$ por vectores de tamaño $3$, pero la deducción para otros tamaños de matrices y vectores se realiza de manera análoga.
Primeramente, observemos que para matrices $A$ y $B$ de tamaño $2\times 3$, y para un vector $u$, se cumple que
\begin{align*}
(A+B)u
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
\right)
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13}\\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}+b_{11})u_1 + (a_{12}+b_{12})u_2+(a_{13}+b_{13})u_3 \\
(a_{21}+b_{21})u_1 + (a_{22}+b_{22})u_2+(a_{23}+b_{23})u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}u_1+b_{11}u_1 + a_{12}u_2+b_{12}u_2 + a_{13}u_3+b_{13}u_3 \\
a_{21}u_1+b_{21}u_1 + a_{22}u_2+b_{22}u_2 + a_{23}u_3+b_{23}u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}u_1+a_{12}u_2+a_{13}u_3 \\
a_{21}u_1+a_{22}u_2+a_{23}u_3
\end{pmatrix}
+
\begin{pmatrix}
b_{11}u_1+b_{12}u_2+b_{13}u_3 \\
b_{21}u_1+b_{22}u_2+b_{23}u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
Au + Bu,
\end{align*}
es decir, el producto matriz-vector se distribuye sobre la suma de matrices (esto también se conoce como que el producto matriz-vector abre sumas).
Por otra parte, podemos probar que el producto matriz-vector se distribuye sobre la suma de vectores; es decir, si $A$ es una matriz de $2 \times 3$, y $u$ y $v$ son vectores de tamaño $3$, entonces
\[
A(u+v) = Au + Av.
\]
Además, veamos que si $A$ es una matriz de $2 \times 3$, $r$ es un escalar, y $u$ un vector de tamaño $3$, entonces
\begin{align*}
A(ru)
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\left(
r
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
ru_1 \\
ru_2 \\
ru_3 \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}ru_1 + a_{12}ru_2 + a_{13}ru_3 \\
a_{21}ru_1 + a_{22}ru_2 + a_{23}ru_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
r(a_{11}u_1) + r(a_{12}u_2) + r(a_{13}u_3) \\
r(a_{21}u_1) + r(a_{22}u_2) + r(a_{23}u_3)
\end{pmatrix}
\\[5pt]
&=
r
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3
\end{pmatrix}
\\[5pt]
&=
r
\left(
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
r(Au)
\end{align*}
y, más aún,
\begin{align*}
A(ru)
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\left(
r
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
ru_1 \\
ru_2 \\
ru_3 \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}ru_1 + a_{12}ru_2 + a_{13}ru_3 \\
a_{21}ru_1 + a_{22}ru_2 + a_{23}ru_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(ra_{11})u_1 + (ra_{12})u_2 + (ra_{13})u_3 \\
(ra_{21})u_1 + (ra_{22})u_2 + (ra_{23})u_3
\end{pmatrix}
\\[5pt]
&=
\left(
\begin{pmatrix}
ra_{11} & ra_{12} & ra_{13} \\
ra_{21} & ra_{22} & ra_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\left(
r
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\right)
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
(rA)u.
\end{align*}
Por lo tanto $A(ru) = r(Au) = (rA)u$. Esta propiedad se conoce como que el producto matriz-vector saca escalares.
Como el producto de matrices por vectores abre sumas y saca escalares, se dice que es lineal. Un hecho bastante interesante, cuya demostración se dejará hasta los cursos de álgebra lineal, es que el regreso de esta afirmación también se cumple: ¡A cualquier transformación lineal se le puede asociar una matriz $A$ de modo que aplicar la transformación a un vector $v$ es lo mismo que hacer el producto $Av$!
Otras propiedades de este producto
En entradas anteriores definimos algunos vectores y matrices especiales.
Como recordarás, definimos la matriz identidad de tamaño $3 \times 3$ como
\[
\mathcal{I}_3
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]
Observemos que al multiplicar $\mathcal{I}_3$ por el vector
\[
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\]
obtendremos
\[
\mathcal{I}_3 u
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
1u_1 + 0u_2 + 0u_3 \\
0u_1 + 1u_2 + 0u_3 \\
0u_1 + 0u_2 + 1u_3
\end{pmatrix}
=
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
u.
\]
Como su nombre lo sugiere, la matriz $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarlo por un vector de tamaño $n$ (de hecho, como veremos en la siguiente entrada, ¡la matriz $I_n$ también cumple esta propiedad en otras operaciones!).
Por otra parte, recordemos que definimos el vector canónico $\mathrm{e}_i$ de tamaño $n$ como el vector en el que su $i$-ésima entrada es $1$ y sus demás entradas son $0$. Como ejemplo, veamos que
\begin{align*}
A\mathrm{e}_1
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} +0a_{12} +0a_{13} \\
1a_{21} +0a_{22} +0a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} \\
a_{21}
\end{pmatrix},
\end{align*}
donde este resultado corresponde a al primera columna de la matriz.
De manera análoga, podemos ver que
\[
A\mathrm{e}_2 =
\begin{pmatrix}
a_{12} \\
a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
A\mathrm{e}_3 =
\begin{pmatrix}
a_{13} \\
a_{23}
\end{pmatrix}
\]
corresponden a la segunda y tercera columna de la matriz, respectivamente.
En general, para matrices de tamaño $m \times n$ y el vector $\mathrm{e}_i$ de tamaño $n$, el resultado de $A\mathrm{e}_i$ corresponde al vector cuyas entradas son las que aparecen en la $i$-ésima columna de la matriz.
Más adelante…
En esta entrada conocimos el producto de matrices con vectores, exploramos su interpretación geométrica y revisamos algunas de las propiedades algebraicas que cumple. Esta operación se añade a las que aprendimos en entradas anteriores, ampliando nuestra colección de herramientas.
En la siguiente entrada descubriremos una operación que nos permitirá sacar aún más poder a las operaciones que hemos conocido hasta ahora: el producto de matrices.
Tarea moral
- Obtén el resultado de las siguientes multipicaciones:
\(
\begin{pmatrix}
1 & -2 & 3 \\
1 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
4 \\
5 \\
6
\end{pmatrix},
\)
\(
\begin{pmatrix}
2 & 5 \\
3 & \tfrac{1}{2}
\end{pmatrix}
\begin{pmatrix}
4 \\
2
\end{pmatrix}.
\)
- Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza la siguiente operación: $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
- ¿Cuál matriz permite rotar un vector en el plano 45º? ¿Cuál 60º?
- Deduce las propiedades del producto matriz-vector para matrices de $3 \times 2$ y vectores de tamaño $2$.
- Una matriz desconocida $A$ de $3\times 3$ cumple que $Ae_1=\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, que $Ae_2=\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ y que $Ae_3=\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$. ¿Cuánto es $A\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$?
Entradas relacionadas
- Ir a Álgebra Superior I
- Entrada anterior del curso: Operaciones de suma y producto escalar con vectores y matrices
- Entrada siguiente del curso: Producto de matrices con matrices