Archivo de la etiqueta: valor intermedio

Seminario de Resolución de Problemas: Problemas de cálculo variados

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores ya tratamos varios temas de cálculo y cómo se combinan con heurísticas para resolver problemas de cálculo. Veremos ahora otros problemas para repasar las técnicas que hemos aprendido hasta ahora y explorar algunas nuevas ideas.

Los primeros dos ejemplos son del libro Problem Solving through Problems de Loren Larson. Los últimos dos son de un concurso universitario: la Competencia Iberoamericana Interuniversitaria de Matemáticas.

El método del factor de integración

Para resolver problemas de cálculo, también es útil tener algunas ideas de ecuaciones diferenciales. Un método muy útil en la resolución de problemas es el método de factor de integración, que ayuda a resolver ecuaciones diferenciales de la forma $$y’+a(x)y=b(x).$$

La idea para resolver esta ecuación diferencial en $y$ (es decir, despejar a $y$ en términos de $a$ y $b$) es multiplicar ambos lados de la ecuación por $I(x)=e^{\int a(x)\, dx$ y observar que por regla de la cadena, la regla del producto y el teorema fundamental del cálculo, tenemos la ecuación diferencial equivalente $$(yI(x))’ =I(x)b(x).$$

De aquí, podemos integrar de ambos lados en un intervalo $[c,x]$. Por el teorema fundamental del cálculo, existe una constante $C$ tal que $$yI(x)=\int_{c}^x I(t) b(t)\, dt + C,$$ y ya de aquí podemos despejar $$y=I(x)^{-1}\left( \int_{c}^x I(t) b(t)\, dt + C\right).$$

A $I(x)$ se le conoce como el factor de integración.

Problema. Sea $f:(0,\infty)\to \mathbb{R}$ una función diferenciable y supongamos que $$\lim_{x\to \infty} f(x)+f'(x) = 0.$$ Muestra que $$\lim_{x\to 0} f(x) = 0.$$

Sugerencia pre-solución. Define $g(x)=f(x)+f'(x)$ y usando el método de integración «despeja» a $f$ en términos de $g$.

Solución. Definamos $g(x)=f(x)+f'(x)$. La hipótesis dice que $\lim_{x\to 0} g(x) = 0$, así que para obtener información de $f$ en términos de $g$, podemos usar el método de factor de integración. Por la discusión antes de este párrafo, tenemos que $$f(x)=e^{-x}\int_a^x e^t g(t) \,dt + Ce^{-x}.$$

Tomemos un $\epsilon>0$. Como $g(x)\to 0$ cuando $x\to \infty$, podemos tomar un $a$ tal que $|g(x)|<\epsilon$ para todo $x>a$. Usando desigualdad del triángulo en sumas e integrales, tenemos que para $x>a$
\begin{align*}
|f(x)|&\leq e^{-x}\left|\int_a^x e^t g(t)\right|+|Ce^{-x}|\\
&\leq e^{-x}\int_a^x e^t|g(t)|\, dt + |C|e^{-x}\\
&\leq \epsilon e^{-x}\int e^t\, dt + |C|e^{-x}\\
&=\epsilon e^{-x}(e^x-e^a)+|C|e^{-x}\\
&=\epsilon(1-e^{a-x})+|C|e^{-x}
\end{align*}

Tenemos que $\lim_{x\to \infty} e^{a-x} = 0$ y que $\lim_{x\to \infty} e^{-x}=0$, de modo que si $x$ es suficientemente grande, la expresión anterior nos dice $|f(x)|<2\epsilon$. En otras palabras, $f(x)\to 0$ cuando $x\to \infty$, como queríamos.

$\square$

Una integral con doble derivada

Problema. Sea $f:[0,1]\to \mathbb{R}$ una función dos veces diferenciable que cumple $f(0)=f(1)=0$ y tal que $f(x)>0$ para $x$ en $(0,1)$. Muestra que $$\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right| > 4.$$

Sugerencia pre-solución. Tenemos ya varias técnicas para evaluar o estimar integrales. Si con un método llegas a una pared, intenta usar otro método. Necesitarás el teorema del valor extremo, el teorema del valor medio y el teorema fundamental del cálculo.

Solución. Por el teorema del valor extremo, existe un valor $c$ en $(0,1)$ tal que $y=f(c)$ es un máximo de $f$. Por el teorema del valor medio, existen puntos $a$ en $(0,c)$ y $b$ en $(c,1)$ tales que $$f'(a)=\frac{f(c)-f(0)}{c}=\frac{y}{c}$$ y $$f'(b)=\frac{f(1)-f(c)}{1-c}=\frac{-y}{1-c}.$$

Usando que $f$ alcanza su máximo $y$ en $c$

\begin{align*}
\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right|&\geq \int_a^b \left| \frac{f»(x)}{f(x)} \, dx \right| \\
&\geq \frac{1}{y} \int_a^b \left| f»(x) \, dx \right|,
\end{align*}

de modo que aplicando el teorema fundamental del cálculo a la última integral, obtenemos que

\begin{align*}
\int_0^1 \left| \frac{f»(x)}{f(x)} \, dx \right| &\geq \frac{1}{y} \int_0^1 \frac{1}{y}|f'(b)-f'(a)|\\
&=\frac{1}{y} \left|\frac{-y}{1-c}-\frac{y}{c}\right|\\
&=\left|\frac{1}{c(1-c)}\right|.
\end{align*}

Para terminar, notamos que la función $h(x)=x(1-x)$ es diferenciable en $(0,1)$ y continua en $[0,1]$, de modo que alcanza su máximo en $0$, en $1$ o en donde la derivada $h'(x)=1-2x$ es $0$, es decir, en $1/2$. Tenemos que $h(1/2)=1/4$ y que $h(0)=h(1)=0$, de modo que el máximo es $1/4$. Con esto, concluimos que $$\left|\frac{1}{c(1-c)}\right| \geq 4,$$ de donde se completa la cadena de desigualdades que queremos.

$\square$

En el problema anterior usamos el teorema del valor medio como paso intermedio. Es recomendable que pienses qué hubiera pasado si nos hubiéramos saltado este paso y hubiéramos usado el mínimo directamente, sin limitarnos primero al intervalo $[a,b]$. En los problemas de cálculo a veces es muy importante el orden en el que se hacen las cosas.

Dos problemas de cálculo de competencias

Veamos ahora algunos problemas de cálculo que han aparecido en concursos a nivel universitario. El siguiente problema apareció en la Competencia Iberoamericana Interuniversitaria de Matemáticas, en 2015, como Problema 4.

Problema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función continua y $\alpha$ un número real. Sabemos que $\lim_{x\to \infty} f(x) = \lim_{x\to -\infty} = \alpha$. Muestra que para cualquier real positivo $r$ existen reales $x$ y $y$ tales que $y-x=r$ y $f(x)=f(y)$.

Sugerencia pre-solución. Modifica el problema, construyendo una función que te ayude a resolverlo. Necesitarás el teorema del valor intermedio. También, una parte de la solución necesita que se use inducción.

Solución. Tomemos cualquier valor $r$ y consideremos la función $h(x)=f(x+r)-f(x)$. Como $f$ es continua, la función $h$ es continua. Si $h(x)>0$ para todo real, entonces podemos mostrar inductivamente que para cualesquiera enteros positivos $m$ y $n$ tenemos que $$f(x-mr)<f(x)<f(x+r)<f(x+nr).$$

Haciendo $n$ y $m$ ir a infinito, tendríamos que $$\alpha\leq f(x) < f(x+r) \leq \alpha,$$ lo cual es una contradicción.

Así, $h(x)$ toma valores menores o iguales a $0$. De modo similar, podemos mostrar que $h(x)$ toma valores mayores o iguales a $0$. Como $h$ es continua, por el teorema del valor intermedio debe tomar el valor $0$ para algún $c$, de modo que $f(c+r)-f(c)=h(c)=0$ y así, tomando $x=c$ y $y=c+r$ tenemos $y-x=r$ y $$f(y)=f(c+r)=f(c)=f(x).$$

$\square$

El siguiente problema apareció en la Competencia Iberoamericana Interuniversitaria de Matemáticas, en 2010, como Problema 4.

Problema. Sea $f:[0,1]\to [0,1]$ una función continua, creciente, diferenciable en $[0,1]$ y tal que $f'(x)<1$ en cada punto. La sucesión de conjuntos $A_1, A_2, \ldots$ se define recursivamente como $A_1=f([0,1])$ y para $n\geq 2$, $A_n=f(A_{n-1})$. Muestra que el diámetro de $A_n$ converge a $0$ conforme $n\to \infty$.

El diámetro de un conjunto $X$ es $\sup_{x,y \in X} |x-y|$.

Sugerencia pre-solución. Para una primer parte del problema que te ayudará a entender a los $A_i$, necesitarás el teorema del valor intermedio y el principio de inducción. Luego, necesitarás usar el teorema del valor medio y que las funciones continuas preservan límites de sucesiones convergentes.

Solución. Por conveniencia, nombramos $A_0=[0,1]$. Sea $d_n$ el diámetro de $A_n$. Tenemos $d_0=1$. Como $f$ es creciente, tenemos que $f(0)<f(1)$ y que no hay ningún valor fuera del intervalo $[f(0),f(1)]$ que se tome. Como $f$ es continua, se toman todos esos valores. Así, $A_1=[f(0),f(1)]$ y su diámetro es $d_1=f(1)-f(0)$. Inductivamente, podemos mostrar que $A_n= [f^n(0),f^n(1)]$ y que $d_n=f^{n}(1)-f^{n}(0)$.

Notemos que la sucesión $f^{n}(0)$ es creciente y acotada, de modo que converge a un real $a$. Como $f$ es contínua, tenemos que \begin{align*}f(a)&=f(\lim_{n\to \infty} f^{n}(0)) \\&= \lim_{n\to \infty} f^{n+1}(0) \\&= a.\end{align*} Análogamente, $f^n(1)$ converge a un real $b$ tal que $f(b)=b$. Como $f^n(0)\leq f^n(1)$, tenemos que $a\leq b$. Afirmamos que $a=b$. Si no, por el teorema del valor medio existiría un $c\in[a,b]$ tal que $$f'(c)=\frac{f(b)-f(a)}{b-a}=\frac{b-a}{b-a}=1,$$ contradiciendo la hipótesis de la cota de la derivada.

Esto muestra que $a=b$, y por lo tanto
\begin{align*}
\lim_{n\to \infty} d_n &= \lim_{n\to \infty} f^n(1)-f^n(0) \\
&=b-a\\
&= 0.
\end{align*}

$\square$

En este problema es muy importante primero mostrar que los extremos de los intervalos convergen a puntos fijos de $f$ y después usar el teorema del valor intermedio. Podría ser tentador usar el teorema del valor intermedio en cada intervalo $[f^n(0),f^n(1)]$, pero con ello no se llega al resultado deseado.

Más problemas

En todas estas entradas hemos platicado acerca de problemas de temas de cálculo. Se pueden encontrar muchos más problemas de este tema en el Capítulo 6 del libro Problem Solving through Problems de Loren Larson.

Además, puedes encontrar otros problemas resueltos en la sección de Material para practicar de este blog, que ayuda a prepararse para competencias internacionales de matemáticas a nivel universitario.

Seminario de Resolución de Problemas: Funciones continuas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores platicamos de propiedades aritméticas de los números enteros, del anillo de enteros módulo $n$ y de los números complejos. Vimos cómo pueden ser de utilidad para resolver problemas de matemáticas de distintos tipos. Ahora veremos temas de funciones continuas.

En esta entrada, y las subsecuentes, entraremos al mundo del cálculo y de la continuidad. En el transcurso de diez entradas veremos cómo aprovechar distintas herramientas de continuidad, cálculo diferencial e integral.

Seguiremos con la costumbre de no demostrar los teoremas principales que usemos, pero podemos recomendar al lector las siguientes fuentes para consultar los fundamentos

El orden de presentación de los temas viene del libro Problem Solving Strategies de Loren Larson.

Recordatorio de límites y continuidad

Sea $A$ un subconjunto de $\mathbb{R}$ y $f:A\to \mathbb{R}$ una función. Intuitivamente, el límite de $f(x)$ cuando $x$ tiende a $a$ es $c$ si al acercarnos a $x$ en $A$ tenemos que $f(x)$ se acerca a $c$.

De manera formal, tenemos que $$\lim_{x\to a} f(x) = c$$ si para todo $\epsilon>0$ tenemos que existe un $\delta >0$ tal que si $x\in A$ y $|x-a|<\delta$, entonces $|f(x)-c|<\epsilon$. Esta es la definición épsilon-delta. Otra forma de denotar lo mismo es decir que $f(x)\to c$ cuando $x\to a$. Los límites se comportan bien con las operaciones.

Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f(x)\to c$ y $g(x)\to d$ cuando $x\to a$, entonces

  • $f(x)+g(x)\to c+d$ cuando $x\to a$
  • $f(x)g(x)\to cd$ cuando $x\to a$
  • Si $d\neq 0$, $f(x)/g(x)\to c/d$ cuando $x\to a$

Definición. Sea $f:A\to \mathbb{R}$ una función real y $a\in A$. Decimos que $f$ es continua

  • en $a$ si $f(x)\to f(a)$ cuando $x\to a$.
  • en $S\subset A$ si es continua en todo $a\in S$.

Si $f$ es continua en $A$, simplemente decimos que es continua.

Como los límites se comportan bien con las operaciones, tenemos que las funciones continuas también se comportan bien con las operaciones.

Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f$ y $g$ son continuas en $a$, entonces

  • $f+g$ es continua en $a$
  • $fg$ es continua en $a$
  • Si $g(a)\neq 0$, $f/g$ es continua en $a$

Ejercicio. Muestra que $\frac{x^2+3x+1}{x+1}$ es continua para todo $x\neq -1$.

Sugerencia. No uses la definición épsilon-delta directamente en la función, pues será complicado. Demuestra que $f(x)=x$ es continua con la definición epsilon-delta y de ahí usa las demás propiedades enunciadas en las proposiciones.

Funciones continuas y sucesiones

Las funciones continuas y las sucesiones están cercanamente relacionadas. Recuerda que una sucesión de reales es un conjunto ordenado de reales, uno por cada entero positivo, al cual denotaremos así: $$\{x_n\}=\{x_1,x_2,x_3,x_4,\ldots\}.$$

Decimos que la sucesión $\{x_n\}$ converge a $c$, en símbolos $$\lim_{n\to \infty} x_n = c$$ si para cada $\epsilon >0$ existe un natural $N$ tal que si $n\geq N$, entonces $|x_n-c|<\epsilon$. También decimos esto como $x_n\to c$ cuando $n\to \infty$, o simplemente $x_n\to c$.

Teorema. La función $f:A\to \mathbb{R}$ es continua en $a\in A$ si y sólo si para toda sucesión de reales $\{x_n\}$ en $A$ tal que $\{x_n\}\to a$ se tiene que $f(x_n)\to f(a)$.

Este teorema tiene múltiples usos. Nos dice que para verificar que una sucesión sea continua en un punto $a$, nos basta ver qué le hace a todas las sucesiones que convergen a $a$. Si alguna de ellas no converge a $f(a)$, entonces la función no es continua. Si todas ellas convergen a $f(a)$, entonces la función sí es continua. Veamos un ejemplo de su aplicación

Problema. Considera la función $f:[0,1]\to \mathbb{R}$ la función tal que a cada irracional le asigna $0$ y a cada racional $p/q$ (expresado con $p$ y $q$ positivos y primos relativos) le asigna $1/q$. Estudia la continuidad de esta función.

Sugerencia pre-solución. La continuidad de la función se comporta distinto para los racionales y para los irracionales. Para ver qué sucede en los racionales, acércate con una sucesión de irracionales.

Solución. Demostraremos que $f$ es continua en los irracionales y no es continua en los racionales.

Tomemos un racional $r=p/q<1$. Observa que la sucesión $x_n=r+\frac{\sqrt{3}}{n}$ para $n$ suficientemente grande cae en $[0,1]$ y $x_n\to r$. Cada término de la sucesión es irracional. Así, $f(x_n)=0$ para todo término, de modo que $f(x_n)\to 0\neq 1/q = f(r)$. Esto muestra que $f$ no es continua en $r$. Para $r=1$ podemos hacer el mismo truco con $x_n=r-\frac{\sqrt{3}}{n}$ para ver que no es continua.

Tomemos ahora un número irracional $r\in[0,1]$. Tenemos que $f(r)=0$. Mostraremos que para toda sucesión $\{x_n\}$ tal que $x_n\to r$, tenemos que $f(x_n)\to 0$. Tomemos $M$ un entero positivo. Consideremos el conjunto $A_M$ de todos los números racionales en $[0,1]$ con denominador a lo más $M$.

Como $r$ es irracional, las distancias de $r$ a los números de $A_M$ son todas positivas, así que su mínimo es un real positivo $\epsilon$. Como $x_n\to r$, existe un $N$ tal que si $n\geq N$, entonces $|x_n-r|<\epsilon$. Así, para $n\geq N$, no se puede que $x_n$ esté en $A_M$. De este modo, para $n\geq N$ tenemos que $|f(x_n)|<1/M$. Esto muestra que $f(x_n)\to 0$. Así, $f$ es continua en los irracionales.

$\square$

Por supuesto, algunas veces es útil regresar a la definición epsilon-delta para funciones continuas.

Problema. Sea $f:\mathbb{R}\to\mathbb{R}$ una función inyectiva y continua tal que $f(2x-f(x))=x$ y tal que tiene por lo menos un punto fijo. Muestra que $f(x)=x$ para todo $x\in \mathbb{R}$.

Sugerencia pre-solución. Antes de intentar cualquier idea de cálculo, hay que demostrar que si se cumple $f(y)=y+r$, entonces $f(y+nr)=(y+nr)+r$. Para demostrar esto para $n$ negativa, usa inducción. Para $n$ positiva necesitarás jugar un poco con la hipótesis. Aplica la hipótesis $f(2x-f(x))=x$ para $x=f(z)$ y usa la inyectividad. De ahí obtendrás una igualdad que te servirá para encontrar $f(y+nr)$ para $n$ positivas.

Solución. La primera observación es que el conjunto de puntos fijos de una función continua es cerrado, pues si $\{x_n\}$ es una sucesión de puntos fijos que converge a un punto $c$, entonces por un lado $\{f(x_n)\}=\{x_n\}$ también converge a $c$, y por otro por continuidad converge a $f(c)$. Como los límites, cuando existen, son únicos, tenemos que $f(c)=c$.

Si $f(y)\neq y$ para alguna $y\in \mathbb{R}$, entonces tendremos $f(y)=y+r$ para alguna $r\neq 0$. Mostraremos que $f(y+nr)=(y+nr)+r$ para todo entero $n$. Aplicando la hipótesis $f(2x-f(x))=x$ para $x=y$, obtenemos que $f(y-r)=y=(y-r)+r$, de modo que inductivamente tenemos $f(y-nr)=(y-nr)+r$ para $n$ entero positivo.

Aplicando la hipótesis $f(2x-f(x))=x$ para $x=f(x)$ obtenemos $f(2f(z)-f(f(z)))=f(z)$, de modo que por inyectividad tenemos $2f(z)-f(f(z))=z$. Usando esta ecuación para $z=y$ obtenemos que $2f(y)-f(f(y))=y$, de donde $f(y+r)=2(y+r)-y=(y+r)+r$, y de aquí inductivamente $f(y+nr)=(y+nr)+r$ para $n$ enteros positivos. De esta forma, $f(y+nr)=(y+nr)+r$ para todo entero.

Ahora sí viene la parte en la que usamos la continuidad. Supongamos que $f(x)\neq x$. Sea $\epsilon=|f(x)-x|>0$. Como $f$ es continua en $x$, existe un $\delta>0$ que podemos suponer menor a $\frac{\epsilon}{4}$ tal que si $|z-x|<\delta$, entonces $|f(z)-f(x)|<\frac{\epsilon}{4}$.

Sea $x_0$ un punto frontera del conjunto de puntos fijos. Como $f$ es continua en $x_0$, podemos encontrar un $\alpha>0$ y $\alpha<\delta$ tal que si $|w-x_0|<\alpha$, entonces $|f(w)-f(x_0)|<\delta$. Como el conjunto de puntos fijos es cerrado, $x_0$ está en él. Ya que $x_0$ es punto frontera, existe un $y$ tal que $f(y)\neq y$ y $|x_0-y|\leq \alpha$. Para este $y$ tenemos por las cotas que hemos encontrado y la desigualdad del triángulo que $$|f(y)-y|\leq |f(y)-f(x_0)|+|x_0-y|\leq \delta +\alpha <2\delta.$$

Así, $r=f(y)-y$ es un número de norma entre $0$ y $2\delta$, de modo que existe una $n$ para la cual $y+nr \in (x-\delta,x+\delta)$. Por lo que probamos previamente, $f(y+nr)=(y+nr)+r$. A partir de todo esto concluimos que:

\begin{align*}
\epsilon&=|f(x)-x|\\
&\leq |f(x)-f(y+nr)|+|f(y+nr)-x|\\
&<\frac{\epsilon}{4}+|(y+nr)-x|+|r|\\
&<\frac{\epsilon}{4}+3\delta\\
&<\frac{\epsilon}{4}+\frac{3\epsilon}{4}=\epsilon.
\end{align*}

Esto es una contradicción, así que todos los reales deben ser puntos fijos de $f$.

$\square$

Dos teoremas importantes de continuidad

Las funciones continuas satisfacen dos propiedades muy importantes.

Teorema (teorema del valor intermedio). Sea $f:[a,b]\to \mathbb{R}$ una función continua. Entonces para todo $y$ entre $f(a)$ y $f(b)$ existe un real $c \in [a,b]$ tal que $f(c)=y$.

Aquí, si $f(a)\leq f(b)$ entonces «entre $f(a)$ y $f(b)$» quiere decir en el intervalo $[f(a),f(b)]$ y si $f(b)\leq f(a)$, quiere decir en el intervalo $[f(b),f(a)]$. Dicho en otras palabras, si una función continua toma dos valores, entonces toma todos los valores entre ellos.

Teorema (teorema del valor extremo). Sea $f:[a,b] \to \mathbb{R}$ una función continua. Entonces existen números $c$ y $d$ en $[a,b]$ para los cuales $f(c)\leq f(x) \leq f(d)$ para todos los $x$ en $[a,b]$.

Dicho de otra forma, una función continua definida en un intervalo cerrado «alcanza su máximo y su mínimo».

En siguientes entradas hablaremos de aplicaciones de estos teoremas. Por el momento sólo los enunciamos, y en la siguiente sección demostraremos uno de ellos.

El método de la bisección de intervalos

Una de las herramientas más útiles para trabajar con reales y con funciones continuas es el método de la bisección de intervalos. Se trata a grandes rasgos de lo siguiente:

  • Se comienza con un intervalo $[a,b]$. Definimos $a_0=a$ y $b_0=b$.
  • Partimos ese intervalo por su punto medio $m_0=m$ en dos intervalos $[a,m]$ y $[m,b]$. En alguno de esos dos pasa algo especial. Si es en el primero, definimos $a_1=a$, $b_1=m$. Si es en el segundo, definimos $a_1=m$, $b_1=b$, para conseguir un intervalo $[a_1,b_1]\subset [a_0,b_0]$ especial.
  • Continuamos recursivamente. Ya que definimos al intervalo $[a_n,b_n]$, consideramos a su punto medio $m_n$. De entre los intervalos $[a_n,m_n]$ y $[m_n,b_n]$ elegimos a uno de ellos que sea «especial» para definir $[a_{n+1},b_{n+1}]$.

Los $a_i$ forman una sucesión no decreciente acotada superiormente por $b$ y los $b_i$ una sucesión no creciente acotada inferiormente por $a$. De esta forma, ambas sucesiones tienen un límite. Además, notemos que $|b_n-a_n|=|b-a|/2^n$, de modo que $|b_n-a_n|\to 0$, por lo que ambas situaciones convergen al mismo límite $L$, y este límite está en todos los intervalos $[a_n,b_n]$. Si elegimos a los intervalos $[a_n,b_n]$ de manera correcta, podemos hacer que este límite $L$ tenga propiedades especiales.

Veamos cómo aplicar esta idea para demostrar el teorema del valor extremo.

Demostración (teorema del valor extremo). Comenzamos con una función contínua $f:[a,b]\to \mathbb{R}$. Basta con probar que $f$ alcanza su máximo, pues para ver que alcanza su mínimo basta aplicar las siguientes ideas a $-f$.

Usaremos el método de bisección de intervalos. Definimos $a_0=a$ y $b_0=b$. Suponiendo que ya definimos $a_n$ y $b_n$, consideremos el punto medio $m_n$ del intervalo $[a_n,b_n]$.

  • Si algún $x$ en $[a_n,m_n]$ cumple que $f(x)\geq f(y)$ para todo $y\in [m_n,b_n]$, elegimos $a_{n+1}=a_n$ y $b_{n+1}=m_n$.
  • En otro caso, para todo $x$ en $[a_n,m_n]$ tenemos algún $y\in [m_n,b_n]$ que cumple $f(x)<f(y)$ y elegimos $a_{n+1}=m_n$ y $b_{n+1}=b_n$.

En cualquier caso, notemos que se cumple que «para cualquier $x$ en el intervalo no elegido hay una $y$ en el intervalo sí elegido tal que $f(y)\geq f(x)$».

Como discutimos anteriormente, las sucesiones $\{a_n\}$ y $\{b_n\}$ convergen a un mismo límite $d$. Afirmamos que $f(d)\geq f(x)$ para todo $x$ en $[a,b]$. Si $x=d$, esto es claro. Si no, $x\neq d$ y definimos $x_0=x$.

Vamos a definir recursivamente una sucesión $\{x_n\}$ para la cual $$f(x_0)\leq f(x_1)\leq f(x_2)\leq f(x_3)\leq \ldots$$ mediante un proceso que haremos mientras $x_n\neq d$.

Ya que definimos $x_n$ tal que $x_n\neq d$, notemos que $d$ y $x_n$ están en el mismo intervalo $[a_0,b_0]$, pero como son distintos existe un primer $m\geq 1$ tal que en el intervalo $[a_m,b_m]$ está $d$ pero $x_n$ no. Como es la menor $m$, sí están ambos en el intervalo $[a_{m-1},b_{m-1}]$.

Por cómo definimos la elección de intervalos, hay un $y$ en el intervalo $[a_m,b_m]$ tal que $f(y)\geq f(x_n)$. Si $y=d$, terminamos (por la cadena de desigualdades). Si no, definimos $x_{n+1}$ como este $y$. Así, cuando el proceso se detiene, terminamos por la cadena de desigualdades. Si el proceso no se detiene, tenemos una sucesión infinita $\{x_n\}$ que converge a $d$, de modo que $f(d)=\lim{f(x_n)}\geq f(x_0)=f(x)$, pues cada término es mayor o igual a $f(x_0)$. Esto muestra la desigualdad $f(d)\geq f(x)$ que queríamos.

$\square$

Más problemas

Se pueden encontrar más problemas de este tema en la Sección 6.1 del libro Problem Solving through Problems de Loren Larson.