Archivo de la etiqueta: puntos singulares

Ecuaciones Diferenciales I: Ecuaciones del Hermite, Laguerre y Legendre

Por Omar González Franco

La naturaleza está escrita en lenguaje matemático.
– Galileo Galilei

Introducción

En las dos últimas entradas hemos desarrollado métodos de resolución de ecuaciones diferenciales lineales de segundo orden con coeficientes variables. El primer caso fue cuando $x_{0} = 0$ es un punto ordinario y en el segundo caso cuando $x_{0} = 0$ es un punto singular regular. En esta y la siguiente entrada aplicaremos estos métodos para resolver algunas ecuaciones diferenciales especiales, tan especiales que cada una de ellas tiene su propio nombre y son de bastante utilidad en otras áreas del conocimiento como la física e ingeniería.

A continuación presentamos las ecuaciones diferenciales que resolveremos:

  • Ecuación de Hermite.

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Laguerre.

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Legendre.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0$$

  • Ecuación de Bessel.

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0$$

  • Ecuación de Chebyshev.

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0$$

  • Ecuación Hipergeométrica de Gauss.

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0$$

  • Ecuación de Airy.

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Algunos ejemplos en los que aparecen este tipo de ecuaciones son en el estudio de potenciales en campos conservativos y no conservativos, esfuerzos de torsión, distribución de temperaturas, propagación de calor, vibraciones de cuerdas y membranas, propagación de ondas sonoras, luminosas, de radio entre muchas otras aplicaciones.

Es importante aclarar que todas estas ecuaciones, y las soluciones de cada una, tienen importantes propiedades matemáticas que no serán expuestas en este curso, nuestro propósito es el de sólo dar con la solución aplicando los métodos ya mencionados. Sin embargo, estos resultados seguramente serán de bastante utilidad más adelante cuando en semestres posteriores se estudien con mayor detalle. Por supuesto, si en estos momentos se desea conocer más acerca de estas ecuaciones diferenciales se puede consultar bibliografía existente para cada una de ellas.

Comencemos con la ecuación de Hermite.

Ecuación de Hermite

La ecuación de Hermite es

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0 \label{1} \tag{1}$$

Con $x \in \mathbb{R}$ y $\lambda$ una constante.

Esta ecuación diferencial es llamada así en honor al matemático francés Charles Hermite (1822 – 1901), quien realizó investigaciones sobre teoría de números, formas cuadráticas, teoría de invariantes, polinomios ortogonales y funciones elípticas entre otros. Varias entidades matemáticas se llaman hermitianas en su honor.

La ecuación de Hermite se encuentra en forma estándar lo que nos permite notar que el punto $x_{0} = 0$ es un punto ordinario, esto nos indica que su solución es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n} \label{2} \tag{2}$$

Cuyas derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} \label{3} \tag{3}$$

Sustituyamos en la ecuación de Hermite.

$$\left[ \sum_{n = 2}^{\infty }n(n -1)c_{n}x^{n -2} \right] -2x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda \left[ \sum_{n = 0}^{\infty}c_{n}x^{n}\right] = 0$$

Introducimos la $x$ en la segunda serie.

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -2 \sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos la sustitución $k = n -2$ y en las otras dos hacemos $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -2 \sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos el primer término de la primera y última serie para que todas comiencen en $k = 1$.

$$2c_{2} + \lambda c_{0} = 0 \label{4} \tag{4}$$

de donde,

$$c_{2} = -\dfrac{\lambda }{2}c_{0}$$

Ahora tenemos la ecuación

$$\sum_{k = 1}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -2 \sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda \sum_{k = 1}^{\infty}c_{k}x^{k} = 0 \label{5} \tag{5}$$

Ahora que todas las series comienzan con el mismo índice y tienen la misma potencia en la variable $x$, podemos juntar todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + 2)(k + 1)c_{k + 2} -2kc_{k} + \lambda c_{k}]x^{k} = 0$$

De donde necesariamente debe de ocurrir que

$$(k + 2)(k + 1)c_{k + 2} -(2k -\lambda)c_{k} = 0 \label{6} \tag{6}$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{2k -\lambda}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, 3 \cdots \label{7} \tag{7}$$

Determinemos los coeficientes. Ya vimos que para $k = 0$,

$c_{2} = -\dfrac{\lambda }{2!}c_{0}$

$k = 1$.

$$c_{3} = \dfrac{2(1) -\lambda}{(3)(2)}c_{1} = \dfrac{2 -\lambda}{3!}c_{1}$$

$k = 2$.

$$c_{4} = \dfrac{2(2) -\lambda}{(4)(3)}c_{2} = \dfrac{4-\lambda}{(4)(3)} \left( -\dfrac{\lambda}{2}c_{0} \right) = -\dfrac{\lambda(4 -\lambda)}{4!}c_{0}$$

$k = 3$.

$$c_{5} = \dfrac{2(3) -\lambda}{(5)(4)}c_{3} = \dfrac{6 -\lambda}{(5)(4)} \left( \dfrac{2 -\lambda}{(3)(2)}c_{1} \right) = \dfrac{(6 -\lambda)(2 -\lambda)}{5!}c_{1}$$

$k = 4$.

$$c_{6} = \dfrac{2(4) -\lambda}{(6)(5)}c_{4} = \dfrac{8 -\lambda}{(6)(5)} \left( -\dfrac{\lambda(4 -\lambda)}{4!}c_{0} \right) = -\dfrac{\lambda(4 -\lambda)(8 -\lambda)}{6!}c_{0}$$

$k = 5$.

$$c_{7} = \dfrac{2(5) -\lambda}{(7)(6)}c_{5} = \dfrac{10 -\lambda}{(7)(6)} \left( \dfrac{(6 -\lambda)(2 -\lambda)}{5!}c_{1} \right) = \dfrac{(2 -\lambda)(6 -\lambda)(10 -\lambda)}{7!}c_{1}$$

Etcétera, si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces podemos escribir a la solución general de la ecuación de Hermite como

\begin{align*}
y(x) &= C_{1} \left[ 1 -\dfrac{\lambda}{2!}x^{2} -\dfrac{\lambda(4 -\lambda)}{4!}x^{4} -\dfrac{\lambda(4 -\lambda)(8 -\lambda)}{6!}x^{6} – \cdots \right] \\
&+ C_{2} \left[ x + \dfrac{(2 -\lambda)}{3!}x^{3} + \dfrac{(2 -\lambda)(6 -\lambda)}{5!}x^{5} + \dfrac{(2 -\lambda)(6 -\lambda)(10 -\lambda)}{7!} + \cdots \right] \label{8} \tag{8}
\end{align*}

Un caso interesante ocurre cuando el parámetro $\lambda$ es positivo y es par, es decir de la forma $\lambda = 2k$, en este caso la relación de recurrencia muestra que

$$c_{k + 2} = c_{k + 4} = \cdots = 0$$

Notemos que si $\lambda = 2k$ y además $k$ es par y se toma $C_{2} = 0$, entonces la solución se reduce a un polinomio de grado $k$, lo mismo ocurre si $k$ es impar y se toma $C_{1} = 0$, la solución se reduce a otro polinomio de grado $k$.

Con una adecuada elección de $C_{1}$ y $C_{2}$, de tal manera que el coeficiente de $x^{k}$ sea $2^{k}$, resultan los denominados polinomios de Hermite.

\begin{align*}
H_{0}(x) &= 1\\
H_{1}(x) &= 2x \\
H_{2}(x) &= 4x^{2} -2 \\
H_{3}(x) &= 8x^{3} -12x\\
H_{4}(x) &= 16x^{4} -48x^{2} + 12\\
H_{5}(x) &= 32x^{5} -160x^{3} + 120x \\
\vdots
\end{align*}

Cada polinomio de Hermite es solución particular de la ecuación de Hermite con $\lambda = 0, 2, 4, 6 \cdots$, respectivamente. En general, el $n$-ésimo polinomio de Hermite es solución particular de la ecuación de Hermite con $\lambda = 2n$.

Los polinomios de Hermite aparecen en la resolución del problema del oscilador armónico unidimensional en Mecánica Cuántica.

Pasemos a resolver la ecuación de Laguerre.

Ecuación de Laguerre

La ecuación de Laguerre es

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0 \label{9} \tag{9}$$

Con $\lambda$ una constante.

Los polinomios de Laguerre son una familia de polinomios ortogonales que surgen de examinar las soluciones de la ecuación diferencial (\ref{9}). Edmond Nicolás Laguerre (1834 – 1886) fue un matemático francés conocido principalmente por la introducción de los polinomios que llevan su nombre.

Resolvamos la ecuación, para ello dividimos todo por $x$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1 -x}{x} \dfrac{dy}{dx} + \dfrac{\lambda}{x} y = 0 \label{10} \tag{10}$$

Identificamos que

$$P(x) = \dfrac{1 -x}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda}{x}$$

Es claro que ambas funciones no están definidas en $x = 0$, de manera que este punto es un punto singular. Si definimos las funciones

$$p(x) = xP(x) \hspace{1cm} y \hspace{1cm} q(x) = x^{2}Q(x)$$

obtenemos que

$$p(x) = 1 -x \hspace{1cm} y \hspace{1cm} q(x) = \lambda x$$

Si calculamos los límites se obtiene lo siguiente.

$$\lim_{x \to 0}p(x) = 1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = 0$$

Los límites existen, esto nos indica que el punto $x_{0} = 0$ es un punto singular regular. La solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r} \label{11} \tag{11}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \label{12} \tag{12}$$

Sustituyamos en la ecuación de Laguerre.

$$x \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + (1 -x) \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + \lambda \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo y simplificando se tiene

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \lambda \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En las dos primeras series hacemos $k = n$ y en las dos últimas series hacemos $n = k -1$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} + \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r -1} + \lambda \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0$$

Extraemos los términos para $k = 0$ y así hacer que todas las series comiencen en $k = 1$.

\begin{align*}
r(r -1)c_{0}x^{r -1} + rc_{0}x^{r -1} &= 0 \\
c_{0}x^{r -1}[r(r -1) + r] &= 0 \\
r(r -1) + r &= 0
\end{align*}

La ecuación indicial es

$$r^{2} = 0 \label{13} \tag{13}$$

de donde $r_{1} = r_{2} = r = 0$. Como las raíces indiciales son iguales, la forma de las soluciones es

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}, \hspace{1cm} c_{0} \neq 0 \label{14} \tag{14}$$

y

$$y_{2}(x) = \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n} \label{15} \tag{15}$$

Continuemos con la ecuación que teníamos.

$$\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} + \sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r -1} + \lambda \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0$$

Ahora que todas inician en $k = 1$ y tienen la misma potencia podemos agruparlas en una sola serie.

$$\sum_{k = 1}^{\infty} [(k + r)(k + r -1)c_{k} + (k + r)c_{k} -(k -1 + r)c_{k -1} + \lambda c_{k -1}] x^{k + r -1} = 0$$

De donde es necesario que

\begin{align*}
(k + r)(k + r -1)c_{k} + (k + r)c_{k} -(k -1 + r)c_{k -1} + \lambda c_{k -1} &= 0 \\
c_{k}[(k + r)(k + r -1) + (k + r)] + c_{k -1}[\lambda -(k -1 + r)] &= 0 \\
\end{align*}

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{(k -1 + r) -\lambda}{(k + r)(k + r -1) + (k + r)}c_{k -1} \label{16} \tag{16}$$

De tarea moral muestra que la relación de recurrencia se puede reescribir como

$$c_{k} = \dfrac{(k + r) -(\lambda + 1)}{(k + r)^{2}}c_{k -1} \label{17} \tag{17}$$

Sabemos que la raíz indicial es $r = 0$, entonces la relación de recurrencia se reduce a

$$c_{k} = \dfrac{k -(\lambda + 1)}{k^{2}}c_{k -1}, \hspace{1cm} k = 1, 2, 3, \cdots \label{18} \tag{18}$$

Determinemos los coeficientes.

$k = 1$.

$$c_{1} = \dfrac{1 -(\lambda + 1)}{1^{2}}c_{0} = -\lambda c_{0}$$

$k = 2$.

$$c_{2} = \dfrac{2 -(\lambda + 1)}{2^{2}}c_{1} = \dfrac{1 -\lambda}{4}c_{1} = \dfrac{\lambda(\lambda -1)}{4}c_{0}$$

$k = 3$.

$$c_{3} = \dfrac{3 -(\lambda + 1)}{3^{2}}c_{2} = \dfrac{2 -\lambda}{9}c_{2} = -\dfrac{\lambda(\lambda -1)(\lambda -2)}{36}c_{0}$$

Continuando es posible encontrar el patrón y establecer que

$$c_{k} = (-1)^{k} \dfrac{\lambda(\lambda -1)(\lambda -2) \cdots (\lambda -k + 1)}{(k!)^{2}}c_{0} \label{19} \tag{19}$$

De tarea moral demuestra por inducción el resultado anterior.

Entonces la solución de la ecuación de Laguerre es

\begin{align*}
y(x) &= c_{0} \left( 1 -\dfrac{\lambda}{(1!)^{2}} x + \dfrac{\lambda(\lambda -1)}{(2!)^{2}}x^{2} -\dfrac{\lambda(\lambda -1)(\lambda -2)}{(3!)^{2}}x^{3} + \cdots + (-1)^{k} \dfrac{\lambda(\lambda -1)(\lambda -2) \cdots (\lambda -k + 1)}{(k!)^{2}}x^{k} + \cdots \right) \label{20} \tag{20}
\end{align*}

Recordemos que el método de Frobenius nos dice que existe una segunda solución de la forma

$$y_{2}(x) = y_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}$$

Obtener la segunda solución resulta ser una tarea muy complicada debido a la enorme cantidad de cálculos que se deben realizar, en el video correspondiente se hace notar esta dificultad, sin embargo la solución obtenida suele ser suficiente para trabajar y es la que se utiliza en las aplicaciones que aparecen principalmente en Física.

Observemos que si $\lambda \in \mathbb{Z}^{+}$, entonces la serie solución se hace finita, ya que cada coeficiente de la serie contiene un término $(\lambda -m)$ con $m \in \mathbb{Z}^{+}$ que se repite cada vez que aparece por primera vez, por ejemplo el término $(\lambda -2)$ aparece por primera vez en el coeficiente de $x^{3}$ y a partir de ahí aparece en el resto de coeficientes de la serie, de manera que si $\lambda = 2$, entonces todos los coeficientes que contengan el término $(\lambda -2)$ se anularán y sólo nos quedará un polinomio de grado $n = 2$. Estos polinomios resultantes son los llamados polinomios de Laguerre.

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $c_{0}$ se obtienen los siguientes polinomios de Laguerre.

\begin{align*}
L_{0}(x) &= 1 \\
L_{1}(x) &= 1 -x \\
L_{2}(x) &= 1 -2x + \dfrac{1}{2}x^{2} \\
L_{3}(x) &= 1 -3x + \dfrac{3}{2}x^{2} -\dfrac{1}{6}x^{3} \\
\vdots
\end{align*}

En general, el $n$-ésimo polinomio de Laguerre será solución particular de la ecuación de Laguerre cuando $\lambda = n$.

Finalicemos esta entrada con la ecuación de Legendre.

Ecuación de Legendre

La ecuación de Legendre es

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0 \label{21} \tag{21}$$

Con $\lambda$ una constante.

Esta ecuación lleva este nombre en honor al matemático francés Adrien – Marie Legendre (1752 – 1833). Legendre hizo importantes contribuciones a la estadística, la teoría de números, el álgebra abstracta y el análisis matemático.

Resolvamos la ecuación, dividimos todo por el coeficiente de la segunda derivada de $y$.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{2x}{1 -x^{2}} \dfrac{dy}{dx} + \dfrac{\lambda(\lambda + 1)}{1 -x^{2}} y = 0 \label{22} \tag{22}$$

Identificamos que

$$P(x) = -\dfrac{2x}{1 -x^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda(\lambda + 1)}{1 -x^{2}}$$

Vemos que ambas funciones no están definidas en $x = 1$ ni $x = -1$, pero si en en el punto $x_{0} = 0$, de manera que dicho punto es un punto ordinario, entonces la forma de la solución de la ecuación de Legendre es

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

Con primera y segunda derivada dadas como

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituyamos en la ecuación de Legendre.

$$(1 -x^{2}) \left[ \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n-2} \right] -2x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda(\lambda + 1) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

Expandiendo y simplificando, se tiene

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -\sum_{n = 2}^{\infty }n(n -1)c_{n}x^{n} -2\sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda(\lambda + 1) \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos $k = n -2$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty }k(k -1)c_{k}x^{k} -2\sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda(\lambda + 1) \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos los términos para $k = 0$ y $k = 1$ y con ello lograr que todas las series comiencen en $k = 2$.

Por un lado, para $k = 0$,

$$2c_{2} + \lambda(\lambda + 1) c_{0} = 0$$

De donde

$$c_{2} = -\dfrac{\lambda(\lambda + 1)}{2}c_{0}$$

Por otro lado, para $k = 1$,

\begin{align*}
3(2)c_{3}x -2c_{1}x + \lambda(\lambda + 1) c_{1}x &= 0 \\
\left[6c_{3} -2c_{1} + \lambda(\lambda + 1) c_{1} \right]x &= 0 \\
6c_{3} -2c_{1} + \lambda(\lambda + 1) c_{1} &= 0
\end{align*}

De donde

$$c_{3} = \dfrac{2 -\lambda(\lambda + 1)}{6}c_{1}$$

Veremos más adelante que es conveniente escribir este resultado como

$$c_{3} = -\dfrac{(\lambda -1)(\lambda + 2)}{6}c_{1}$$

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty }k(k -1)c_{k}x^{k} -2\sum_{k = 2}^{\infty}kc_{k}x^{k} + \lambda(\lambda + 1) \sum_{k = 2}^{\infty}c_{k}x^{k} = 0 \label{23} \tag{23}$$

Juntemos todo en una sola serie.

$$\sum_{k = 2}^{\infty} \left[ (k + 2)(k + 1)c_{k + 2} -k(k -1)c_{k} -2kc_{k} + \lambda(\lambda + 1)c_{k} \right] x^{k} = 0$$

De donde es necesario que

$$(k + 2)(k + 1)c_{k + 2} -\left[ k(k -1) + 2k -\lambda(\lambda + 1)\right]c_{k} = 0 \label{24} \tag{24}$$

Despejando a $c_{k + 2}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{k(k -1) + 2k -\lambda(\lambda + 1)}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, \cdots \label{25} \tag{25}$$

Es conveniente reescribir a la ecuación de recurrencia de la siguiente manera.

$$c_{k + 2} = -\dfrac{(\lambda -k)(\lambda + k + 1)}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, \cdots \label{26} \tag{26}$$

Determinemos los coeficientes. Ya vimos que para $k = 0$,

$$c_{2} = -\dfrac{\lambda(\lambda + 1)}{2!}c_{0}$$

y para $k = 1$,

$$c_{3} = -\dfrac{(\lambda -1)(\lambda + 2)}{3!}c_{1}$$

$k = 2$.

$$c_{4} = -\dfrac{(\lambda -2)(\lambda + 3)}{(4)(3)}c_{2} = \dfrac{(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)}{4!}c_{0}$$

$k = 3$.

$$c_{5} = -\dfrac{(\lambda -3)(\lambda + 4)}{(5)(4)}c_{3} = \dfrac{(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)}{5!}c_{1}$$

$k = 4$.

$$c_{6} = -\dfrac{(\lambda -4)(\lambda + 5)}{(6)(5)}c_{4} = -\dfrac{(\lambda -4)(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)(\lambda + 5)}{6!}c_{0}$$

$k = 5$.

$$c_{7} = -\dfrac{(\lambda -5)(\lambda + 6)}{(7)(6)}c_{5} = -\dfrac{(\lambda -5)(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)(\lambda + 6)}{7!}c_{1}$$

Etcétera, si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces podemos escribir a la solución general de la ecuación de Legendre como

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{27} \tag{27}$$

Donde,

\begin{align*}
y_{1}(x) &= 1 -\dfrac{\lambda(\lambda + 1)}{2!}x^{2} + \dfrac{(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)}{4!}x^{4} \\
&-\dfrac{(\lambda -4)(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)(\lambda + 5)}{6!}x^{6} + \cdots \label{28} \tag{28}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x -\dfrac{(\lambda -1)(\lambda + 2)}{3!}x^{3} + \dfrac{(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)}{5!}x^{5} \\
&-\dfrac{(\lambda -5)(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)(\lambda + 6)}{7!}x^{7} + \cdots \label{29} \tag{29}
\end{align*}

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $C_{1}$ y de $C_{2}$ se obtienen los conocidos polinomios de Legendre:

\begin{align*}
P_{0}(x) &= 1 \\
P_{1}(x) &= x \\
P_{2}(x) &= \dfrac{1}{2}(3x^{2} -1) \\
P_{3}(x) &= \dfrac{1}{2}(5x^{3} -3x) \\
P_{4}(x) &= \dfrac{1}{8}(35x^{4} -30x^{2} + 3) \\
P_{5}(x) &= \dfrac{1}{8}(63x^{5} -70x^{3} + 15x) \\
\vdots
\end{align*}

En general, el $n$-ésimo polinomio de Legendre será solución particular de la ecuación de Legendre cuando $\lambda = n$.

La ecuación de Legendre aparece con mucha frecuencia en problemas de Física, en particular en electromagnetismo en problemas de valor límite en esferas.

Los polinomios de Legendre aparecen cuando se resuelve la ecuación de Helmholtz (un tipo de ecuación en derivadas parciales) en coordenadas esféricas mediante el método de separación de variables.

Hasta aquí concluimos esta primer entrada sobre la resolución de algunas ecuaciones diferenciales especiales de segundo orden, en la siguiente entrada continuaremos resolviendo el resto de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Los primeros 6 polinomios de Hermite son solución de la ecuación de Hermite para $\lambda = 0, 2, 4, 6, 8, 10$ respectivamente. Determinar el valor de las constantes $C_{1}$ y $C_{2}$, tal que se obtengan los primeros 6 polinomios de Hermite.
  1. Resolver la siguiente ecuación de Hermite realizando todo el procedimiento del método.
  • $\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + 4y = 0$
  1. Los primeros 4 polinomios de Laguerre son solución de la ecuación de Laguerre para $\lambda = 0, 1, 2, 3$ respectivamente. Determinar el valor del coeficiente $c_{0}$, tal que se obtengan los primeros 4 polinomios de Laguerre.
  1. Resolver la siguiente ecuación de Laguerre realizando todo el procedimiento del método.
  • $x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + 4y = 0$
  1. Los primeros 6 polinomios de Legendre son solución de la ecuación de Legendre para $\lambda = 0, 1, 2, 3, 4, 5$ respectivamente. Determinar el valor correspondiente de $C_{1}$ y $C_{2}$, tal que se obtengan los primeros 6 polinomios de Legendre.
  1. Los puntos $x_{0} = 1$ y $x_{0} =- 1$ son puntos singulares de la ecuación de Legendre. Usando el método de Frobenius determinar la solución de la ecuación de Legendre con respecto al punto singular $x_{0} = 1$.
    Hint: Usar el cambio de variable $t = x -x_{0}$ y la regla de la cadena.

Más adelante…

Hemos resuelto 3 de las 7 ecuaciones diferenciales especiales que deseamos resolver, en la siguiente entrada concluiremos con el resto de ecuaciones y así mismo estaremos concluyendo con la unidad 2 del curso.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos singulares

Por Omar González Franco

Sin matemáticas, no hay nada que puedas hacer. Todo a tu alrededor
es matemáticas. Todo a tu alrededor son números.
– Shakuntala Devi

Introducción

Hemos comenzado con el estudio de las ecuaciones diferenciales lineales de segundo orden con coeficientes variables. Ya hemos aprendido cómo obtener soluciones con respecto a puntos ordinarios, ahora aprenderemos a obtener soluciones con respecto a puntos singulares.

En la entrada anterior vimos que para resolver ecuaciones de la forma

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0 \label{1} \tag{1}$$

se proponía una solución de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{2} \tag{2}$$

donde $x_{0}$ es un punto ordinario de la ecuación diferencial (\ref{1}).

En ocasiones no se pueden encontrar soluciones como (\ref{2}), así que se propone una solución de la forma

$$y(x) = (x -x_{0})^{r} \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{3} \tag{3}$$

Donde $r$ es una constante. En realidad, la solución (\ref{3}) es una generalización ya que si $r = 0$ regresamos a la forma (\ref{2}).

En esta entrada aprenderemos a resolver ecuaciones diferenciales en las que su solución es de la forma (\ref{3}).

Puntos singulares

El que la solución de una ecuación diferencial sea de la forma (\ref{3}) esta directamente relacionado con que el punto $x_{0}$ sea un punto singular y no un punto ordinario. En la entrada anterior definimos estos conceptos, sin embargo en esta entrada es necesario profundizar más acerca de los puntos singulares. Recordemos la definición de punto singular.

Nota: Las siguientes definiciones se basan en la forma estándar (\ref{1}) de una ecuación diferencial lineal de segundo orden.

Lo nuevo ahora es que un punto singular puede ser clasificado como regular o irregular.

Para fines prácticos en conveniente definir los puntos singulares regulares e irregulares a través de un límite.

Realicemos algunos ejemplos.

Ejemplo: Clasificar los puntos singulares de la ecuación diferencial

$$x^{3}(x^{2} -9) \dfrac{d^{2}y}{dx^{2}} + (x+3) \dfrac{dy}{dx} + (x -3)^{3}y = 0$$

Solución: El primer paso es escribir a la ecuación diferencial en la forma estándar (\ref{1}), así que dividimos toda la ecuación por el coeficiente de la segunda derivada de $y$.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1}{x^{3}(x -3)} \dfrac{dy}{dx} + \dfrac{(x -3)^{2}}{x^{3}(x + 3)} y = 0$$

Identificamos que

$P(x) = \dfrac{1}{x^{3}(x -3)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{(x -3)^{2}}{x^{3}(x + 3)}$

Notamos que la función $P(x)$ no está definida en los puntos $x = 3$ y $x = 0$, mientras que la función $Q(x)$ no está definida en $x = -3$ y $x = 0$, de manera que los puntos singulares son $x_{0} = 3$, $x_{0} = 0$ y $x_{0} = -3$. El resto de puntos en $\mathbb{R}$ son puntos ordinarios de la ecuación diferencial.

Para determinar si son regulares o irregulares definamos las nuevas funciones de acuerdo a (\ref{4}) y observemos si dichas funciones son analíticas o no en el correspondiente punto singular.

  • Caso 1: $x_{0} = 3$.

Definamos las nuevas funciones.

$$p(x) = (x -3)P(x) = \dfrac{1}{x^{3}} \hspace{1cm} y \hspace{1cm} q(x) = (x-3)^{2}Q(x) = \dfrac{(x -3)^{4}}{x^{3}(x + 3)}$$

Es claro que las nuevas funciones $p(x)$ y $q(x)$ si son analíticas en $x_{0} = 3$, por lo que dicho punto es un punto singular regular. Usando la definición de límite, se tiene

$$\lim_{x \to 3} p(x) = \lim_{x \to 3}\dfrac{1}{x^{3}} = \dfrac{1}{9} \hspace{1cm} y \hspace{1cm} \lim_{x \to 3} q(x) = \lim_{x \to 3} \dfrac{(x -3)^{4}}{x^{3}(x + 3)} = 0$$

Los límites existen, así que llegamos a la misma conclusión.

  • Caso 2: $x_{0} = 0$.

Definamos las nuevas funciones.

$$p(x) = x P(x) = \dfrac{1}{x^{2}(x -3)} \hspace{1cm} y \hspace{1cm} q(x) = x^{2} Q(x) = \dfrac{(x -3)^{2}}{x(x + 3)}$$

En este caso las funciones $p(x)$ y $q(x)$ siguen sin estar definidas para $x = 0$ lo que significa que no se pueden representar mediante una serie de potencias, es decir, no son analíticas en dicho punto. Veamos que ocurre con los limites. Por un lado,

$$\lim_{x \to 0}p(x) = \lim_{x \to 0}\dfrac{1}{x^{2}(x -3)} = -\infty$$

Por otro lado,

$$\lim_{x \to 0^{+}} q(x) = \lim_{x \to 0^{+}} \dfrac{(x -3)^{2}}{x(x + 3)} = \infty \hspace{1cm} y \hspace{1cm} \lim_{x \to 0^{-}} q(x) = \lim_{x \to 0^{-}} \dfrac{(x -3)^{2}}{x(x + 3)} = -\infty $$

Vemos que el limite de $p(x)$ es divergente, mientras que el límite de $q(x)$ no existe en $x = 0$.

En conclusión, $x_{0} = 0$ es un punto singular irregular.

  • Caso 3: $x_{0} = -3$.

Definamos las nuevas funciones.

$$p(x) = (x+3) P(x) = \dfrac{x + 3}{x^{3}(x -3)} \hspace{1cm} y \hspace{1cm} q(x) = (x + 3)^{2} Q(x) = \dfrac{(x -3)^{2}(x + 3)}{x^{3}}$$

Las nuevas funciones son analíticas en $x_{0} = -3$, confirmemos que los límites existen.

$$\lim_{x \to -3} p(x) = \lim_{x \to -3} \dfrac{x + 3}{x^{3}(x -3)} = 0 \hspace{1cm} y \hspace{1cm} \lim_{x \to -3} q(x) = \lim_{x \to -3} \dfrac{(x -3)^{2}(x + 3)}{x^{3}} = 0$$

En efecto, los limites existen, así que $x_{0} = -3$ es un punto singular regular.

$\square$

Realicemos un ejemplo más.

Ejemplo: Determinar el punto singular de la ecuación diferencial

$$(x + 1)^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + x^{2} y = 0$$

Solución: Escribimos a la ecuación diferencial en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{x}{(x + 1)^{2}} \dfrac{dy}{dx} + \dfrac{x^{2}}{(x + 1)^{2}} y = 0$$

Identificamos que

$$P(x) = \dfrac{x}{(x + 1)^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{x^{2}}{(x + 1)^{2}}$$

Notamos que el único punto singular es $x_{0} = -1$. Definamos las funciones $p(x)$ y $q(x)$.

$$p(x) = (x + 1)P(x) = \dfrac{x}{x+1} \hspace{1cm} y \hspace{1cm} q(x) = (x + 1)^{2}Q(x) = x^{2}$$

Aunque la función $q(x)$ si es analítica en $x_{0} = -1$, $p(x)$ no lo es. Por lo tanto, la ecuación diferencial no se puede desarrollar en potencias de $x + 1$ y por definición $x_{0} = -1$ es un punto singular irregular.

$\square$

Solución a ecuaciones diferenciales

Ahora que sabemos identificar puntos singulares de una ecuación diferencial podemos resolverlas con respecto a dichos puntos proponiendo una solución de la forma (\ref{3}). Ahora bien, debido a la complejidad de los cálculos, sólo estudiaremos el caso en el que el punto $x_{0} = 0$ es un punto singular regular.

A continuación enunciamos el teorema que establece que (\ref{3}) es una solución de la ecuación diferencial (\ref{1}) con respecto al punto singular $x_{0}$.

Con este teorema podemos establecer lo siguiente:

  • Si $x_{0}$ es un punto ordinario, entonces $r = 0$ y (\ref{2}) es la solución general.
  • Si $x_{0}$ es un punto singular regular, entonces (\ref{6}) dará una solución o la solución general.
  • Si $x_{0}$ es un punto singular irregular, entonces pueden o no existir soluciones de la forma (\ref{6}).

No demostraremos este teorema, pero será la base para resolver ecuaciones diferenciales.

La manera de resolver ecuaciones diferenciales con respecto a puntos singulares es bastante similar al caso de soluciones con respecto a puntos ordinarios, sin embargo en este caso, además de obtener una relación de recurrencia, obtendremos una ecuación cuadrática para $r$ que deberemos de resolver, a dicha ecuación se le conoce como ecuación indicial.

A continuación desarrollaremos el método de resolución que nos permitirá obtener la expresión general de la ecuación indicial, dicho método se conoce como método de Frobenius.

Método de Frobenius

Queremos resolver una ecuación diferencial en su forma estándar con respecto al punto singular regular $x_{0} = 0$.

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0$$

Multipliquemos esta ecuación por $x^{2}$.

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x [xP(x)] \dfrac{dy}{dx} + [x^{2}Q(x)] y = 0$$

Si usamos las definiciones (\ref{4}) para $x_{0} = 0$, entonces podemos escribir la ecuación anterior de la siguiente manera.

$$x^{2}\dfrac{d^{2}y}{dx^{2}} + xp(x) \dfrac{dy}{dx} + q(x)y = 0 \label{7} \tag{7}$$

Con $p(x)$ y $q(x)$ son funciones analíticas en $x = 0$, esto significa que se pueden representar mediante una serie de potencias con respecto a dicho punto, sean

$$p(x) = p_{0} + p_{1}x + p_{2}x^{2} + \cdots = \sum_{n = 0}^{\infty} p_{n}x^{n} \label{8} \tag{8}$$

y

$$q(x) = q_{0} + q_{1}x + q_{2}x^{2} + \cdots = \sum_{n = 0}^{\infty} q_{n}x^{n} \label{9} \tag{9}$$

dichas series. Una observación interesante es que si todos los coeficientes son cero excepto $p_{0}$ y $q_{0}$, entonces recuperamos la ecuación de Cauchy – Euler.

$$x^{2}\dfrac{d^{2}y}{dx^{2}} + p_{0}x \dfrac{dy}{dx} + q_{0}y = 0 \label{10} \tag{10}$$

El teorema anterior nos indica que la forma de la solución es

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

La primera y segunda derivada son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Sustituyamos todos estos resultados en la ecuación diferencial (\ref{7}).

$$x^{2} \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} + x \left[ \sum_{n = 0}^{\infty} p_{n}x^{n} \right] \sum_{n = 0}(n + r)c_{n}x^{n + r -1} + \left[ \sum_{n = 0}^{\infty} q_{n}x^{n} \right] \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

Introducimos los términos $x^{2}$ y $x$ a las series de las derivadas de $y$.

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \left[ \sum_{n = 0}^{\infty} p_{n}x^{n} \right] \sum_{n = 0}(n + r)c_{n}x^{n + r} + \left[ \sum_{n = 0}^{\infty} q_{n}x^{n} \right] \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

Tomemos los términos para $n = 0$.

\begin{align*}
r(r -1)c_{0}x^{r} + p_{0}rc_{0}x^{r} + q_{0}c_{0}x^{r} &= 0 \\
c_{0}x^{r} [r(r -1) + p_{0}r + q_{0}] &= 0
\end{align*}

Sabemos que $x^{r} \neq 0$ y el método nos obliga a considerar que siempre $c_{0} \neq 0$, entonces

$$r(r -1) + p_{0}r + q_{0} = 0$$

o bien,

$$r^{2} + (p_{0} -1)r + q_{0} = 0 \label{11} \tag{11}$$

Esta relación corresponde a la ecuación indicial con raíces $r_{1}$ y $r_{2}$ reales. En todos los casos se le asigna a $r_{1}$ la raíz mayor, es decir, debe ocurrir que $r_{1} > r_{2}$, siempre y cuando no sean raíces repetidas. A las raíces $r_{1}$ y $r_{2}$ se les denomina raíces indiciales.

El siguiente paso en el método es continuar igualando cada término a cero a través de una relación de recurrencia y con ello determinar los coeficientes de la solución propuesta $y(x)$, todo de manera similar que en el método de la entrada anterior.

En el enunciado del teorema enfatizamos que hay al menos una solución, esto significa que no siempre puede obtenerse una segunda serie solución que junto con la primera serie forme la solución general de la ecuación diferencial. No lo demostraremos, pero a continuación se muestra la forma de ambas soluciones linealmente independientes de acuerdo a los casos que pueden ocurrir con las raíces indiciales.

De acuerdo a la ecuación indicial (\ref{11}) se distinguen tres casos:

  • Caso 1: $r_{1} -r_{2} \neq$ número entero.

En este caso las soluciones de la ecuación diferencial (\ref{1}), son

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r_{1}}, \hspace{1cm} c_{0} \neq 0 \label{12} \tag{12}$$

$$y_{2}(x) = \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r_{2}}, \hspace{1cm} \hat{c}_{0} \neq 0 \label{13} \tag{13}$$

  • Caso 2: $r_{1} = r_{2} = r$.

En el caso en el que ambas raíces indiciales son iguales, las soluciones de la ecuación diferencial (\ref{1}), son

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}, \hspace{1cm} c_{0} \neq 0 \label{14} \tag{14}$$

$$y_{2}(x) = y_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r} \label{15} \tag{15}$$

  • Caso 3: $r_{1} -r_{2} =$ entero positivo.

En este caso las soluciones de la ecuación diferencial (\ref{1}), son

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r_{1}}, \hspace{1cm} c_{0} \neq 0 \label{16} \tag{16}$$

$$y_{2}(x) = Cy_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r_{2}}, \hspace{1cm} \hat{c}_{0} \neq 0 \label{17} \tag{17}$$

Donde $C$ es una constante que podría ser cero.

En todos los casos $y_{1}(x)$ y $y_{2}(x)$ son linealmente independientes. Por lo tanto, la solución general es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{18} \tag{18}$$

En los casos en los que el método de Frobenius no nos de una segunda solución es posible obtenerla con métodos que ya hemos estudiado antes. El primero de ellos es usar variación de parámetros, en este caso se propone la solución

$$y_{2}(x) = u(x)y_{1}(x)$$

y se sustituye, junto con las derivadas correspondientes, en la ecuación diferencial, esto nos permitirá obtener una ecuación diferencial para $u(x)$ que debemos resolver.

Otro método es usar directamente la forma de las soluciones $y_{2}(x)$ propuestas anteriormente para cada caso, calcular las derivadas correspondientes y sustituir en la ecuación diferencial.

Un tercer método se puede aplicar una vez que ya hemos determinado la primer solución $y_{1}(x)$ y es usando la expresión que deducimos en entradas anteriores.

$$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x) dx}}}{y_{1}^{2}(x)} dx} \label{19} \tag{19}$$

Una de las mejores maneras para comprender algo es a través de ejemplos y práctica, así que hemos decidido resolver tres ejemplos, uno para cada caso y así poder comprender del todo en qué consiste el método de Frobenius.

Cabe mencionar que a lo largo de esta entrada hemos dado las herramientas para trabajar, pero no se ha dado un fundamento formal de los resultados, para conocerlos se pueden revisar los videos del tema correspondiente en la sección de videos de este curso, en él se encontrarán los fundamentos de cómo es que se obtienen las soluciones linealmente independientes dadas para cada condición de las raíces indiciales.

Para concluir esta entrada realicemos los 3 ejemplos antes mencionados.

Solución cuando la diferencia de las raíces indiciales difiere de un número entero

Ejemplo: Resolver la ecuación diferencial

$$3x^{2} \dfrac{d^{2}y}{dx^{2}} -x\dfrac{dy}{dx} + (1 -x) y = 0$$

con respecto al punto singular $x_{0} = 0$.

Solución: Dividimos la ecuación diferencial por el coeficiente de la segunda derivada de $y$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{3x} \dfrac{dy}{dx} + \dfrac{1 -x}{3x^{2}}y = 0$$

Identificamos que

$$P(x) = -\dfrac{1}{3x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{1-x}{3x^{2}}$$

Ninguna función está definida en $x = 0$. Definimos las funciones $p(x)$ y $q(x)$ de acuerdo a (\ref{4}).

$$p(x) = -\dfrac{1}{3} \hspace{1cm} y \hspace{1cm} q(x) = \dfrac{1-x}{3}$$

Vemos que

$$\lim_{x \to 0} p(x) = -\dfrac{1}{3} \hspace{1cm} y \hspace{1cm} \lim_{x \to 0} q(x) = \dfrac{1}{3}$$

Esto nos muestra que $p(x)$ y $q(x)$ son analíticas en $x = 0$ y que dicho punto es un punto singular regular.

Obtendremos la ecuación indicial directamente de la expresión (\ref{11}).

Vemos que

$$p(x) = \sum_{n = 0}^{\infty}p_{n}x^{n} = p_{0} + p_{1}x + p_{2}x^{2} + \cdots = -\dfrac{1}{3}$$

de donde,

$$p_{0} = -\dfrac{1}{3}$$

y $p_{k} = 0$ $\forall$ $k \geqslant 1$ con $k \in \mathbb{N}$. Por otro lado

$$q(x) = \sum_{n = 0}^{\infty}q_{n}x^{n} = q_{0} + q_{1}x + q_{2}x^{2} + \cdots = \dfrac{1}{3} -\dfrac{1}{3}x$$

de donde,

$$q_{0} = \dfrac{1}{3} \hspace{1cm} y \hspace{1cm} q_{1} = -\dfrac{1}{3}$$

y $q_{k} = 0$ $\forall$ $k \geqslant 2$ con $k \in \mathbb{N}$.

Sustituimos $p_{0}$ y $q_{0}$ en la ecuación indicial (\ref{11}).

$$r^{2} + \left( -\dfrac{1}{3} -1 \right)r + \dfrac{1}{3} = r^{2} -\dfrac{4}{3}r + \dfrac{1}{3} = 0$$

Resolviendo para $r$ se obtiene que las raíces son

$$r_{1} = 1 \hspace{1cm} y \hspace{1cm} r_{2}= \dfrac{1}{3}$$

Notemos que

$$r_{1} -r_{2} = \dfrac{2}{3}$$

es decir, la diferencia de las raíces indiciales difiere de un número entero, esto nos indica que estamos en condiciones del caso 1, en donde las soluciones están dadas por las funciones (\ref{12}) y (\ref{13}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 1}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1/3}, \hspace{1cm} \hat{c}_{0} \neq 0$$

Para continuar con el método de Frobenius consideremos la solución general

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

y sus derivadas

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Una vez obtenida la relación de recurrencia ya se podrá sustituir los valores correspondientes de $r$. Sustituyamos en la ecuación diferencial.

$$3x^{2} \left[ \sum_{n = 0}^{\infty} (n + r)(n + r -1)c_{n}x^{n + r -2} \right] -x \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + (1 -x) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$3 \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r} -\sum_{n = 0}^{\infty}c_{n}x^{n + r + 1} = 0$$

En la última serie hacemos $k = n + 1$ y en el resto $k = n$.

$$3 \sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}c_{k}x^{k + r} -\sum_{k = 1}^{\infty}c_{k -1}x^{k + r} = 0$$

Para que todas las series comiencen en $k = 1$ extraemos el primer término de las tres primeras series y la suma la igualamos a cero.

\begin{align*}
3r(r -1)c_{0}x^{r} -rc_{0}x^{r} + c_{0}x^{r} &= 0 \\
c_{0}x^{r} \left[ 3r(r -1) -r + 1 \right] &= 0
\end{align*}

Como $x^{r} \neq 0$ y $c_{0} \neq 0$, entonces

\begin{align*}
3r(r -1) -r + 1 &= 0 \\
3r^{2} -4r + 1 &= 0
\end{align*}

Con este otro procedimiento podemos obtener la ecuación indicial. Ahora nos queda la ecuación

$$3 \sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} -\sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}c_{k}x^{k + r} -\sum_{k = 1}^{\infty}c_{k -1}x^{k + r} = 0$$

Podemos juntar todas las series en una sola.

$$\sum_{k = 1}^{\infty} [3(k + r)(k + r -1)c_{k} -(k + r)c_{k} + c_{k} -c_{k -1}]x^{k + r} = 0$$

Para satisfacer la igualdad es necesario que

$$c_{k} [3(k + r)(k + r -1) -(k + r) + 1] -c_{k -1} = 0$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{c_{k -1}}{3(k + r)(k + r -1) -(k + r) +1}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Hay que determinar los coeficientes para cada valor de las raíces indiciales. Para el valor de la primer raíz indicial $r = 1$, la relación de recurrencia es

$$c_{k} = \dfrac{c_{k -1}}{k(3k + 2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Determinemos los coeficientes para este caso.

$k = 1$.

$$c_{1} = \dfrac{c_{0}}{1(3(1) + 2)} = \dfrac{c_{0}}{5}$$

$k = 2$.

$$c_{2} = \dfrac{c_{1}}{2(3(2) + 2)} = \dfrac{c_{1}}{16} = \dfrac{c_{0}}{80}$$

$k = 3$.

$$c_{3} = \dfrac{c_{2}}{3(3(3) + 2)} = \dfrac{c_{2}}{33} = \dfrac{c_{0}}{2640}$$

$k = 4$.

$$c_{4} = \dfrac{c_{3}}{4(3(4) + 2)} = \dfrac{c_{3}}{56} = \dfrac{c_{0}}{147840}$$

Etcétera, entonces la primer solución es de la forma

\begin{align*}
y_{1}(x) &= x^{1} ( c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + \cdots) \\
&= x \left( c_{0} + \dfrac{c_{0}}{5}x + \dfrac{c_{0}}{80}x^{2} + \dfrac{c_{0}}{2640}x^{3} + \dfrac{c_{0}}{147840}x^{4} + \cdots \right) \\
&= c_{0}x \left( 1 + \dfrac{x}{5} + \dfrac{x^{2}}{80} + \dfrac{x^{3}}{2640} + \dfrac{x^{4}}{147840} + \cdots \right)
\end{align*}

Por otro lado, para $r = \dfrac{1}{3}$ la relación de recurrencia es

$$\hat{c}_{k} = \dfrac{\hat{c}_{k -1}}{k(3k -2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Usamos la notación $\hat{c}_{k}$ sólo para hacer referencia de que son los coeficientes de la segunda solución, pero se obtiene de la misma relación de recurrencia obtenida por el método, sólo que ahora usando $r = \dfrac{1}{3}$.

Determinemos los coeficientes para este caso.

$k = 1$.

$$\hat{c}_{1} = \dfrac{\hat{c}_{0}}{1(3(1) -2)} = \hat{c}_{0}$$

$k = 2$.

$$\hat{c}_{2} = \dfrac{\hat{c}_{1}}{2(3(2) -2)} = \dfrac{\hat{c}_{0}}{8}$$

$k = 3$.

$$\hat{c}_{3} = \dfrac{\hat{c}_{2}}{3(3(3) -2)} = \dfrac{\hat{c}_{2}}{21} = \dfrac{\hat{c}_{0}}{168}$$

$k = 4$.

$$\hat{c}_{4} = \dfrac{\hat{c}_{3}}{4(3(4) -2)} = \dfrac{\hat{c}_{3}}{40} = \dfrac{\hat{c}_{0}}{6720}$$

Etcétera, entonces la segunda solución es de la forma

\begin{align*}
y_{2}(x) &= x^{1/3} (\hat{c}_{0} + \hat{c}_{1}x + \hat{c}_{2}x^{2} + \hat{c}_{3}x^{3} + \hat{c}_{4}x^{4} + \cdots) \\
&= x^{1/3} \left( \hat{c}_{0} + \hat{c}_{0}x + \dfrac{\hat{c}_{0}}{8}x^{2} + \dfrac{\hat{c}_{0}}{168}x^{3} + \dfrac{\hat{c}_{0}}{6720}x^{4} + \cdots \right) \\
&= \hat{c}_{0}x^{1/3} \left( 1 + x + \dfrac{x^{2}}{8} + \dfrac{x^{3}}{168} + \dfrac{x^{4}}{6720} + \cdots \right)
\end{align*}

Si definimos $C_{1} = c_{0}$ y $C_{2} = \hat{c}_{0}$, entonces la solución general de la ecuación diferencial es

$$y(x) = C_{1}x \left( 1 + \dfrac{x}{5} + \dfrac{x^{2}}{80} + \dfrac{x^{3}}{2640} + \dfrac{x^{4}}{147840} + \cdots \right) + C_{2} x^{1/3} \left( 1 + x + \dfrac{x^{2}}{8} + \dfrac{x^{3}}{168} + \dfrac{x^{4}}{6720} + \cdots \right)$$

$\square$

Con este ejemplo podemos aclarar algunas cosas.

La primera de ellas es que desarrollando el método mismo obtendremos la ecuación indicial, así que no necesariamente debemos sustituir en la ecuación (\ref{11}), sin embargo sustituir en la ecuación (\ref{11}) nos permitirá, desde un inicio, conocer las raíces indiciales y con ello podremos determinar la forma de la segunda solución según sea el caso.

Otra cosa importante es que se pueden calcular los coeficientes que se deseen, en el ejemplo sólo calculamos los primeros $5$ coeficientes, es decir hasta $k = 4$, pero se puede continuar, lo interesante de continuar es que en algunas ocasiones es posible determinar una relación que generaliza la forma de los coeficientes y con ello formar una serie que incluso puede converger a una función conocida. Los siguientes ejercicios son un ejemplo de esto.

También hay que mencionar que en este ejemplo el método de Frobenius sí nos proporcionó la segunda solución usando la relación de recurrencia, esto no ocurrirá en algunos otros casos, como el que sigue a continuación, en estos casos será necesario aplicar algunos de los métodos que ya mencionamos antes.

Solución cuando las raíces indiciales son repetidas

Ejemplo: Resolver la ecuación diferencial

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + (x^{2} -x) \dfrac{dy}{dx} + y = 0$$

con respecto al punto singular $x_{0} = 0$.

Solución: Escribimos la ecuación en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{x -1}{x} \dfrac{dy}{dx} + \dfrac{1}{x^{2}} y = 0$$

Identificamos que

$$P(x) = \dfrac{x -1}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{1}{x^{2}}$$

Mientras que las funciones $p(x)$ y $q(x)$ están dadas por

$$p(x) = x -1 \hspace{1cm} y \hspace{1cm} q(x) = 1$$

Como los límites existen

$$\lim_{x \to 0}p(x) = -1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0} q(x) = 1$$

entonces $x = 0$ es un punto singular regular. En esta ocasión vamos a obtener las raíces indiciales directamente de la expresión resultante para $k = 0$. Sustituyamos las funciones correspondientes en la ecuación diferencial.

$$x^{2} \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + (x^{2} -x) \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r + 1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En la segunda serie hacemos $k = n + 1$ y en el resto $k = n$.

$$ \sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}(k -1 + r)c_{k-1}x^{k + r} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}c_{k}x^{k + r} = 0$$

Extraemos el primer término de las series que comienzan con $k = 0$ para que todas comiencen con $k = 1$ y la suma de dichos términos la igualamos a cero.

\begin{align*}
r(r -1)c_{0}x^{r} -rc_{0}x^{r} + c_{0}x^{r} &= 0 \\
c_{0}x^{r}[r(r -1) -r + 1] &= 0
\end{align*}

como $x^{r} \neq 0$ y $c_{0} \neq 0$, entonces

\begin{align*}
r(r -1) -r + 1 &= 0 \\
r^{2} -2r + 1 &= 0
\end{align*}

Hemos obtenido la ecuación indicial. Resolviendo para $r$ se obtiene que

$$r_{1} = r_{2} = 1$$

Las raíces indiciales son iguales, de manera que estamos en condiciones del caso 2 en el que las soluciones son de la forma (\ref{14}) y (\ref{15}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 1}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = \ln (x) \sum_{n = 0}^{\infty}c_{n}x^{n + 1} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1}$$

Ahora tenemos la ecuación en la que todas las series tienen la misma potencia y comienzan con el mismo índice.

$$\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r} -\sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}c_{k}x^{k + r} = 0$$

Juntamos todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + r)(k + r -1)c_{k} + (k -1 + r)c_{k -1} -(k + r)c_{k} + c_{k}]x^{k + r} = 0$$

de donde

$$c_{k}[(k + r)(k + r -1) -(k + r) + 1] + c_{k -1}(k -1 + r) = 0$$

despejando a $c_{k}$ se obtiene la relación de recurrencia.

$$c_{k} = \dfrac{c_{k -1}(k -1 + r)}{(k + r) -1 -(k + r)(k + r -1)} = \dfrac{c_{k -1}}{1 -k -r}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Cómo $r = 1$, entonces la relación de recurrencia es

$$c_{k} = -\dfrac{c_{k -1}}{k}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Determinemos los coeficientes.

$k = 1$.

$$c_{1} = -\dfrac{c_{0}}{1} = -c_{0}$$

$k = 2$.

$$c_{2} = -\dfrac{c_{1}}{2} = \dfrac{c_{0}}{2}$$

$k = 3$.

$$c_{3} = -\dfrac{c_{2}}{3} = -\dfrac{c_{0}}{6}$$

$k = 4$.

$$c_{4} = -\dfrac{c_{3}}{4} = \dfrac{c_{0}}{24}$$

$k = 5$.

$$c_{5} = -\dfrac{c_{4}}{5} = -\dfrac{c_{0}}{120}$$

Etcétera, la primera solución es

\begin{align*}
y_{1}(x) &= x(c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + c_{5}x^{5} + \cdots) \\
&= x \left( c_{0} -c_{0}x + \dfrac{c_{0}}{2}x^{2} -\dfrac{c_{0}}{6}x^{3} + \dfrac{c_{0}}{24}x^{4} -\dfrac{c_{0}}{120}x^{5} + \cdots \right) \\
&= c_{0}x \left( 1 -x + \dfrac{x^{2}}{2} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\dfrac{x^{5}}{5!} + \cdots \right)
\end{align*}

Lo que mencionamos antes, la solución va teniendo forma de una serie que conocemos, pues sabemos que

$$e^{-x} = \sum_{n = 0}^{\infty} \dfrac{(-x)^{n}}{n!} = 1 -x + \dfrac{x^{2}}{2} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\dfrac{x^{5}}{5!} + \cdots$$

Entonces,

$$y_{1}(x) = c_{0}xe^{-x}$$

Consideremos que $c_{0} = 1 \neq 0$, así la primer solución de la ecuación diferencial es

$$y_{1}(x) = xe^{-x}$$

Notemos que el método ya no nos ofrece una segunda solución. Para obtener la segunda solución se pueden usar los tres métodos antes mencionados. Uno de ellos es usando variación de parámetros. Un segundo método puede ser por derivación de la solución propuesta

$$y_{2}(x) = y_{1}\ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1}$$

las derivadas son

$$\dfrac{dy_{2}}{dx} = \dfrac{y_{1}}{x} + \ln (x)\dfrac{dy_{1}}{dx} + \sum_{n = 0}^{\infty}(n + 1)\hat{c}_{n}x^{n}$$

y

$$\dfrac{d^{2}y_{2}}{dx^{2}} = -\dfrac{y_{1}}{x^{2}} + \dfrac{2}{x} \dfrac{dy_{1}}{dx} + \ln(x) \dfrac{d^{2}y_{1}}{dx^{2}} + \sum_{n = 0}^{\infty}(n + 1)n \hat{c}_{n}x^{n -1}$$

Se sustituyen estos resultados en la ecuación diferencial y se procede igual que antes con la diferencia de que ahora no obtendremos una ecuación indicial, pero sí una relación de recurrencia para obtener los coeficientes $\hat{c}_{k}$. ¡Seguro este método es un camino largo!.

Un tercer método es aplicar directamente la formula (\ref{19}). Debido a que este es el camino menos largo, obtendremos la segunda solución por este método.

Recordemos que

$$P(x) = \dfrac{x -1}{x}$$

y que la primer solución es

$$y_{1}(x) = x e^{-x}$$

Notemos que

$$-\int{P(x)dx} = -\int{\dfrac{x -1}{x}dx} = \int{ \left( \dfrac{1}{x} -1 \right) dx} = \ln(x) -x$$

Sustituimos en (\ref{19}).

\begin{align*}
y_{2}(x) &= x e^{-x} \int{\dfrac{e^{\ln(x) -x}}{(xe^{-x})^{2}}dx} \\
&= x e^{-x} \int{\dfrac{xe^{-x}}{x^{2}e^{-2x}}dx} \\
&= x e^{-x} \int{\dfrac{e^{x}}{x}dx}
\end{align*}

La integral resultante es conocida como integral exponencial $Ei(x)$ y corresponde a una función especial definida en el plano complejo. Para nuestro caso es conveniente escribir a la exponencial como serie e integrar término a término.

\begin{align*}
y_{2}(x) &= x e^{-x} \int{\dfrac{1}{x} \left( 1 + x + \dfrac{x^{2}}{2} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots \right)dx} \\
&= x e^{-x} \int{ \left( \dfrac{1}{x} + 1 + \dfrac{x}{2} + \dfrac{x^{2}}{3!} + \dfrac{x^{3}}{4!} + \cdots \right) dx} \\
&= x e^{-x} \left[ \ln(x) + x + \dfrac{x^{2}}{2(2!)} + \dfrac{x^{3}}{3(3!)} + \dfrac{x^{4}}{4(4!)} + \cdots \right] \\
&= x e^{-x} \ln(x) + x e^{-x} \sum_{n = 1}^{\infty}\dfrac{x^{n}}{n(n!)}
\end{align*}

Vemos que

\begin{align*}
xe^{-x} \sum_{n = 1}^{\infty}\dfrac{x^{n}}{n(n!)} &= x \left( 1 -x + \dfrac{x^{2}}{2!} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\cdots \right) \left( x + \dfrac{x^{2}}{2(2!)} + \dfrac{x^{3}}{3(3!)} + \dfrac{x^{4}}{4(4!)} + \cdots \right) \\
&= \left( x -x^{2} + \dfrac{x^{3}}{2} -\dfrac{x^{4}}{6} + \dfrac{x^{5}}{24} -\cdots \right) \left( x + \dfrac{x^{2}}{4} + \dfrac{x^{3}}{18} + \dfrac{x^{4}}{96} + \cdots \right) \\
&= x^{2} + \left( \dfrac{x^{3}}{4} -x^{3} \right) + \left( \dfrac{x^{4}}{18} -\dfrac{x^{4}}{4} + \dfrac{x^{4}}{2} \right) + \left( \dfrac{x^{5}}{96} -\dfrac{x^{5}}{18} + \dfrac{x^{5}}{8} -\dfrac{x^{5}}{6} \right) + \cdots \\
&= x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots
\end{align*}

Entonces la segunda solución es

$$y_{2}(x) = xe^{-x} \ln(x) + x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots$$

Por lo tanto, la solución general de la ecuación diferencial es

$$y(x) = C_{1}xe^{-x} + C_{2} \left( xe^{-x} \ln(x) + x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots \right)$$

$\square$

Solución cuando la diferencia de las raíces indiciales es un número entero positivo

Ejemplo: Resolver la ecuación diferencial

$$x\dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 4x^{3} y = 0$$

con respecto al punto singular $x_{0} = 0$.

Solución: Dividimos toda la ecuación por $x$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{x} \dfrac{dy}{dx} + 4x^{2}y = 0$$

Identificamos que

$$P(x) = -\dfrac{1}{x} \hspace{1cm} y \hspace{1cm} Q(x)= 4x^{2}$$

Es claro que $x = 0$ es un punto ordinario de $Q(x)$, sin embargo es un punto singular regular de $P(x)$, pues

$$\lim_{x \to 0}xP(x) = \lim_{x \to 0}-1 = -1$$

Sustituimos las funciones correspondientes en la ecuación diferencial.

$$x \left[ \sum_{n = 0}^{\infty }(n + r)(n + r -1)c_{n}x^{n + r -2} \right] -\left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + 4x^{3} \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} + 4 \sum_{n = 0}^{\infty}c_{n}x^{n + r + 3} = 0$$

Con el propósito de que en la tercer serie $x$ tenga la misma potencia que las dos primeras, hacemos $k = n + 4$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} + 4 \sum_{k = 4}^{\infty}c_{k -4}x^{k + r -1} = 0$$

Para $k = 0$, se tiene

\begin{align*}
r(r -1)c_{0}x^{r -1} -rc_{0}x^{r -1} &= 0 \\
c_{0}x^{r -1} [r(r -1) -r] &= 0
\end{align*}

de donde se obtiene la ecuación indicial

$$r^{2} -2r = 0$$

cuyas raíces son

$$r_{1} = 2 \hspace{1cm} y \hspace{1cm} r_{2} = 0$$

Como

$$r_{1} -r_{2} = 2$$

Es decir, la diferencia es un número entero, entonces estamos en condiciones del caso 3 y por tanto las soluciones son de la forma (\ref{16}) y (\ref{17}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 2}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = C \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n + 2} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}, \hspace{1cm} \hat{c}_{0}\neq 0$$

Recordemos que $C$ puede ser cero.

Necesitamos que todas las series comiencen en $k = 4$ para poder obtener la relación de recurrencia. Extraemos los términos para $k = 1$, $k = 2$ y $k = 3$ y cada suma correspondiente la igualamos a cero.

$k = 1$.

\begin{align*}
(1 + r)(r)c_{1}x^{r} -(1 + r)c_{1}x^{r} &= 0 \\
x^{r}[(1 + r)(r) -(1 + r)]c_{1} &= 0
\end{align*}

Debido a que

$$(1 + r)(r) -(1 + r) \neq 0$$

de acuerdo a los valores de las raíces indiciales, entonces necesariamente $c_{1} = 0$.

$k = 2$.

\begin{align*}
(2 + r)(1 + r)c_{2}x^{r + 1} -(2 + r)c_{2}x^{r + 1} &= 0 \\
x^{r + 1}[(2 + r)(1 + r) -(2 + r)] c_{2} &= 0
\end{align*}

de donde necesariamente $c_{2} = 0$.

$k = 3$.

\begin{align*}
(3 + r)(2 + r)c_{3}x^{r + 2} -(3 + r)c_{3}x^{r + 2} &= 0 \\
x^{r + 2}[(3 + r)(2 + r) -(3 + r)] c_{3} &= 0
\end{align*}

Igualmente obtenemos que $c_{3} = 0$.

Ahora tenemos la ecuación

$$\sum_{k = 4}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 4}^{\infty}(k + r)c_{k}x^{k + r -1} + 4 \sum_{k = 4}^{\infty}c_{k -4}x^{k + r -1} = 0$$

La reescribimos en una sola serie.

$$\sum_{k = 4}^{\infty}[(k + r)(k + r -1)c_{k} -(k + r)c_{k} + 4c_{k -4}]x^{k + r -1} = 0$$

De donde,

$$c_{k}[(k + r)(k + r -1) -(k + r)] + 4c_{k -4} = 0$$

Despejando $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{4c_{k -4}}{(k + r) -(k + r)(k + r -1)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Para el caso en el que $r = 2$ la relación de recurrencia es

$$c_{k} = -\dfrac{4c_{k -4}}{k(k + 2)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Determinemos los coeficientes.

$k = 4$.

$$c_{4} = -\dfrac{4c_{0}}{4(4 + 2)} = -\dfrac{4c_{0}}{24} = -\dfrac{c_{0}}{6}$$

Para $k = 5$, $k = 6$ y $k = 7$ obtendremos que $c_{5} = 0$, $c_{6} = 0$ y $c_{7} = 0$ respectivamente.

$k = 8$.

$$c_{8} = -\dfrac{4c_{4}}{8(8 + 2)} = -\dfrac{4c_{4}}{80} = -\dfrac{c_{4}}{20} = \dfrac{c_{0}}{120}$$

De la misma manera $c_{9} = c_{10} = c_{11} = 0$.

$k = 12$.

$$c_{12} = -\dfrac{4c_{8}}{12(12 + 2)} = -\dfrac{4c_{8}}{168} = -\dfrac{c_{8}}{42} = -\dfrac{c_{0}}{5040}$$

Etcétera, entonces

\begin{align*}
y_{1}(x) &= x^{2} \left( c_{0} -\dfrac{c_{0}}{6}x^{4} + \dfrac{c_{0}}{120}x^{8} -\dfrac{c_{0}}{5040}x^{12} + \cdots \right) \\
&= c_{0} \left( x^{2} -\dfrac{x^{6}}{3!} + \dfrac{x^{10}}{5!} -\dfrac{x^{14}}{7!} + \cdots \right)
\end{align*}

Sabemos que

$$\sin(x) = x -\dfrac{x^{3}}{3!} + \dfrac{x^{5}}{5!} -\dfrac{x^{7}}{7!} + \cdots = \sum_{n = 0}^{\infty} \dfrac{(-1)^{n} x^{2n + 1}}{(2n + 1)!}$$

Entonces la primer solución es

$$y_{1}(x) = c_{0} \sin(x^{2})$$

Para obtener la segunda solución $y_{2}$ podemos probar con la relación de recurrencia que obtuvimos o por alguno de los métodos que ya conocemos.

Consideremos la relación de recurrencia obtenida

$$c_{k} = \dfrac{4c_{k -4}}{(k + r) -(k + r)(k + r -1)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Usemos la notación $\hat{c}_{k}$ y el valor de la segunda raíz indicial $r = 0$, en este caso la relación de recurrencia es

$$\hat{c}_{k} = -\dfrac{4c_{k -4}}{k(k -2)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Los mismos coeficientes que fueron cero en el caso anterior serán cero en este caso, así que sólo consideraremos que $k = 4, 8, 12, \cdots$. Determinemos los coeficientes.

$k = 4$.

$$\hat{c}_{4} = -\dfrac{4 \hat{c}_{0}}{4(4 -2)} = -\dfrac{4 \hat{c}_{0}}{8} = -\dfrac{\hat{c}_{0}}{2}$$

$k = 8$.

$$\hat{c}_{8} = -\dfrac{4 \hat{c}_{4}}{8(8 -2)} = -\dfrac{4 \hat{c}_{4}}{48} = -\dfrac{\hat{c}_{4}}{12} = \dfrac{\hat{c}_{0}}{24}$$

$k = 12$.

$$\hat{c}_{12} = -\dfrac{4 \hat{c}_{8}}{12(12 -2)} = -\dfrac{4 \hat{c}_{8}}{120} = -\dfrac{\hat{c}_{8}}{30} = -\dfrac{\hat{c}_{0}}{720}$$

Etcétera, entonces

\begin{align*}
y &= \hat{c}_{0} -\dfrac{\hat{c}_{0}}{2}x^{4} + \dfrac{\hat{c}_{0}}{24}x^{8} -\dfrac{\hat{c}_{0}}{720}x^{12} + \cdots \\
&= \hat{c}_{0} \left( 1 -\dfrac{x^{4}}{2!} + \dfrac{x^{8}}{4!} -\dfrac{x^{12}}{6!} + \cdots \right)
\end{align*}

Sabemos que

$$\cos(x) = 1 -\dfrac{x^{2}}{2!} + \dfrac{x^{4}}{4!} -\dfrac{x^{6}}{6!} + \cdots = \sum_{n = 0}^{\infty} \dfrac{(-1)^{n} x^{2n}}{(2n)!}$$

Entonces la segunda solución es

$$y_{2}(x) = \hat{c}_{0} \cos(x^{2})$$

Vemos que el método no nos indica la existencia de la función $\ln(x)$ y nosotros esperamos una solución de la forma

$$y_{2}(x) = C \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n + 2} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}, \hspace{1cm} \hat{c}_{0}\neq 0$$

Entonces podemos concluir que $C = 0$, así

$y_{2}(x) = \hat{c}_{0} \cos(x^{2})$

Veamos que se obtiene usando la fórmula (\ref{19}). Recordemos que

$$P(x) = -\dfrac{1}{x}$$

y consideremos que $c_{0} = 1$, tal que

$$y_{1}(x) = \sin(x^{2})$$

Vemos que

$$-\int{P(x) dx} = \int{\dfrac{dx}{x}} = \ln(x)$$

Sustituyamos en (\ref{19}).

$$y_{2}(x) = \sin(x^{2}) \int{\dfrac{e^{\ln(x)}}{(\sin(x^{2}))^{2}} dx} = \sin(x^{2}) \int{\dfrac{x}{(\sin(x^{2}))^{2}}dx}$$

Resolviendo la integral se obtiene que

$$\int{\dfrac{x}{(\sin(x^{2}))^{2}}dx} = -\dfrac{1}{2} \cot(x^{2})$$

Entonces,

$$y_{2}(x) = -\dfrac{1}{2} \sin(x^{2}) \left( \dfrac{\cos(x^{2})}{\sin(x^{2})} \right) = -\dfrac{1}{2} \cos(x^{2}) = \hat{c}_{0} \cos(x^{2})$$

Este método nos indica que efectivamente $C = 0$. Si $C_{1} = c_{0}$ y $C_{2} = \hat{c}_{0}$, entonces la solución general de la ecuación diferencial es

$$y(x) = C_{1} \sin(x^{2}) + C_{2} \cos(x^{2})$$

$\square$

Hemos concluido con esta entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Usar el método de Frobenius para obtener la solución general de las siguientes ecuaciones diferenciales en el punto singular $x_{0}= 0$. Verificar que dicho punto es singular.
  • $2x \dfrac{d^{2}y}{dx^{2}} + (x + 1) \dfrac{dy}{dx} + 3y = 0$.
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{6}x \dfrac{dy}{dx} + \dfrac{1}{3}y = 0$.
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} + 6x \dfrac{dy}{dx} + (6 -x^{2})y = 0$.
  • $2x^{2} \dfrac{d^{2}y}{dx^{2}} -x^{2} \dfrac{dy}{dx} -(x + 4)y = 0$.
  • $x \dfrac{d^{2}y}{dx^{2}} + (x -1) \dfrac{dy}{dx} + \left( \dfrac{1}{x} -1 \right) y = 0$.
  • $(x^{2} -x) \dfrac{d^{2}y}{dx^{2}} + (3x -1) \dfrac{dy}{dx} + y = 0$.

Más adelante…

Ahora que sabemos resolver ecuaciones diferenciales lineales de segundo orden con coeficientes variables con respecto a puntos ordinarios y puntos singulares, en las siguientes entradas resolveremos algunas ecuaciones diferenciales especiales cuya utilidad es de suma importancia en otras áreas del conocimiento como la física, biología e ingeniería entre otras.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos ordinarios

Por Omar González Franco

El mundo de las matemáticas no es un lugar aburrido en el que estar.
Es un lugar extraordinario; merece la pena pasar el tiempo allí.
– Marcus du Sautoy

Introducción

Hasta este punto de la unidad dos hemos desarrollado distintos métodos para resolver ecuaciones diferenciales lineales de orden superior, en particular de segundo orden con coeficientes constantes a excepción de la ecuación de Cauchy – Euler.

Para finalizar con la segunda unidad es el turno de estudiar las ecuaciones diferenciales lineales de segundo orden con coeficientes variables. Estas ecuaciones suelen ser mucho más complicadas de resolver ya que no se resuelven en términos de funciones elementales, sino que tienen forma de serie de potencias infinitas.

Nos parece adecuado comenzar esta entrada con un repaso sobre series de potencias, posteriormente veremos su utilidad en los métodos de resolución de las ecuaciones diferenciales antes mencionadas, así mismo, introduciremos algunos conceptos nuevos relacionados con el tipo de solución que tienen estas ecuaciones diferenciales.

Series de potencias

Algunas propiedades y conceptos importantes que debemos recordar son los siguientes.

Toda serie de potencias tiene un intervalo de convergencia.

Si $R> 0$, entonces la serie de potencias (\ref{1}) converge para $|x -a| < R$ y diverge para $|x -a| > R$.

Si la serie converge sólo en su centro $a$, entonces $R = 0$.

Si la serie converge para toda $x$, entonces se escribe $R = \infty$.

Una serie de potencias podría converger o no en los puntos extremos $a -R$ y $a + R$ de este intervalo.

El radio de convergencia también se puede determinar con las siguientes expresiones.

$$R = \left( \lim_{n \to \infty} \sqrt[n]{|c_{n}|} \right)^{-1} \hspace{1cm} o \hspace{1cm} R = \lim_{n \to \infty} \left| \dfrac{c_{n}}{c_{n + 1}} \right| \label{4} \tag{4}$$

Realicemos un ejemplo.

Ejemplo: Hallar el radio de convergencia y el intervalo de convergencia de la serie de potencias

$$\sum_{n = 1}^{\infty} \dfrac{n^{2}}{2^{n}} \left( x -1 \right)^{n}$$

Solución: Para determinar el radio de convergencia utilicemos la segunda expresión de (\ref{4}). De la serie de potencias identificamos que

$$c_{n} = \dfrac{n^{2}}{2^{n}} \hspace{1cm} y \hspace{1cm} c_{n + 1} = \dfrac{(n + 1)^{2}}{2^{n + 1}}$$

Calculemos el límite.

$$R = \lim_{n \to \infty} \left| \dfrac{c_{n}}{c_{n + 1}} \right| = \lim_{n \to \infty} \left| \dfrac{\dfrac{n^{2}}{2^{n}}}{\dfrac{(n + 1)^{2}}{2^{n + 1}}} \right| = 2 \lim_{n \to \infty} \left| \dfrac{n^{2}}{(n + 1)^{2}} \right|$$

Sabemos que

$$\lim_{n \to \infty} \left| \dfrac{n^{2}}{(n + 1)^{2}} \right| = 1$$

Por lo tanto, el radio de convergencia es $R = 2$.

Para determinar el intervalo de convergencia utilicemos la expresión (\ref{5}).

\begin{align*}
\lim_{n \to \infty} \left| \dfrac{c_{n + 1}(x -a)^{n + 1}}{c_{n}(x -a)^{n}} \right| &= \lim_{n \to \infty} \left| \dfrac{\dfrac{(n + 1)^{2}}{2^{n + 1}}(x -1)^{n + 1}}{\dfrac{n^{2}}{2^{n}}(x -1)^{n}} \right| \\
&= |x -1| \lim_{n \to \infty} \dfrac{2^{n}(n + 1)^{2}}{2^{n + 1}n^{2}} \\
&= \dfrac{1}{2} |x -1| \lim_{n \to \infty} \dfrac{n^{2} + 2n + 1}{n^{2}} \\
&= L
\end{align*}

Es claro que

$$\lim_{n \to \infty} \dfrac{n^{2} + 2n + 1}{n^{2}} = 1$$

Entonces,

$$\dfrac{1}{2} |x -1| = L$$

La condición de convergencia nos indica que $L < 1$, considerando esto tenemos que

\begin{align*}
\dfrac{1}{2} |x -1| &< 1 \\
|x -1| &< 2 \\
-2 < x -1 &< 2 \\
-1 < x &< 3
\end{align*}

Por lo tanto, el intervalo de convergencia es $I = (-1, 3)$.

Notemos que la mitad de la longitud del intervalo de convergencia efectivamente corresponde al valor del radio de convergencia obtenido.

$$R = \dfrac{3 -(-1)}{2} = \dfrac{4}{2} = 2$$

$\square$

Series de potencias como funciones

Nota: La convergencia en un extremo se podría perder por derivación o ganar por integración. Algo similar ocurre con los índices de una serie, supongamos que

$$y = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

es una serie de potencias en $x$, las primeras dos derivadas están dadas como

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty} n x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}n(n -1)x^{n -2}$$

Sin embargo, notemos que el primer término en la primera derivada y los dos primeros términos de la segunda derivada son cero, entonces los podemos omitir y correr el índice para escribir

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty} n x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)x^{n -2}\label{7} \tag{7}$$

Un concepto de bastante importancia y utilidad en las próximas entradas es el siguiente.

Podemos hacer operaciones con series de potencias, a continuación se muestran algunas de ellas.

  • Suma: Dos series de potencias pueden sumarse término a término.

Sean

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n} \hspace{1cm} y \hspace{1cm} g(x) = \sum_{n = 0}^{\infty}b_{n}(x -a)^{n}$$

dos series de potencias con radio de convergencia $R> 0$, entonces

$$f(x) + g(x) = \sum_{n = 0}^{\infty}(c_{n} + b_{n})(x -a)^{n} \label{9} \tag{9}$$

Para toda $|x -a| < R$.

  • Producto: Dos series de potencias pueden multiplicarse término a término (cada término de la primera por cada término de la segunda).

Sean

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n} \hspace{1cm} y \hspace{1cm} g(x) = \sum_{n = 0}^{\infty}b_{n}(x -a)^{n}$$

dos series de potencias con radio de convergencia $R> 0$, entonces

$$f(x)g(x) = \sum_{n = 0}^{\infty}(c_{0}b_{n} + c_{1}b_{n -1} + \cdots + c_{n}b_{0})(x -a)^{n} \label{10} \tag{10}$$

Para toda $|x -a| < R$.

  • Derivación: Una serie de potencias puede derivarse término a término.

Sea

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n}$$

una serie de potencias convergente para $|x -a| < R$ con $R> 0$. La derivada de la serie $f$ es

$$F(x) = \dfrac{df}{dx} = \sum_{n = 1}^{\infty}nc_{n}(x -a)^{n -1} \label{11} \tag{11}$$

y también es convergente y tiene el mismo radio de convergencia que $f(x)$.

  • Integración: Una serie de potencias puede integrarse término a término.

Sea

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n}$$

una serie de potencias convergente para $|x -a| < R$ con $R> 0$. La integral de la serie $f$ es

$$F(x) = \int_{0}^{x}f(t)dt = \sum_{n = 0}^{\infty}\dfrac{c_{n}}{n + 1}(x -a)^{n + 1} \label{12} \tag{12}$$

y tiene a $R$ como radio de convergencia.

A lo largo de ésta y las siguientes entradas será de suma importancia y utilidad simplificar la suma de dos o más series de potencias, cada una expresada en notación de suma, en una sola expresión de suma, muchas veces esto implica que se deba hacer un cambio en el índice de la suma.

Para poder sumar dos series en necesario que ambos índices de las sumas comiencen con el mismo número y las potencias de $x$ sean las mismas y estén en fase. Por ejemplo, consideremos las siguientes dos series

$$f(x) = \sum_{n = 1}^{\infty} = \dfrac{n}{n+2}x^{n + 1} \hspace{1cm} y \hspace{1cm} g(x) = \sum_{n = 1}^{\infty} = \dfrac{1}{n^{2} + 1}x^{n + 1}$$

Como ambas series comienzan con el mismo número $n = 1$ y en ambas la potencia de $x$ es la misma $n + 1$, entonces podemos combinar ambas series en una sola de acuerdo a la expresión (\ref{9})

\begin{align*}
f(x) + g(x) &= \sum_{n = 1}^{\infty} \left[ \dfrac{n}{n+2} + \dfrac{1}{n^{2} + 1} \right]x^{n + 1} \\
&= \sum_{n = 1}^{\infty} \dfrac{n^{3} + 2n + 2}{n^{3} + 2n^{2} + n + 2}x^{n + 1}
\end{align*}

¿Pero que ocurre si no comienzan con el mismo número y/o las potencias de $x$ no coinciden?. En estos casos será necesario hacer un cambio en el índice de la suma y por tanto en la potencia de $x$. A continuación se muestra un ejemplo en el que describimos la forma de hacerlo.

Ejemplo: Reescribir la expresión

$$f(x) = \sum_{n = 1}^{\infty}2nc_{n}x^{n -1} + \sum_{n = 0}^{\infty}6c_{n}x^{n + 1}$$

como una sola serie de potencias cuyo término general tenga $x^{k}$.

Solución: Notemos que la potencia de $x$ en la primer serie para $n = 1$ es $x^{0}$, mientras que en la segunda serie para $n = 0$ es $x^{1}$, como ambas potencias son distintas decimos que no están en fase, para corregir esto y hacer que estén en fase extraemos el primer término de la primer serie.

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} = 2c_{1} + \sum_{n = 2}^{\infty}2nc_{n}x^{n -1}$$

Así, la potencia de $x$ para $n = 2$ es $x^{1}$. Con esto hemos logrado que ambas series estén en fase a pesar de que tengan distintas potencias en $x$ y comiencen con distintos números para $n$.

Procedemos a hacer el cambio de índice, para ello se toman como guía los exponentes de $x$. Para la primer serie tomamos $k = n -1$, de donde $n = k + 1$. Si $n = 2$, entonces $k = 1$ con esto podemos escribir a la primer serie de la siguiente manera.

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} = 2c_{1} + \sum_{k = 1}^{\infty}2(k + 1)c_{k + 1}x^{k}$$

Para la segunda serie tomamos $k = n + 1$, de donde $n = k -1$, si $n = 0$, entonces $k = 1$, así la segunda serie se puede escribir de la siguiente manera.

$$\sum_{n = 0}^{\infty}6c_{n}x^{n + 1} = \sum_{k = 1}^{\infty}6c_{k -1}x^{k}$$

Ahora podemos escribir

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} + \sum_{n = 0}^{\infty}6c_{n}x^{n + 1} = 2c_{1} + \sum_{k = 1}^{\infty}2(k + 1)c_{k + 1}x^{k} + \sum_{k = 1}^{\infty}6c_{k -1}x^{k}$$

Observemos que ambas series ya comienzan con el mismo número $k = 1$ y la potencia de $x$ es $k$ para ambas, entonces ya podemos combinar las series en una sola, de tal manera que

$$f(x) = 2c_{1} + \sum_{k = 1}^{\infty} \left[ 2(k + 1)c_{k + 1} + 6c_{k -1} \right] x^{k}$$

$\square$

En el caso de una sola serie es mucho mas sencillo pues basta tomar a $k$ como la potencia de $x$ y evaluar el valor del primer número en la serie, por ejemplo para la serie

$$\sum_{n = 1}^{\infty}nc_{n}x^{n + 2}$$

Si queremos que el termino $x$ tenga potencia $k$ hacemos $k = n + 2$, de donde $n = k -2$, la serie comienza en $n = 1$, sustituyendo en $k$ obtenemos que $k = 3$, por lo tanto la serie en términos del índice $k$ se puede escribir de la siguiente manera.

$$\sum_{n = 1}^{\infty}nc_{n}x^{n + 1} = \sum_{k = 3}^{\infty}(k -2)c_{k -2}x^{k}$$

Puedes desglosar ambas sumas para convencerte de la igualdad.

Hasta aquí concluimos nuestro repaso de series de potencias, es momento de aplicarlo en la resolución de ecuaciones diferenciales.

Soluciones en series de potencias de ecuaciones diferenciales

Las ecuaciones diferenciales lineales de segundo orden con coeficientes variables tienen la forma

$$a_{2}(x)\dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{13} \tag{13}$$

Comenzaremos por considerar que $g(x) = 0$.

$$a_{2}(x)\dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = 0 \label{14} \tag{14}$$

Si dividimos la ecuación por $a_{2}(x) \neq 0$ y definimos

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{a_{0}(x)}{a_{2}(x)}$$

podemos escribir la ecuación (\ref{14}) en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0 \label{15} \tag{15}$$

En base a la ecuación estándar (\ref{15}) establecemos las siguientes definiciones.

De acuerdo a estas definiciones notamos que un punto singular $x_{0}$ es un punto no ordinario.

Realicemos un ejemplo.

Ejemplo: Hallar los puntos ordinarios y singulares de la ecuación diferencial

$$x^{2}(x -1)\dfrac{d^{2}y}{dx^{2}} + x^{3}(x^{2} -1)\dfrac{dy}{dx} + xy = 0$$

Solución: El primer paso es escribir a la ecuación diferencial en su forma estándar, para ello dividimos toda la ecuación por el coeficiente de la segunda derivada suponiendo que es distinto de cero.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + \dfrac{x^{3}(x^{2} -1)}{x^{2}(x -1)} \dfrac{dy}{dx} + \dfrac{x}{x^{2}(x -1)}y &= 0 \\
\dfrac{d^{2}y}{dx^{2}} + x(x + 1) \dfrac{dy}{dx} + \dfrac{1}{x(x -1)}y &= 0
\end{align*}

Identificamos que

$$P(x) = x(x + 1) \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{1}{x(x -1)}$$

Para el caso de la función $P(x)$ notamos que es analítica para toda $x \in \mathbb{R}$, mientras que la función $Q(x)$ no está definida en $x = 0$ ni $x = 1$, es decir, no es analítica en dichos puntos.

Por lo tanto, los puntos ordinarios de la ecuación diferencial son todas las $x \in \mathbb{R}$ excepto $x = 0$ y $x = 1$, éstos puntos corresponde a los puntos singulares de la ecuación.

$\square$

Una observación interesante es que la ecuación de Cauchy-Euler

$$ax^{2} \dfrac{d^{2}y}{dx^{2}} + bx \dfrac{dy}{dx} + cy = 0 \label{16} \tag{16}$$

en su forma estándar

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{b}{ax} \dfrac{dy}{dx} + \dfrac{c}{ax^{2}}y = 0 \label{17} \tag{17}$$

nos muestra que las funciones

$$P(x) = \dfrac{b}{ax} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{c}{ax^{2}}$$

no están definidas en $x = 0$, por tanto $x = 0$ es un punto singular y todos los demás puntos (reales o complejos) son puntos ordinarios, es por ello que toda la teoría realizada en la entrada correspondiente fue para $x > 0$.

De acuerdo al título de esta entrada, nos enfocaremos en soluciones respecto a puntos ordinarios, sin embargo, cabe mencionar que en la siguiente entrada estudiaremos soluciones respecto a puntos singulares y será necesario hacer una distinción entre dos tipos de puntos singulares que definiremos como punto singular regular y punto singular irregular. Estos conceptos los revisaremos en la siguiente entrada.

Como ya hemos mencionando, las soluciones de la ecuación diferencial (\ref{15}) son soluciones en forma de series de potencias. Si una ecuación diferencial es analítica en un punto $x_{0}$, entonces su solución también lo es en $x_{0}$, y como dicha solución será una función desarrollable en series de potencias, podemos suponer que, en forma general, tendrá la siguiente forma.

$$y(x) = \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{18} \tag{18}$$

donde $c_{n}$ cambia para cada función específica.

A continuación enunciamos el teorema que establece la existencia y forma de las soluciones de (\ref{15}).

Una solución en serie converge, por lo menos, en un intervalo definido por $|x -x_{0}| < R$, donde $R$ es la distancia desde $x_{0}$ al punto singular más cercano, es decir, es el valor mínimo o límite inferior del radio de convergencia de las soluciones en serie de la ecuación diferencial respecto a $x_{0}$.

La demostración a este teorema suele ser bastante larga pero intuitiva. En esta ocasión no lo demostraremos y en su lugar desarrollaremos varios ejemplos que ilustran el resultado. Sin embargo, en la sección de videos de este mismo curso se puede encontrar con todo detalle la demostración de este teorema, además del método para hallar el radio de convergencia de la solución en serie de potencias cerca de un punto ordinario.

Método de resolución

Si bien, en la demostración del teorema de existencia y forma de la solución en series de potencias se describe el método de resolución, nosotros vamos a describirlo de manera breve y realizaremos algunos ejemplos para que quede bastante claro.

Recordemos que el método de coeficientes indeterminados desarrollado para ecuaciones diferenciales lineales no homogéneas de segundo orden con coeficientes constantes ya involucraba soluciones en forma de series de potencias y lo que hacíamos al final del método era igualar los coeficientes de ambos lados de la ecuación para satisfacer la igualdad, la diferencia ahora es que el lado derecho de la ecuación es cero y no una función $g(x)$, sin embargo el procedimiento es bastante similar.

Debido a que se trata de un método bastante laborioso, por simplicidad encontraremos soluciones en series de potencias sólo con respecto al punto ordinario $x_{0} = 0$. Así, las soluciones serán de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n} \label{19} \tag{19}$$

La descripción del método se muestra a continuación:

  • El método de resolución implica considerar la solución (\ref{19}) y su primera y segunda derivada (\ref{7}) para sustituirlas en la ecuación diferencial (\ref{14}).

$$a_{2}(x) \left[ \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} \right] + a_{1}(x) \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + a_{0}(x) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

  • El siguiente paso es reescribir toda la ecuación en una sola serie lo que, en la mayoría de los casos, requerirá de hacer cambios de índices para que se tenga la misma potencia de $x$.
  • Como el resultado será idénticamente cero será necesario que el coeficiente de cada potencia de $x$ se iguale a cero. Como veremos más adelante, esto nos generará una ecuación general para los coeficientes de $y(x)$, dicha expresión se conoce como relación de recurrencia.
  • La tarea final será usar la relación de recurrencia para obtener el valor de los coeficientes $c_{n}$ de (\ref{19}) y con ello la forma de la solución de la ecuación diferencial en cuestión.

Es importante aclarar que la sola suposición de la solución (\ref{19}) conduce a dos conjuntos de coeficientes, de manera que se tendrán dos series de potencias distintas $y_{1}$ y $y_{2}$, ambas desarrolladas respecto al punto ordinario $x_{0}$. Se puede demostrar que la solución general de la ecuación diferencial (\ref{14}) es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{20} \tag{20}$$

en donde $C_{1} = c_{0}$ y $C_{2} = c_{1}$, es decir, los primeros coeficientes de la serie (\ref{19}).

Este método no solo es aplicable a ecuaciones de la forma (\ref{14}), sino que se puede aplicar a distintas ecuaciones que satisfagan las propiedades necesarias descritas a lo largo de la entrada.

Para comprender el método resolvamos una ecuación bastante sencilla de primer orden y veamos que resultado obtenemos.

Ejemplo: Determinar la solución de la ecuación diferencial

$$\dfrac{dy}{dx} -y = 0$$

usando series de potencias respecto al punto ordinario $x_{0} = 0$.

Solución: La solución debe ser de la forma

$$y = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

La derivada de esta función es

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1}$$

Sustituimos en la ecuación diferencial.

$$\sum_{n = 1}^{\infty}nc_{n}x^{n -1} -\sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

Hay que reescribir esta ecuación en una sola serie en la que la potencia de $x$ sea $k$.

Guiándonos en los exponentes de $x$, en la primer serie tomamos $k = n -1$, de donde $n = k + 1$, si la serie comienza en $n = 1$, entonces $k = 1 -1 = 0$. En el caso de la segunda serie basta hacer $k = n$, entonces tenemos que

$$\sum_{k = 0}^{\infty}(k + 1)c_{k + 1}x^{k} -\sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Ahora si podemos unir las series en una sola de acuerdo a (\ref{9})

$$\sum_{k = 0}^{\infty} \left[(k + 1)c_{k + 1} -c_{k} \right] x^{k} = 0$$

Como $x^{k}\neq 0$ por ser la solución propuesta, entonces necesariamente

$$(k + 1)c_{k + 1} -c_{k} = 0$$

Como $k$ es un número entero que comienza en cero hacía infinito, entonces $k$ no puede ser negativo, lo que significa que no hay valor de $k$, tal que $k + 1 = 0$, es así que podemos despejar a $c_{k + 1}$ de la expresión anterior sin problema.

$$c_{k + 1} = \dfrac{c_{k}}{k + 1}, \hspace{1cm} k = 0, 1, 2, 3, \cdots$$

Ésta última expresión corresponde a la relación de recurrencia, de la que se obtiene cada una de las constantes para cada uno de los términos de la serie solución.

Comencemos con $k = 0$.

$$c_{1} = \dfrac{c_{0}}{0 + 1} =c_{0}$$

Para $k = 1$, tenemos

$$c_{2} = \dfrac{c_{1}}{1 + 1} = \dfrac{c_{0}}{2}$$

$k = 2$.

$$c_{3} = \dfrac{c_{2}}{2 + 1} = \dfrac{c_{0}}{6}$$

$k = 3$.

$$c_{4} = \dfrac{c_{3}}{3 + 1} = \dfrac{c_{0}}{24}$$

Etcétera, entonces la solución va teniendo la siguiente forma.

\begin{align*}
y(x) &= c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + \cdots \\
&= c_{0} + c_{0}x + \dfrac{c_{0}}{2}x^{2} + \dfrac{c_{0}}{6}x^{3} + \dfrac{c_{0}}{24}x^{4} + \cdots \\
&= c_{0} \left[1 + x + \dfrac{x^{2}}{2} + \dfrac{x^{3}}{6} + \dfrac{x^{4}}{24} + \cdots \right] \\
&= c_{0} \left[ 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots \right]
\end{align*}

En algunas ocasiones las series de potencias resultan ser series conocidas, como lo es en este caso, pues sabemos que

$$e^{x} = \sum_{n = 0}^{\infty}\dfrac{x^{n}}{n!} = 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots$$

Por lo tanto, si definimos $c = c_{0}$, la solución de la ecuación diferencial es

$$y(x) = ce^{x}$$

Para asegurarnos del resultado se puede sustituir en la ecuación diferencial y ver que la satisface, o bien, podemos usar separación de variables para resolver la ecuación y verificar el resultado.

\begin{align*}
\dfrac{dy}{dx} -y &= 0 \\
\dfrac{dy}{dx} &= y \\
\dfrac{1}{y} \dfrac{dy}{dx} &= 1 \\
\int{\dfrac{dy}{y}} &= \int{dx} \\
\ln(y) &= x + k \\
y &= e^{x + k} \\
y &= e^{k}e^{x} \\
y(x) &= ce^{x}
\end{align*}

¡Verificado!. Interesante ¿no?.

$\square$

Con este ejemplo se espera que se comprenda la noción del método, como se puede notar es un proceso largo a pesar de ser una ecuación muy simple. Concluiremos esta entrada resolviendo dos ecuaciones diferenciales de las que si estamos interesados en resolver, es decir, de la forma (\ref{14}).

Ejemplo: Resolver la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + xy = 0$$

respecto al punto ordinario $x_{0} = 0$.

Solución: Debido a que no hay puntos singulares, el teorema garantiza dos soluciones en serie de potencias centradas en $x_{0} = 0$, convergentes para $|x|< \infty$.

Consideremos la solución

$$y = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

y su segunda derivada

$$\dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituyamos en la ecuación diferencial.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + xy &= \left[ \sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} \right] + x \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] \\
&= \sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} + \sum_{n = 0}^{\infty}c_{n}x^{n + 1}
\end{align*}

Para que practiques muestra que

$$\sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} + \sum_{n = 0}^{\infty}c_{n}x^{n + 1} = 2c_{2} + \sum_{k = 1}^{\infty} \left[ (k + 1)(k + 2)c_{k + 2} + c_{k -1} \right] x^{k}$$

Por lo tanto,

$$2c_{2}x^{0} + \sum_{k = 1}^{\infty} \left[ (k + 1)(k + 2)c_{k + 2} + c_{k -1} \right] x^{k} = 0$$

Para que esta igualdad se cumpla es necesario que el coeficiente de cada potencia de $x$ se iguale a cero. Para el caso de la potencia $k = 0$ tenemos que $2c_{2} = 0$, de donde $c_{2} = 0$, para el resto de potencias formamos la relación de recurrencia.

$$(k + 1)(k + 2)c_{k + 2} + c_{k -1} = 0, \hspace{1cm} k = 1, 2, 3, \cdots$$

Esta expresión determina los coeficientes $c_{k}$ que buscamos. Como $(k + 1)(k + 2) \neq 0$ para los valores de $k$, podemos escribir $c_{k + 2}$ en términos de $c_{k -1}$.

$$c_{k + 2} = -\dfrac{c_{k -1}}{(k + 1)(k + 2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Esta relación genera coeficientes consecutivos de la solución propuesta una vez que $k$ toma los valores enteros sucesivos indicados.

Comencemos con $k = 1$.

$$c_{3} = -\dfrac{c_{0}}{2\cdot 3}$$

Para $k = 2$, se tiene

$$c_{4} = -\dfrac{c_{1}}{3 \cdot 4}$$

Para $k = 3$ hacemos uso de que $c_{2} = 0$.

$$c_{5} = -\dfrac{c_{2}}{4 \cdot 5} = 0$$

A partir de $k = 4$ hacemos uso de los valores previos.

$$c_{6} = -\dfrac{c_{3}}{5 \cdot 6} = -\left( -\dfrac{c_{0}}{2\cdot 3} \right) \dfrac{1}{5 \cdot 6} = \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6} c_{0}$$

$k = 5$.

$$c_{7} = -\dfrac{c_{4}}{6 \cdot 7}=-\left( -\dfrac{c_{1}}{3 \cdot 4} \right) \dfrac{1}{6 \cdot 7} = \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}c_{1}$$

Para $k = 6$ recordamos que $c_{5} = 0$.

$$c_{8} = -\dfrac{c_{5}}{7 \cdot 8} = 0$$

$k = 7$.

$$c_{9} = -\dfrac{c_{6}}{8 \cdot 9} = \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}c_{0}$$

$k = 8$.

$$c_{10} = -\dfrac{c_{7}}{9 \cdot 10} = \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}c_{1}$$

$k = 9$.

$$c_{11} = -\dfrac{c_{8}}{10 \cdot 11} = 0$$

Podemos hacer estos cálculos para la $k$ que deseemos, el objetivo es intentar determinar que tipo de serie numérica es la que se logra formar. En este caso nos detendremos hasta $k = 9$, con ello hemos logrado obtener los primeros $11$ coeficientes de la solución que buscamos (recordemos que $c_{0}$ y $c_{1}$ tienen valores arbitrarios).

\begin{align*}
y(x) &= c_{0} + c_{1} x + c_{2}x^{2} + c_{3}x^{3} +c_{4}x^{4} + c_{5}x^{5} + c_{6}x^{6} \\
&+ c_{7}x^{7} + c_{8}x^{8} + c_{9}x^{9} + c_{10}x^{10} + c_{11}x^{11} + \cdots
\end{align*}

Sustituyamos los coeficientes obtenidos.

\begin{align*}
y(x) &= c_{0} + c_{1}x + 0 -\dfrac{c_{0}}{2 \cdot 3}x^{3} -\dfrac{c_{1}}{3 \cdot 4}x^{4} + 0 + \dfrac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} + \dfrac{c_{1}}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} + 0 \\
&-\dfrac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} -\dfrac{c_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + 0 + \cdots
\end{align*}

Para obtener la solución general

$$y(x) = c_{0}y_{1}(x) + c_{1}y_{2}(x)$$

agrupemos los términos que contienen $c_{0}$ y por otro lado los que tienen $c_{1}$.

\begin{align*}
y(x) &= c_{0} \left[ 1 -\dfrac{1}{2 \cdot 3}x^{3} + \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} -\dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} + \cdots \right] \\
&+ c_{1} \left[ x -\dfrac{1}{3 \cdot 4}x^{4} + \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} -\dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + \cdots \right]
\end{align*}

Por lo tanto,

\begin{align*}
y_{1}(x) &= 1 -\dfrac{1}{2 \cdot 3}x^{3} + \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} -\dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} + \cdots \\
&= 1 + \sum_{k = 1}^{\infty}\dfrac{(-1)^{k}}{2 \cdot 3 \cdots (3k -1)(3k)}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x -\dfrac{1}{3 \cdot 4}x^{4} + \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} -\dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + \cdots \\
&= x + \sum_{k = 1}^{\infty}\dfrac{(-1)^{k}}{3 \cdot 4 \cdots (3k)(3k + 1)}x^{3k + 1}
\end{align*}

Con esto hemos concluido el ejercicio. Los coeficientes $c_{0}$ y $c_{1}$ quedan completamente indeterminados de manera que se pueden elegir de forma arbitraria.

Por el teorema de existencia y forma de la solución también se puede deducir que las series que forman a $y_{1}$ y $y_{2}$ convergen para $|x|< \infty$.

$\square$

Como dato interesante, la ecuación diferencial que acabamos de resolver es una forma de lo que se conoce como ecuación de Airy y se encuentra en el estudio de la difracción de la luz, la difracción de ondas de radio alrededor de la superficie de la tierra, la aerodinámica y la deflexión de una columna vertical delgada uniforme que se curva bajo su propio peso.

Realicemos un ejemplo más en el que los coeficientes de la ecuación no sean polinomios, esto nos permitirá poner en práctica la multiplicación de dos series de potencias.

Ejemplo: Resolver la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + \cos (x) y = 0$$

respecto al punto ordinario $x_{0} = 0$.

Solución: Se puede comprobar que la función coseno es analítica en $x = 0$, esto verifica que efectivamente $x_{0} = 0$ es un punto ordinario. De hecho, al ser analítica en $x = 0$ su serie de Maclaurin es

\begin{align*}
\cos (x) &= 1 -\dfrac{x^2}{2!} + \dfrac{x^4}{4!} -\cdots + \dfrac{(-1)^kx^{2k}}{(2k)!} + \cdots \\
&= \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!}
\end{align*}

Resolvamos la ecuación. Consideremos la solución

$$y = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

y su segunda derivada

$$\dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituyamos en la ecuación diferencial.

$$\dfrac{d^{2}y}{dx^{2}} + \cos (x) y = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} + \left[ \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!} \right] \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En este caso no intentaremos reescribir la ecuación en una sola serie ya que puede ser más complicado al tratarse de un producto de series, en su lugar vamos a determinar el valor de los coeficientes de cada $x^{k}$, $k = 0, 1, 2, 3, \cdots$, realizando las operaciones correspondientes, para ello desglosemos las sumas para los primeros términos. Por un lado

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} = 2c_{2} + 6c_{3}x + 12c_{4}x^{2} + 20c_{5}x^{3} + \cdots$$

Por otro lado,

$$\left[ \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!} \right] \sum_{n = 0}^{\infty}c_{n}x^{n} = \left( 1 -\dfrac{x^{2}}{2!} + \dfrac{x^{4}}{4!} + \cdots \right) \left( c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + \cdots \right)$$

Si se hacen las cuentas correspondientes podremos obtener los coeficientes de cada $x^{k}$, $k = 0, 1, 2, 3, \cdots$.

Hasta $k = 3$ se obtiene lo siguiente.

$$(2c_{2} + c_{0}) + (6c_{3} + c_{1})x +\left( 12c_{4} + c_{2} -\dfrac{1}{2}c_{0} \right) x^{2} + \left( 20c_{5} + c_{3} -\dfrac{1}{2}c_{1} \right)x^{3} + \cdots = 0$$

Igualamos cada coeficiente a cero.

\begin{align*}
2c_{2} + c_{0} &= 0 \\
6c_{3} + c_{1} &= 0 \\
12c_{4} + c_{2} -\dfrac{1}{2}c_{0} &= 0 \\
20c_{5} + c_{3} -\dfrac{1}{2}c_{1} &= 0 \\
&\vdots
\end{align*}

etcétera. Esto nos da como resultados

\begin{align*}
c_{2} &= -\dfrac{1}{2}c_{0} \\
c_{3} &= -\dfrac{1}{6}c_{1} \\
c_{4} &= \dfrac{1}{12}c_{0} \\
c_{5} &= \dfrac{1}{30}c_{1} \\
&\vdots
\end{align*}

En este caso no se obtuvo una relación de recurrencia, pero $c_{0}$ y $c_{1}$ siguen siendo coeficientes indeterminados que pueden tomar valores arbitrarios. Sustituyendo los valores determinados en la solución propuesta se obtiene

\begin{align*}
y(x) &= c_{0} + c_{1}x -\dfrac{c_{0}}{2}x^{2} -\dfrac{c_{1}}{6}x^{3} + \dfrac{c_{0}}{12}x^{4} + \dfrac{c_{1}}{30}x^{5} + \cdots \\
&= c_{0} \left[ 1 -\dfrac{1}{2}x^{2} + \dfrac{1}{12}x^{4} + \cdots \right] + c_{1}\left[ x -\dfrac{1}{6}x^{3} + \dfrac{1}{30}x^{5} + \cdots \right]
\end{align*}

Recordando que la solución general es

$$y(x) = c_{0}y_{1}(x) + c_{1}y_{2}(x)$$

entonces,

$$y_{1}(x) = 1 -\dfrac{1}{2}x^{2} + \dfrac{1}{12}x^{4} + \cdots$$

y

$$y_{2}(x) = x -\dfrac{1}{6}x^{3} + \dfrac{1}{30}x^{5} + \cdots$$

Ambas series de potencias convergen para $|x| < \infty$.

$\square$

Con esto concluimos esta entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Determinar el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias.
  • $\sum_{n = 1}^{\infty}\dfrac{2^{n}}{n}x^{n}$
  • $\sum_{n = 1}^{\infty}\dfrac{n}{n + 2}x^{n}$
  • $\sum_{n = 1}^{\infty}\dfrac{(x -1)^{n}}{n!}$
  1. Reescribir la siguiente expresión como una sola serie de potencias cuyo término general tenga $x^{k}$.
  • $\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n} + 2 \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} + 3 \sum_{n = 1}^{\infty}nc_{n}x^{n}$
  1. Comprobar por sustitución directa que la siguiente serie de potencias es una solución particular de la ecuación diferencial dada.
  • $y(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{2^{2n}(n!)^{2}}x^{2n}, \hspace{1cm} x\dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} + xy = 0$
  1. Encontrar la solución general en series de potencias de las siguientes ecuaciones diferenciales respecto al punto ordinario $x_{0} = 0$.
  • $\dfrac{d^{2}y}{dx^{2}} + x^{2} \dfrac{dy}{dx} + xy = 0$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (x) y = 0$
  1. Usar el método de series de potencias para resolver el siguiente problema con valores iniciales.
  • $(x + 1) \dfrac{d^{2}y}{dx^{2}} -(2 -x) \dfrac{dy}{dx} + y = 0, \hspace{1cm} y(0) = 2, \hspace{0.5cm} y^{\prime}(0) = -1$

Más adelante…

En esta entrada aprendimos a resolver ecuaciones diferenciales de segundo orden con coeficientes variables respecto al punto ordinario $x_{0} = 0$.

En la siguiente entrada resolveremos ecuaciones diferenciales del mismo tipo, pero ahora con respecto a puntos singulares. El método de resolución es conocido como Método de Frobenius.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»