Archivo de la etiqueta: Cálculo I

Cálculo Diferencial e Integral I: Localización de máximos y mínimos. Monotonía de funciones

Por Karen González Cárdenas

Introducción

En cursos de Cálculo en el bachillerato, posiblemente resolviste ejercicios en los cuales te solicitaban hallar los puntos críticos de una función y realizar la gráfica de la misma basándote en ellos.
Recordemos primero que un punto crítico $x$ de una función $f$ es aquel que al evaluarlo en la derivada de $f$ nos da la siguiente igualdad:
$$f'(x)=0.$$

Y que en el conjunto de estos puntos críticos se encontraban los máximos y mínimos de la función $f$.
En esta entrada daremos las definiciones formales correspondientes y veremos los Criterios de las derivadas para identificarlos. También veremos resultados en los que, haciendo uso de la derivada, podremos determinar si una función es creciente o decreciente en un intervalo.

Máximo y mínimo global

Definición: Sea $f: D_f \subseteq \r \rightarrow \r$ una función y $x_0 \in D_f$. Decimos que en $x_0$ se alcanza:

  • Un máximo global si para toda $x \in D_f$ se cumple que:
    $$f(x)\leq f(x_0).$$
  • Un mínimo global si para toda $x \in D_f$ se cumple que:
    $$f(x_0)\leq f(x).$$

Máximo y mínimo local

Definición: Consideremos a una función $f$ continua en un intervalo $I$ y $x_0 \in (x_0-r, x_0+r) \subseteq I$ con $r\in \r^{+}$ y tenemos que existe $f(x_0)$ decimos que:

  • $x_0$ es un máximo local de $f \Leftrightarrow$ existe $r>0$ tal que para todo $x\in (x_0-r, x_0 +r)\subseteq D_f$ ocurre que:
    $$f(x)\leq f(x_0).$$
  • $x_0$ es un mínimo local de $f \Leftrightarrow$ existe $r>0$ tal que para todo $x\in (x_0-r, x_0 +r)\subseteq D_f$ ocurre que:
    $$f(x_0)\leq f(x).$$
  • $x_0$ no es máximo ni mínimo si existen $x_1, x_2$ tales que para toda $r>0$ y para cualquier $x\in(x_0-r, x_0 +r)$ ocurre que:
    $$f(x_1)<f(x_0)<f(x_2).$$

En la imagen anterior vemos que el punto $A$ es un máximo de la función y $B$ un mínimo.

La derivada y los puntos críticos

Teorema: Consideremos una función $f$ continua en un intervalo $I$ y es derivable en el punto $x_0 \in (x_0-r, x_0+r) \subseteq I$.

Si tenemos que $x_0$ es un máximo o un mínimo local de $f \Rightarrow f'(x_0)=0$.

Demostración: Tomemos $x_0$ máximo local de $f$, así por definición tenemos que existe $r_1>0$ tal que para cualquier $x \in (x_0-r_1, x_0+r_1)$ ocurre que:
$$ f(x) \leq f(x_0) .$$
O bien, si $x_0$ mínimo local de $f$ tenemos que existe $r_1>0$ tal que para cualquier $x \in (x_0-r_1, x_0+r_1)$ ocurre que:
$$f(x_0) \leq f(x).$$
Consideremos ahora $h$ tal que:
$$|h| \leq r_2= \text{min} \left\{r,r_1 \right\}.$$
Veremos el caso en que $x_0$ es máximo local de $f$.
Caso 1: Supongamos que $x_0$ es máximo.
Si tenemos que $h>0$ se sigue que:
\begin{align*}
f(x_0+h)< f(x_0) &\Rightarrow f(x_0+h)-f(x_0)<0\\
&\Rightarrow \frac{ f(x_0+h)-f(x_0) }{h}<0\\
&\Rightarrow \lim_{h \to 0^{+}} \frac{ f(x_0+h)-f(x_0) }{h} \leq 0\\
\end{align*}

Ya que $f$ es derivable en $x_0$ entonces podemos afirmar la siguiente igualdad:
$$ \lim_{h \to 0^{+}} \frac{ f(x_0+h)-f(x_0) }{h}=f'(x_0).$$
$$\therefore f'(x_0)\leq 0.$$

Ahora bien, si tenemos que $h<0$ tenemos que:
\begin{align*}
f(x_0+h)-f(x_0)<0 &\Rightarrow \frac{ f(x_0+h)-f(x_0) }{h}>0\\
&\Rightarrow \lim_{h \to 0^{-}} \frac{ f(x_0+h)-f(x_0) }{h}\geq 0
\end{align*}
$$\therefore f'(x_0) \geq 0.$$
$$\therefore 0\leq f'(x_0) \leq 0.$$

Y así concluimos que $f'(x_0)=0.$

$\square$

El Caso 2 considerando ahora que $x_0$ es mínimo se quedará como ejercicio de Tarea moral, para realizar la prueba se procede de manera análoga al caso que ya vimos.

Gráficamente el resultado anterior se vería como sigue:

donde en el intervalo en el que se encuentra el punto $A$ la recta tangente a dicho punto tiene pendiente cero, es decir, es una recta horizontal. Observamos que para el intervalo (representado por la franja rosa) en el que se encuentra el punto $B$ tenemos una situación similar.

La derivada y la monotonía de las funciones

Teorema: Consideremos $f$ una función e $I$ un intervalo.

  1. Si $f'(x) > 0$ para todo $x\in I \Rightarrow f$ es creciente en $I$.
  2. Si $f'(x) \geq 0$ para todo $x\in I \Rightarrow f$ es no decreciente en $I$.
  3. Si $f'(x) < 0$ para todo $x\in I \Rightarrow f$ es decreciente en $I$.
  4. Si $f'(x) \leq 0$ para todo $x\in I \Rightarrow f$ es no creciente en $I$.

Demostración 1:

Queremos probar que para cualesquiera $x_1,x_2 \in I$ donde si $x_1<x_2$ entonces:
$$f(x_1)<f(x_2).$$

Así tomemos $x_1,x_2$ en el intervalo $I$ con $x_1 < x_2$. Veamos que $[x_1,x_2] \subseteq I$ y que $f$ es derivable en $(x_1,x_2) \subseteq I$. Y además tenemos que $f$ es continua en $[x_1,x_2] \subseteq I$, aplicando el Teorema del valor medio para la derivada:
$\exists \alpha \in (x_1,x_2)$ tal que $f'(\alpha)=\frac{f(x_2)-f(x_1)}{x_2-x_1}$.
Por hipótesis tenemos que:
$$ f'(\alpha)=\frac{f(x_2)-f(x_1)}{x_2-x_1} >0.$$
Debido a que también supusimos $x_2-x_1>0$ para que se cumpla la desigualdad anterior necesariamente debe ocurrir que:
$$f(x_2)-f(x_1)>0 \Rightarrow f(x_2)>f(x_1).$$

$\square$

Criterio de la primera derivada

Teorema (Criterio de la primera derivada): Si $f'(x_0)=0$ y existe $r>0$ tal que:

  1. Para todo $x \in (x_0-r,x_0)$, $f'(x)<0$ y para todo $x \in (x_0,x_0+r)$, $f'(x)>0$
    $\Rightarrow x_0$ es mínimo local de $f$.
  2. Para todo $x\in (x_0-r,x_0)$, $f'(x)>0$ y para todo $x \in (x_0,x_0+r)$, $f'(x)<0$
    $\Rightarrow x_0$ es máximo local de $f$.

Demostración 1:

Sea $x \in (x_0-r, x_0)$ por hipótesis tenemos que $f'(x)<0$. Aplicando el teorema anterior afirmamos que $f$ es decreciente en $(x_0-r,x_0)$, así para cualquier $x < x_0$ en $(x_0-r, x_0)$:
$$f(x)>f(x_0).$$

Ahora tomando $x\in (x_0,x_0+r)$ tenemos que $f'(x)>0$. Y por el teorema anterior sabemos que $f$ es creciente en el intervalo $(x_0,x_0+r)$. Por definición para cualquier $x>x_0$ en $(x_0,x_0+r)$ ocurre que:
$$f(x_0)<f(x).$$
De lo anterior podemos concluir que para toda $x \in (x_0-r,x_0) \cup (x_0,x_0+r)= (x_0-r,x_0+r)$ se cumple la desigualdad:
$$f(x_0)<f(x).$$
que es justo la definición de $x_0$ mínimo local de $f$.

$\square$

A continuación veremos ejemplos donde aplicaremos los teoremas anteriores para localizar los máximos y mínimos de una función, como los intervalos donde es creciente o decreciente.

Ejemplo 1

Encuentra los puntos críticos de la siguiente función y determina si se trata de un máximo o un mínimo:
$$f(x)=(x-1)^{2}(x+1)^{3}$$

Solución:

Para encontrarlos seguiremos los siguientes pasos:
Paso 1: Hallamos la primera derivada de la función $f$.
\begin{align*}
f'(x)&= 2(x-1)(x+1)^{3}+3(x+1)^{2}(x-1)^{2}\\
&= (x-1)[2(x+1)^{3}+3(x+1)^{2}(x-1)]\\
&=(x-1)(x+1)^{2}[2(x+1)+3(x-1)]\\
&=(x-1)(x+1)^{2}[2x+2+3x+3]\\
&=(x-1)(x+1)^{2}(5x-1)\\
\therefore f'(x)&= (x-1)(x+1)^{2}(5x-1)
\end{align*}

Paso 2: Igualamos la derivada a cero para encontrar los puntos críticos.
$$f'(x)=0 \Leftrightarrow (x-1)(x+1)^{2}(5x-1) =0$$
El producto anterior lo cumple cuando:
\begin{align*}
(x+1)^{2} =0 & &\text{o}\quad 5x-1=0 & &\text{o}\quad x-1=0 \\
\sqrt{ (x+1)^{2}}= \sqrt{0} & &\text{o}\quad 5x=1& &\text{o}\quad x=1\\
x+1=0 & &\text{o}\quad x=\frac{1}{5}\\
x=-1
\end{align*}

Por lo que debemos determinar para $x=1$, $x=-1$ y $x=\frac{1}{5}$ si se trata de un máximo, un mínimo o ninguno de los dos.

Paso 3: Para determinar si es un máximo o mínimo, aplicando el Criterio de la primera derivada debemos sustituir en la primera derivada un valor $x_1<x$ para determinar si $f'(x_1)$ es positiva o negativa. De igual modo debemos evaluar una $x<x_2$ y obtener si $f'(x_2)$ es positiva o negativa.

Comencemos con $x=1$:
Si tomamos $x<1$ y sustituimos en $f'(x)=5(x-1)(x+1)^{2}(x-\frac{1}{5})$ a $x_1=\frac{1}{2}$ en la derivada
\begin{align*}
f’ \left(\frac{1}{2}\right)&= 5 \left(\frac{1}{2}-1\right) \left(\frac{1}{2}+1\right)^{2}\left(\frac{1}{2}-\frac{1}{5}\right)\\
&= 5\left(-\frac{1}{2}\right)\left(\frac{3}{2}\right)^{2}\left(\frac{3}{10}\right) \tag{que es negativo}
\end{align*}
Ahora para $x>1$ evaluamos $x_2=2$
\begin{align*}
f'(2)&= 5(2-1)(2+1)^{2}\left(2-\frac{1}{5}\right)\\
&=5(1)(3)^{2}\left(\frac{9}{5}\right) \tag{que es positivo}
\end{align*}
Ya que la derivada pasó de ser negativa a positiva tenemos que cuando $x=1$ la función tiene un mínimo.
$\therefore p_1=(1,0)$ es mínimo de $f$.

Continuemos con $x=-1$:
Para $x<-1$ tomaremos $x_1=-2$.
\begin{align*}
f'(-2)&=5(-2-1)(-2+1)^{2}\left(-2-\frac{1}{5}\right)\\
&=5(-3)(-1)^{2}\left(-\frac{11}{5}\right) \tag{que es positivo}
\end{align*}

Y para $x>-1$ consideramos ahora $x_2=-\frac{1}{2}$.
\begin{align*}
f’\left(-\frac{1}{2}\right)&=5\left(-\frac{1}{2}-1\right)^{2}\left(-\frac{1}{2}-\frac{1}{5}\right)\\
&=5\left(-\frac{3}{2}\right)\left(\frac{1}{2}\right)^{2}\left(-\frac{7}{10}\right)\tag{que es positivo}
\end{align*}

Debido a que la derivada no presenta cambio de signo, cuando $x=-1$ no es máximo ni mínimo.

Finalmente para $x=\frac{1}{5}$ análogamente procedemos:
Cuando $x< \frac{1}{5}$ sustituiremos $x_1=\frac{1}{6}$.
\begin{align*}
f’\left(\frac{1}{6}\right)&=5\left(\frac{1}{6}-1\right)\left(\frac{1}{6}+1\right)^{2}\left(\frac{1}{6}-\frac{1}{5}\right)\\
&=5\left(-\frac{5}{6}\right)\left(\frac{7}{6}\right)^{2}\left(-\frac{1}{30}\right)\tag{que es positivo}
\end{align*}

Ahora bien para $x>\frac{1}{5}$ evaluaremos $x_2=\frac{1}{2}$.
\begin{align*}
f’\left(\frac{1}{2}\right)&=5\left(\frac{1}{2}-1\right)\left(\frac{1}{2}+1\right)^{2}\left(\frac{1}{2}-\frac{1}{5}\right)\\
&=5\left(-\frac{1}{2}\right)\left(\frac{3}{2}\right)\left(\frac{3}{10}\right)\tag{que es negativo}
\end{align*}

Vemos que la derivada pasó de ser positiva a ser negativa, por lo tanto, cuando $x=\frac{1}{5}$ la función $f$ tiene un máximo.
$\therefore p_2=(0.2,1.10)$ es un máximo de $f$.

Ejemplo 2

Hallar los intervalos donde es creciente o decreciente la siguiente función:
$$f(x)=4x^{3}+3x^{2}-6x.$$

Solución:
Comenzaremos derivando la función y simplificando
\begin{align*}
f'(x)&= 12x^{2}+6x-6\\
&=6x^{2}+x-1\\
&=\left(x-\frac{1}{2}\right)(x+1)
\end{align*}

Sabemos que cuando $f'(x)>0$ la función es creciente, por ello veremos qué valores satisfacen la siguiente desigualdad:
$$\left(x-\frac{1}{2}\right)(x+1)>0.$$
El producto anterior cumple ser positivo cuando
Caso 1:
\begin{align*}
x -\frac{1}{2} >0 & &\text{y}\quad x+1>0\\
x > \frac{1}{2} & &\text{y}\quad x>-1\\
\end{align*}
Por lo que el intervalo solución para este caso es: $\left(\frac{1}{2}, \infty \right)$.

Caso 2:
\begin{align*}
x-\frac{1}{2}<0 & &\text{y}\quad x+1<0\\
x <\frac{1}{2} & &\text{y}\quad x<-1
\end{align*}
Así el intervalo solución es: $(-\infty, -1)$.

Concluimos que los intervalos donde $f$ es creciente son:
$$ (-\infty, -1) \cup \left(\frac{1}{2}, \infty \right).$$

Para encontrar donde la función es decreciente debemos trabajar con la desigualdad $f'(x)<0$, que sería:
$$\left(x-\frac{1}{2}\right)(x+1)<0.$$
Lo anterior se cumple en los siguientes casos:
Caso 3:
\begin{align*}
x-\frac{1}{2}>0 & &\text{y}\quad x+1<0\\
x>\frac{1}{2} & &\text{y}\quad x<-1
\end{align*}
Vemos que la solución de este caso es vacía.

Caso 4:
\begin{align*}
x-\frac{1}{2}<0 & &\text{y}\quad x+1>0\\
x<\frac{1}{2} & &\text{y}\quad x>-1
\end{align*}
El intervalo que cumple lo anterior es $\left(-1,\frac{1}{2}\right)$.

De los casos anteriores tenemos que $f$ es decreciente en el intervalo:
$$ \left(-1,\frac{1}{2}\right) $$

Más adelante

En la siguiente entrada seguiremos trabajando con los máximos y mínimos de funciones, por lo que te presentaremos una herramienta más para poder localizarlos: el Criterio de la segunda derivada. También veremos cómo determinar las regiones de concavidad o convexidad de una función y sus puntos de inflexión.

Tarea moral

  • Da la demostración del teorema para el caso en que $x_0$ es un mínimo local de $f$.
  • Prueba los siguientes puntos:
    • Si $f'(x) \geq 0$ para todo $x\in I \Rightarrow f$ es no decreciente en $I$.
    • Si $f'(x) < 0$ para todo $x\in I \Rightarrow f$ es decreciente en $I$.
    • Si $f'(x) \leq 0$ para todo $x\in I \Rightarrow f$ es no creciente en $I$.
  • Determina si los siguientes enunciados son verdaderos o falsos. De ser verdadero da la demostración correspondiente, de lo contrario da un contraejemplo:
    • Si $f$ es una función creciente, derivable y continua en un intervalo $I \Rightarrow f'(x)>0$ para toda $x\in I$.
    • Si $f$ es una función estrictamente creciente, continua y derivable en $I \Rightarrow f'(x)>0$ para toda $x\in I$.
  • Realiza la gráfica de la función:
    $$f(x)=\frac{1}{(x-1)^{2}}+1.$$
    Determinando los intervalos donde $f$ es creciente o decreciente.
    Señalando si es que existen:
    • máximos y mínimos (locales y globales).
    • los valores $x$ donde $f(x)=0$.
    • $\lim_{x \to \infty^{+}} f(x)$.
    • $\lim_{x \to \infty^{-}} f(x)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: La regla de la cadena

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente revisamos, entre otras cosas, cómo derivar la suma, el producto y el cociente de funciones. La siguiente operación a analizar es la composición de funciones, tema del cual tratará esta entrada.

Demostración de la regla de la cadena

Teorema. Sean $A$, $B \subset \RR$, $g: A \to \RR$, $f: B \to \RR$ y $x_0 \in A$ tales que

  1. Para todo $x \in A$, $g(x) \in B$.
  2. $g$ es derivable en $x_0$, es decir $$\lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} = g'(x_0).$$
  3. $f$ es derivable en $g(x_0)$, es decir $$\lim_{t \to x_0} \frac{f(t)-f(g(x_0))}{t-g(x_0)} = f'(g(x_0)).$$

Entonces $f \circ g$ es derivable en $x_0$, además $$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

Demostración.

Para realizar esta demostración haremos uso de una función auxiliar de la que probaremos propiedades específicas.

$$\rho (t) = \begin{cases}
\frac{f(t)-f(g(x_0))}{t-g(x_0)}-f'(g(x_0)), & \text{ si $t \neq g(x_0)$} \\
0, & \text{ si $t = g(x_0)$.}
\end{cases}$$

Podemos observar que la función $\rho$ está «inspirada» en la definición de derivada de $f$ en el punto $g(x_0)$. Procederemos a puntualizar 5 observaciones de nuestra función auxiliar.

  1. Como $f: B \to \RR$, entonces $\rho: B \to \RR$.
  2. El límite de $\rho$ en $g(x_0)$ es cero, puesto que
    \begin{align*}
    \lim_{t \to g(x_0)} \rho (t) & = \lim_{t \to g(x_0)} \left( \frac{f(t)-f(g(x_0))}{t-g(x_0)} – f'(g(x_0)) \right) \\ \\
    & = \lim_{t \to g(x_0)} \frac{f(t)-f(g(x_0))}{t-g(x_0)} – \lim_{t \to g(x_0)} f'(g(x_0)) \\ \\
    & =f'(g(x_0))-f'(g(x_0)) \text{, por el supuesto 3} \\ \\
    & = 0.
    \end{align*}

    $$\therefore \lim_{t \to g(x_0)} \rho (t) = 0.$$
  3. $\rho$ es continua en $g(x_0)$, puesto que $$\lim_{t \to g(x_0)} \rho(t) = 0 = \rho (g(x_0)).$$
  4. Para todo $t \in B$, se sigue de la definición de $\rho$ que $$f(t)-f(g(x_0)) = (\rho(t)+f'(g(x_0)) (t-g(x_0)).$$
  5. Por el supuesto 2, $g$ es derivable en $x_0$ lo que implica que también es continua en tal punto, además por la observación 3, sabemos que $\rho$ es continua en $g(x_0).$ Por tanto, se tiene que
    \begin{gather*}
    \lim_{x \to x_0} \rho (g(x)) = \rho (g(x_0)) = 0. \\
    \therefore \rho \circ g \text{ es continua en } x_0.
    \end{gather*}

Ahora que establecimos las 5 observaciones, estamos listos para calcular la derivada de la composición:

\begin{align*}
(f \circ g)'(x_0) & = \lim_{x \to x_0} \frac{ f(g(x))-f(g(x_0)) }{x – x_0} \\ \\
& = \lim_{x \to x_0} \frac{ ( \rho(g(x))+f'(g(x_0)) )( g(x)-g(x_0) ) }{x-x_0} \text{, por la obs 4} \\ \\
&= \lim_{x \to x_0} \left( ( \rho(g(x))+f'(g(x_0)) ) \cdot \frac{g(x)-g(x_0)}{x-x_0} \right) \\ \\
& =\lim_{x \to x_0} ( \rho(g(x))+f'(g(x_0)) ) \cdot \lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} \\ \\
& =(0+f'(g(x_0))) \cdot g'(x_0) \text{, por la obs 3 y el supuesto 2} \\ \\
& = f'(g(x_0)) g'(x_0).
\end{align*}

$$\therefore (f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

$\square$

Aplicando la regla de la cadena

A continuación revisaremos algunos ejemplos donde aplicaremos la proposición anterior. La idea general de los ejercicios será expresar una función en términos de la composición de otras dos.

Ejemplo 1. Encuentra la derivada de la función $F(x) = (3x+1)^2$.

Notemos que podemos ver a $F$ como la composición de las siguientes dos funciones
$$ f(x) = x^2, \qquad g(x) = 3x + 1.$$

Así, $F(x) = f(g(x))$. Y empleando la regla de la cadena se tiene que

\begin{align*}
F'(x) & = f'(g(x)) g'(x) \\
& = 2g(x)g'(x) \\
& =2 (3x+1)(3) \\
& = 6(3x+1) \\
& = 18x+6.
\end{align*}

Ejemplo 2. Deriva la función $F(x) = \sqrt{\frac{x^2+1}{x^3+3}}$.

Definimos las funciones

$f(x) = \sqrt{x}$ con derivada $f'(x) = \frac{1}{2 \sqrt{x}}$ y $g(x) = \frac{x^2+1}{x^3+3}$ con derivada
\begin{align*}
g'(x) & = \frac{ (x^3+3)(2x)-(x^2+1)(3x^2) }{ (x^3+3)^2 } \\
& = \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }.
\end{align*}

Con lo anterior, se tiene que $F(x) = f(g(x))$, y empleando la regla de la cadena tenemos

\begin{align*}
F'(x) & = f'(g(x)) g'(x) \\
& =\frac{1}{ 2\sqrt{g(x)} } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 } \\
& = \frac{1}{ 2\sqrt{ \frac{ x^2+1 }{ x^3+3 } } } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }\\
& = \frac{ \sqrt{x^3+3} }{2 \sqrt{x^2+1} } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }.
\end{align*}

Más adelante…

En las siguientes entradas haremos un resumen de las «reglas de derivación» que hemos visto hasta ahora y probaremos algunas más; particularmente se hará la revisión de las derivadas para las funciones trigonométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Teorema de Carathéodory. Sea $f$ definida en un intervalo $A$ y sea $a \in A$. Entonces $f$ es derivable en $a$ si y solo si existe una función $\rho$ en $A$ que es continua en $a$ y satisface:
    $$f(x) – f(a) = \rho (x) (x-a) \text{ para } x \in A.$$
    En este caso, se tiene que $\rho(a) = f'(a)$.
  • Deriva la función $f(x) = \sqrt{5-2x+x^2}$.
  • Si $f: \RR \to \RR$ es derivable en $x_0$ y $f(x_0) = 0$. Prueba que $g(x) := |f(x)|$ es derivable en $x_0$ si y solo si $f'(x_0) = 0$.
  • Determina en dónde es derivable cada una de las siguientes funciones de $\RR \to \RR$ y encuentra la derivada:
    • $f(x) = |x|+|x+1|.$
    • $g(x) = 2x + |x|.$
    • $h(x) = x|x|.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Rectas tangente y normal a una curva

Por Karen González Cárdenas

Introducción

En la unidad anterior vimos la teoría relacionada a las funciones derivables. A lo largo de esta última parte del curso, veremos una serie de aplicaciones de la derivada en distintos ámbitos. Esperamos que te parezcan interesantes los ejemplos que aquí expondremos y la relación del Cálculo en problemáticas de otras áreas. Comenzaremos con obtener la recta tangente y normal de una función en un punto dado.

¿Qué dice la geometría?

Recordemos algunos conceptos geométricos para entrar en contexto:
Decimos que una recta $T$ es tangente si toca a una curva en un sólo punto. Y que una recta $N$ es normal si es perpendicular a la recta tangente en el punto de tangencia.

  • $T$ es la recta tangente en el punto $p$
  • $N$ es la recta normal en $p$

En los cursos de geometría probablemente te encontraste con la siguiente ecuación para definir a una recta:
$$y-y_1= m(x-x_1) $$
ésta es conocida como la forma punto-pendiente.


Vemos que gráficamente estamos considerando un punto $(x_1,y_1)$ sobre la recta y decimos que un punto cualquiera $(x,y)$ se encuentra también sobre la recta si cumple la igualdad anterior.

Recordando…

A principios de la unidad pasada vimos que una función $f$ es derivable en un punto $x_{0}$ si existe el siguiente límite:
$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=f'(x_0).$$

Y que además la interpretación geométrica de dicho límite es justo la pendiente de la recta tangente a la gráfica de nuestra función $f$ en un $ (x_{0},f(x_{0}))$.
Con ayuda de este concepto y la definición vista en la sección anterior, vemos que la recta que pasa por el punto $ (x_{0},f(x_{0}))$ y que es tangente a la gráfica sería:
\begin{align*}
y-y_1&= m(x-x_1)\\
y-f(x_0)&=f'(x_0)(x-x_0)\\
y&=f'(x_0) (x-x_0) +f(x_0)
\end{align*}
donde $m=f'(x_0)$ y consideramos $(x_1,y_1)= (x_{0},f(x_{0})) $.

Definición de la recta tangente

Motivados por lo anterior tenemos la siguiente definición:
Definición (recta tangente): Sea $f$ una función derivable en un punto $x_0$. Definimos a la recta tangente a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$ como:
$$T(x)= f'(x_0) (x-x_0) +f(x_0).$$

Esta definición es la que estaremos usando en todos los ejercicios de esta entrada por lo que recomendamos tenerla presente. Pasaremos ahora a definir la recta normal a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$.

Definición de la recta normal

Como ya vimos que geométricamente la recta normal es perpendicular a la recta tangente, modificaremos la pendiente a la definición anterior tomando $m=-\frac{1}{f'(x_0)}$ con $f'(x_0) \neq 0$ :
Definición (recta normal): Tomando $f$ una función derivable en un punto $x_0$. Definimos a la recta normal a la gráfica de $f$ en el punto $(x_{0},f(x_{0}))$ con la ecuación:
$$N(x)= -\frac{1}{f'(x_0)}(x-x_0) +f(x_0).$$

Con ambas rectas definidas pasaremos a resolver algunos ejercicios.

Ejemplo 1

Encuentra la recta tangente y normal de la función:
$$f(x)=x^{3}+2x^{2}-x+2$$
en el punto $(4,94)$.
Solución:
Comenzaremos por obtener la derivada de $f(x)$ haciendo uso de las reglas de derivación:
$$f'(x)=3x^{2}+4x-1.$$

Para obtener la pendiente en el punto indicado debemos sustituir $x=4$, así:
\begin{align*}
f'(4)&= 3(4)^{2}+4(4)-1\\
&=48+16-1\\
&=63
\end{align*}

Ahora comenzamos sustituyendo lo anterior en la definición de recta tangente:
\begin{align*}
T(x)&= 63 \cdot (x-4)+94\\
&=63x-252+94\\
&=63x-158
\end{align*}
$$\therefore T(x)= 63x-158 .$$

Finalmente sustituyendo en la definición de la recta normal:
\begin{align*}
N(x)&= -\frac{1}{63} \cdot (x-4)+94\\
&=-\frac{x}{63}+\frac{4}{63}+94\\
&=-\frac{x}{63} + \frac{5926}{63}
\end{align*}
$$\therefore N(x)= -\frac{x}{63} + \frac{5926}{63}.$$

Ejemplo 2

Encuentra la recta tangente y normal con $x_0=2$ de la función:
$$f(x)=3x^{2}-5x+6.$$
Solución:
Comenzamos por sustituir $x_0=2$ para obtener el punto $p$ por donde pasarán ambas rectas:
\begin{align*}
f(2)&=3(2)^{2}-5(2)+6\\
&= 12-10+6\\
&=8
\end{align*}
$$\therefore p=(2,8).$$
Ahora pasemos a obtener la pendiente derivando la función y sustituyendo $x_0=2$:
$$f'(x)=6x-5 \Rightarrow f'(2)=6(2)-5=12-5=7.$$

Procedamos a sustituir en las definiciones para la tangente y la normal:
\begin{align*}
T(x)&= 7(x-2)+8 & N(x)&= -\frac{1}{7} (x-2)+8 \\
&= 7x-14+8 & &=-\frac{x}{7}+\frac{2}{7}+8\\
&= 7x-6 & &= -\frac{x}{7}+\frac{58}{7}
\end{align*}
Así concluimos que:
\begin{align*}
T(x)&= 7x-6 \\
N(x)&= -\frac{x}{7}+\frac{58}{7}
\end{align*}

Ejemplo 3

Hallar la recta tangente y normal de la función:
$$f(x)=\sqrt{-x}$$
en el punto $p=(-9,3)$.
Solución:
Procederemos a derivar la función haciendo uso de la Regla de la cadena:
\begin{align*}
f'(x)&= \frac{1}{2}(-x)^{\frac{1}{2}-1} \cdot (-1)\\
&=-\frac{1}{2}(-x)^{-\frac{1}{2}}\\
&=-\frac{1}{2\sqrt{-x}}
\end{align*}

Obtenemos la pendiente al sustituir $x_0=-9$:
\begin{align*}
f'(-9)&=-\frac{1}{2\sqrt{-(-9)}}\\
&=-\frac{1}{2\sqrt{9}}\\
&= -\frac{1}{6}
\end{align*}

Ahora hallamos la recta tangente y normal sustituyendo $f'(-9)= -\frac{1}{6}$:
\begin{align*}
T(x)&= -\frac{1}{6} (x-(-9))+3 & N(x)&=-\frac{1}{-\frac{1}{6}} (x-(-9))+3 \\
&= -\frac{1}{6}(x+9)+3 & &= 6 (x+9)+3 \\
&=-\frac{x}{6}-\frac{3}{2}+3 & &= 6x+54+3\\
&= -\frac{x}{6}+\frac{3}{2} & &=6x+57
\end{align*}

Por lo que finalmente tenemos:
\begin{align*}
T(x)&= -\frac{x}{6}+\frac{3}{2}\\
N(x) &=6x+57
\end{align*}

Más adelante

En la siguiente entrada veremos cómo encontrar máximos y mínimos de una función. Por lo tanto, definiremos dichos conceptos y probaremos algunos resultados que nos brindarán los criterios necesarios, haciendo uso de la derivada, para identificarlos.

Tarea moral

Encuentra la recta tangente y normal en cada uno de los incisos:

  • $f(x)=2x^{3}+3x^{2}+4x-2$ con $x_0=2$.
  • $f(x)=x^{3}-3x$ en $p=(2,2)$.
  • $f(x)=4x^{2}$ en $p=(2,16)$.
  • $f(x)=sen(\frac{\pi}{2}-x)$ en $p=\left(\frac{\pi}{3},\frac{1}{2} \right)$.
  • $f(x)=\frac{x+1}{x-1}$ en $p=(2,3)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Derivabilidad y continuidad

Por Juan Manuel Naranjo Jurado

Introducción

En esta sección ligaremos el concepto de continuidad con el de derivabilidad; tal relación no presentará ninguna sorpresa considerando el ejemplo de la función valor absoluto revisada en la entrada anterior. Adicionalmente, nos enfocaremos en la demostración de algunas propiedades básicas de la derivada.

Relación entre derivabilidad y continuidad

Proposición. Sean $A \subset \RR$, $f: A \to \RR$ y $x_0 \in A$, si $f$ es derivable en $x_0$, entonces $f$ es continua en $x_0$.

Demostración.

\begin{align*}
\lim_{x \to x_0} f(x) & = \lim_{x \to x_0} \left( f(x) – f(x_0) + f(x_0) \right) \\ \\
& = \lim_{x \to x_0} \left[ \left( \frac{f(x)-f(x_0)}{x-x_0} \right) (x-x_0)+f(x_0) \right] \\ \\
& = f'(x_0) \cdot 0+f(x_0) \text{, pues }f \text{ es derivable}\\ \\
& = f(x_0).
\end{align*}

$$\therefore \lim_{x \to x_0} f(x) = f(x_0).$$

Por tanto, $f$ es continua en $x_0$.

$\square$

Veremos que el regreso no es cierto, es decir, si $f$ es continua en $x_0$ no necesariamente es derivable en $x_0$.

Ejemplo 1. Consideremos $f: \RR \to \RR$, $f(x) = |x|.$

Primero probaremos que $f$ es continua en $x_0 = 0$.

Demostración.

Sea $\varepsilon > 0$.

Consideremos $\delta = \varepsilon$.

Si $|x-0| < \delta$, entonces

\begin{align*}
|f(x)-0| & = |f(x)| \\
& = ||x|| \\
& = |x| \\
& < \delta \\
& = \varepsilon.
\end{align*}

$$\therefore |f(x)-0| < \varepsilon.$$

Con esto, hemos probado que $f$ es continua en $x_0 = 0$, sin embargo, en la entrada anterior vimos que no era derivable en tal punto.

$\square$

Para continuar, revisaremos algunas propiedades básicas de la derivada, tal como qué sucede con la derivada de la suma o producto de funciones, y sus demostraciones se obtienen directamente de la definición, razón por la cual será conveniente tenerla presente.

Derivada de la suma de funciones

Proposición. Sean $A \subset \RR$, $f: A \to \RR$, $g: A \to \RR$ y $x_0 \in A$ tales que $f$ y $g$ son derivables en $x_0$, es decir, $f'(x_0)$ y $g'(x_0)$ sí existen. Entonces

  1. $f+g$ es derivable en $x_0$, además $$(f+g)'(x_0) = f'(x_0) + g'(x_0).$$
  2. Si $c \in \RR$ es una constante, $cf$ es derivable en $x_0$, además $$(cf)'(x_0) = cf'(x_0).$$
  3. $f-g$ es derivable en $x_0$, además $$(f-g)'(x_0) = f'(x_0) – g'(x_0).$$

Demostración.

$(1)$

\begin{align*}
(f+g)'(x_0) & = \lim_{x \to x_0} \frac{(f(x)+g(x))-(f(x_0)+g(x_0))}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{f(x)+g(x)-f(x_0)-g(x_0)}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{ ( f(x)-f(x_0) ) + ( g(x)-g(x_0) )}{x-x_0} \\ \\
& = \lim_{x \to x_0} \left( \frac{f(x)-f(x_0)}{x-x_0} + \frac{g(x)-g(x_0)}{x-x_0} \right) \\ \\
& = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} + \lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} \text{, pues $f$ y $g$ son derivables en $x_0$}. \\ \\
& = f'(x_0) + g'(x_0)
\end{align*}

$$\therefore (f+g)'(x_0) = f'(x_0) + g'(x_0).$$

$(2) \text{ y } (3)$ quedarán como tarea moral.

$\square$

Derivada del producto de funciones

Proposición. Sean $A \subset \RR$, $f: A \to \RR$, $g: A \to \RR$ y $x_0 \in A$ tales que $f$ y $g$ son derivables en $x_0$, es decir, $f'(x_0)$ y $g'(x_0)$ sí existen. Entonces

  1. $f \cdot g$ es derivable en $x_0$, además $$(f \cdot g)'(x_0) = f(x_0)g'(x_0) + f'(x_0) g(x_0).$$
  2. Si $g(x_0) \neq 0$, entonces $\frac{1}{g}$ es derivable en $x_0$, además $$\left( \frac{1}{g} \right)’ (x_0) = -g(x_0) \left( \frac{1}{(g(x_0))^2} \right).$$
  3. Si $g(x_0) \neq 0$, entonces $\frac{f}{g}$ es derivable en $x_0$, además $$\left( \frac{f}{g} \right)’ (x_0) = \frac{-f(x_0)g'(x_0) + g(x_0)f'(x_0)}{(g(x_0))^2}.$$

Demostración.

$(1)$

\begin{align*}
(f\cdot g)’ (x_0) & = \lim_{x \to x_0} \frac{f(x)g(x)-f(x_0)g(x_0)}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{f(x)g(x)-f(x_0)g(x)+f(x_0)g(x)-f(x_0)g(x_0)}{x-x_0} \\ \\
& = \lim_{x \to x_0} \left( \frac{f(x)-f(x_0)}{x-x_0} \cdot g(x) + f(x_0) \cdot \frac{g(x)-g(x_0)}{x-x_0} \right) \\ \\
& = f'(x_0)g(x_0) + f(x_0)g'(x_0).
\end{align*}

Notemos que en el último paso se utiliza que $f$ y $g$ son derivables, y eso en particular implica que $g$ es continua por lo cual podemos aplicar el límite.

$$\therefore (f \cdot g)'(x_0) = f(x_0)g'(x_0) + f'(x_0) g(x_0).$$

$(2)$

\begin{align*}
\left(\frac{1}{g}\right)’ (x_0) & = \lim_{x \to x_0} \frac{ \left( \frac{1}{g} \right) (x) – \left( \frac{1}{g} \right) (x_0) }{x- x_0} \\ \\
& = \lim_{x \to x_0} \frac{\frac{1}{g(x)}-\frac{1}{g(x_0)}}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{\frac{g(x_0)-g(x)}{g(x) \cdot g(x_0)}}{x-x_0} \\ \\
& = \lim_{x \to x_0} \left( -\frac{g(x)-g(x_0)}{x-x_0} \right) \cdot \left( \frac{1}{g(x) \cdot g(x_0)} \right) \\ \\
& = -g(x_0) \left( \frac{1}{(g(x_0))^2} \right) \text{, pues $g$ es derivable (y continua).}
\end{align*}

$$\therefore \left( \frac{1}{g} \right)’ (x_0) = -g(x_0) \left( \frac{1}{(g(x_0))^2} \right).$$

$(3)$

\begin{align*}
\left( \frac{f}{g} \right)’ (x_0) & = \left( f \cdot \left( \frac{1}{g} \right) \right)’ (x_0) \\ \\
& = f(x_0) \left( \frac{1}{g} \right)’ (x_0) + f'(x_0) \left( \frac{1}{g} \right) (x_0) \text{, por (1)}\\ \\
& = f(x_0) \left( \frac{-g'(x_0)}{(g(x_0))^2} \right) + \frac{f'(x_0)}{g(x_0)} \text{, por (2)} \\ \\
& = \frac{-f(x_0)g'(x_0) + g(x_0)f'(x_0)}{(g(x_0))^2}.
\end{align*}

$$\therefore \left( \frac{f}{g} \right)’ (x_0) = \frac{-f(x_0)g'(x_0) + g(x_0)f'(x_0)}{(g(x_0))^2}.$$

$\square$

Un par de ejemplos

Lo siguiente será revisar un par de ejemplos para aplicar las propiedades revisadas. Recordemos que gracias a la entrada anterior ya conocemos la derivada de algunas funciones:

\begin{gather*}
f_1(x) = ax+b, &\qquad f’_1(x) = a.\\
f_2(x) = x^2, & \qquad f’_2(x) = 2x. \\
f_3(x) = c, & \qquad f’_3(x) = 0. \\
f_4(x) = \sqrt{x}, & \qquad f’_4(x) = \frac{1}{2\sqrt{x}}.
\end{gather*}

Ejemplo 2. Encuentra la derivada de la función $f(x)=\sqrt{x}+x^2-10$.

Notemos que $f(x) = f_4(x) + f_2(x) – f_3(x)$. Sabemos que la derivada de una suma (resta) de funciones es la suma (resta) de sus respectivas derivadas, así tenemos que

\begin{align*}
f'(x) & = f’_4(x) + f’_2(x) – f’_3(x) \\
& = \frac{1}{2\sqrt{x}} + 2x.
\end{align*}

Ejemplo 3. Encuentra la derivada de la función $f(x)=\frac{\sqrt{x}}{5x+30}$.

Notemos que $f(x)=\frac{f_4(x)}{f_1(x)}$. Usando la propiedad de la derivada del cociente de funciones, tenemos que

\begin{align*}
f'(x) & = \frac{-f_4(x_0)f’_1(x_0) + f_1(x_0)f’_4(x_0)}{(f_1(x_0))^2} \\ \\
& = \frac{-\sqrt{x} \cdot 5 + (5x+30) (\frac{1}{2\sqrt{x}})}{ (5x+30)^2} \\
& = \frac{- 5 \sqrt{x} + (\frac{5x+30}{2\sqrt{x}})}{ (5x+30)^2} \\ \\
& = \frac{ \frac{-10x+ 5x+30}{2 \sqrt{x}} }{ 25\cdot (x+6)^2} \\ \\
& = \frac{5(6-x)}{50 \sqrt{x} (x+6)^2} \\ \\
& = \frac{6-x}{10 \sqrt{x} (x+6)^2}.
\end{align*}

Más adelante…

Después de haber revisado qué sucede cuando se deriva la suma, el producto y el cociente de funciones surge una pregunta natural en términos de las operaciones disponibles para las funciones: ¿qué pasa con la composición de funciones?

En la siguiente entrada responderemos esta pregunta y estudiaremos la famosa Regla de la Cadena.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sean $A \subset \RR$, $f: A \to \RR$, $g: A \to \RR$ y $x_0 \in A$ tales que $f$ y $g$ son derivables en $x_0$, es decir, $f'(x_0)$ y $g'(x_0)$ sí existen. Prueba que:
    • Si $c \in \RR$ es una constante, $cf$ es derivable en $x_0$, además $$(cf)'(x_0) = cf'(x_0).$$
    • $f-g$ es derivable en $x_0$, además $$(f-g)'(x_0) = f'(x_0) – g'(x_0).$$
  • Prueba que si $f_1$, $f_2$, $\ldots$, $f_n$ son funciones derivables en $x_0 \in A \subset \RR$, entonces
    • La función $f_1+f_2+\ldots+f_n$ es derivable en $x_0$ y $(f_1+f_2+\ldots+f_n)'(x_0) = f’_1(x_0)+f_2′(x_0)+\ldots+f_n'(x_0).$
    • La función $f_1 \cdot f_2 \cdot \ldots \cdot f_n$ es derivable en $x_0$ y
      \begin{align*}
      (f_1 \cdot f_2 \cdot \ldots \cdot f_n)'(x_0) = & f_1′(x_0) \cdot f_2(x_0) \cdot \ldots \cdot f_n(x_0)+f_1(x_0) \cdot f_2′(x_0) \cdot \ldots \cdot f_n(x_0) \\
      & + \ldots + f_1(x_0) \cdot f_2(x_0) \cdot \ldots \cdot f_n'(x_0).
      \end{align*}
  • Empleando las propiedades revisadas en esta entrada, encuentra la derivada de las siguientes funciones:
    • $f(x) = \frac{1}{\sqrt{x}}.$
    • $g(x) = \frac{x-1}{5-2x+x^2}.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Funciones exponenciales y logarítmicas

Por Karen González Cárdenas

Introducción

En esta entrada veremos un par de tipos de funciones muy particulares: las exponenciales y las logarítmicas. Probablemente en alguno de tus cursos anteriores te encontraste con funciones del tipo:
\begin{align*}
f(x)&= 3^{x} & g(x)&= ln(x)\\
\end{align*}

Aquí veremos su representación gráfica, ejercicios relacionados y algunos resultados importantes, como las leyes de los exponentes y de los logaritmos. Se profundizará más en este conjunto de funciones en el curso de Cálculo Diferencial e Integral II.

Funciones exponenciales

Definición (función exponencial): Sea $f$ una función. Decimos que $f$ es una función exponencial si está definida como:
$$f: \r \rightarrow (0, \infty)$$
$$f(x)=a^{x}$$
con $a \in {\r}$ y $a>0$.
En este tipo de funciones tenemos que la variable $x$ está como exponente.
Observemos que tenemos los siguientes casos:

Veamos que al tomar $a=1$ tenemos que su gráfica se vería:
$$f(x)=1^{x}$$

Leyes de los exponentes

Teorema (Leyes de los exponentes): Consideremos a $a, m, n \in \r$ y $a>0$. Vemos que se cumplen las siguientes propiedades:

  1. $a^{m}a^{n}=a^{m+n}$
  2. $(a^{n})^{m}=a^{(n\cdot m)}$
  3. $a^{0}=1$
  4. $a^{-1}=\frac{1}{a}$
  5. $a^{-n}=\frac{1}{a^{n}}$
  6. $a^{n-m}=\frac{a^{n}}{a^{m}}$
  7. $a^{\frac{1}{q}}=\sqrt[q]{a}$
  8. $a^{\frac{p}{q}}=\sqrt[q]{a^{p}}$

Por el momento no daremos las pruebas pertinentes, ya que las herramientas necesarias se verán durante el próximo curso de cálculo. Así pasaremos a revisar otros resultados relacionados a las funciones exponenciales.

Otros resultados sobre funciones exponenciales

Proposición: Consideremos $a>0$ y $r=\frac{p}{q} \in \mathbb{Q}$.

  1. Si $a>1$ y $r>0$ entonces $a^{r}>1$
  2. Si $0<a<1$ y $r>0$ entonces $a^{r}<1$
  3. Si $a>1$ y $r<0$ entonces $a^{r}<1$
  4. Si $0<a<1$ y $r<0$ entonces $a^{r}>1$

Demostración:

  1. Como $a>1$ se sigue que:
    \begin{align*}
    a>1 &\Rightarrow \sqrt[q]{a}>\sqrt[q]{1}\\
    &\Rightarrow (\sqrt[q]{a})^{p}>(\sqrt[q]{1})^{p}\\
    &\Rightarrow a^{\frac{p}{q}}>1\\
    &\Rightarrow a^{r}>1
    \end{align*}
  2. Ahora tenemos que $0<a<1$:
    \begin{align*}
    &\Rightarrow \sqrt[q]{a}< \sqrt[q]{1}\\
    &\Rightarrow (\sqrt[q]{a})^{p}<(\sqrt[q]{1})^{p}\\
    &\Rightarrow a^{r}<1
    \end{align*}
  3. Tarea moral
  4. Ya que $0<a<1$ observamos que:
    $$1< \frac{1}{a}$$
    Adicionalmente como $r<0$ se sigue:
    \begin{align*}
    &\Rightarrow \left(\frac{1}{a}\right)^{r}<1\\
    &\Rightarrow (a^{-1})^{r}<1\\
    &\Rightarrow a^{-r}<1\\
    &\Rightarrow \frac{1}{a^{r}}<1\\
    &\Rightarrow 1<a^{r}
    \end{align*}

$\square$

Teorema: Sea $f: A \subseteq \r \rightarrow \r$.

  1. Si $f$ es una función creciente $\Rightarrow f$ es inyectiva.
  2. Si $f$ es una función decreciente $\Rightarrow f$ es inyectiva.

Demostración de 1:
Tomemos $x_{1},x_{2} \in A$ tales que $x_{1} \neq x_{2}$ por lo que tenemos los siguientes casos:
Caso 1: Si $x_{1}>x_{2}$ entonces al aplicar la función $f$ tenemos
$$f(x_{1})>f(x_{2}).$$
Por lo que:
$$f(x_{1}) \neq f(x_{2}).$$

Caso 2: Ahora si $x_{1}<x_{2}$ y aplicamos la función $f$
$$f(x_{1})< f(x_{2}).$$
Así:
$$f(x_{1}) \neq f(x_{2}).$$
De los casos anteriores concluimos que $f$ es inyectiva.

$\square$

Afirmación: Si tenemos $a>0$ y $f: \r \rightarrow \r^{+}$
$$f(x)=a^{x}$$

  1. Si $a>1$ entonces $f$ es creciente.
  2. Si $0<a<1$ entonces $f$ es decreciente.

Demostración:

  1. Si $a>1$ y tomamos $x<y$ entonces $y-x>0$
    \begin{align*}
    &\Rightarrow a^{y-x}>1\\
    &\Rightarrow \frac{a^{y}}{a^{x}}>1\\
    &\Rightarrow a^{y}>a^{x}
    \end{align*}
  2. En cambio si $0<a<1$ y ahora consideramos $x<y$. Queremos probar que:
    $f(x)>f(y)$
    \begin{align*}
    x<y &\Rightarrow y-x>0\\
    &\Rightarrow a^{y-x}<1\\
    &\Rightarrow \frac{a^{y}}{a^{x}}<1\\
    &\Rightarrow a^{y}< a^{x}\\
    &\Rightarrow f(y)<f(x)
    \end{align*}

$\square$

Observación: Si $a>0$ y $a \neq 1$ entonces $f(x)=a^{x}$ es inyectiva.
Observación: $f(x)=a^{x}$ es sobreyectiva.

Ahora hablemos del número $e$

Si consideramos $a= e$ donde:
$$e=2.718282 \ldots$$
que es llamado el número de Euler.
Obtenemos la función:
$$f(x)=e^{x},$$
llamada función exponencial, ésta es quizá las más conocida de este tipo de funciones.

Su gráfica se ve del siguiente modo:

¿Y su función inversa?

Si tomas la función $f(x)=a^{x}$, la función identidad y reflejamos su gráfica, obtenemos que $f^{-1}$ se ve como:

Observamos que $f^{-1}$ esta definida como:
$$f^{-1}: (0, \infty) \rightarrow \r$$
que vemos también cumple ser inyectiva.
A $f^{-1}(x)$ la denotaremos por:
$$f^{-1}(x)= log_{a}(x).$$

Funciones logarítmicas

Definición (función logarítmica): Sea $g$ una función en los reales. Decimos que $g$ es una función logarítmica si:
$$g: (0, \infty) \rightarrow \r$$
$$g(x)=log_{a}(x)$$
donde $log_{a}(x)$ se lee como logaritmo base $a$ de $x$.
Notación:

  • Si tomamos $a=e$:
    $$log_{e}(x):= ln(x)$$
    llamado logaritmo natural de $x$.
  • Si tomamos $a=10$ escribiremos:
    $$log_{10}(x):= log(x)$$

Leyes de los logaritmos

Teorema (Leyes de los logaritmos): Sean $a \in (0, \infty)$ con $a\neq 1$, $x,y \in (0, \infty)$ y $r \in \r$. Tenemos que se cumplen las siguientes igualdades:

  1. $log_{a}(x \cdot y)=log_{a}(x)+log_{b}(y)$
  2. $r log_{a}(x)= log_{a}(x^{r})$
  3. $log_{a}(\frac{x}{y})= log_{a}(x)- log_{a}(y)$

Demostración:
Tomemos $log_{a}(x)=z $ y $log_{a}(y)=w$ y notemos que:
\begin{align*}
a^{z}&= x & a^{w}&=y
\end{align*}

  1. Para este punto consideremos el producto de $x$ con $y$:
    \begin{align*}
    x \cdot y &= a^{z}\cdot a^{w}\\
    &= a^{z+w}
    \end{align*}
    Así sustituyendo al logaritmo del producto tenemos:
    \begin{align*}
    log_{a}(x \cdot y)&= log_{a}(a^{z+w})\\
    &= z+w\\
    &=log_{a}(x)+ log_{a}(y)
    \end{align*}
  2. Ahora si elevamos $a^{z}=x$ a la $r$ obtenemos:
    $$(a^{z})^{r}= x^{r} \Rightarrow a^{rz}=x^{r}$$
    Tomando el $log_{a}(x^{r})$ se sigue:
    \begin{align*}
    log_{a}(x^{r})&= log_{a}(a^{rz})\\
    &= rz\\
    &=r log_{a}(x)
    \end{align*}
  3. Por último veamos que:
    $$x=\frac{x}{y}\cdot y$$
    Tomando lo anterior y aplicando logaritmo:
    \begin{align*}
    log_{a}(x)&= log_{a}\left(\frac{x}{y}\cdot y \right)\\
    &= log_{a}\left(\frac{x}{y }\right)+ log_{a}(y)
    \end{align*}
    Reacomodando obtenemos:
    $$log_{a} \left(\frac{x}{y}\right)= log_{a}(x)- log_{a}(y)$$

$\square$

Cambio de base de logaritmos

Proposición (Cambio de base): Consideremos $a,b \in (0, \infty)$ donde $a\neq 1, b \neq 1$, $x \in \r$ y $y>0$. Se cumplen las siguientes propiedades:

  1. $a^{x}=b^{x log_{b}(a)}$
  2. $log_{a}(y)=\frac{log_{b}(y)}{log_{b}(a)}$

Demostración:

  1. Si aplicamos la segunda ley de los logaritmos en la siguiente igualdad y simplificamos tenemos:
    \begin{align*}
    b^{x log_{b}(a)}&= b^{log_{b}(a^{x})}\\
    &= a^{x}.
    \end{align*}
  2. Como $y>0$ entonces podemos considerar $x=log_{a}(y)$. Así sustituyendo en el punto 1:
    \begin{align*}
    a^{log_{a}(y)}&= b^{log_{a}(y)log_{b}(a)}.
    \end{align*}
    De lo anterior tenemos:
    $$y=b^{log_{a}(y)log_{b}(a)}.$$
    Tomando el logaritmo base $b$ en ambos lados de la igualdad:
    \begin{align*}
    log_{b}(y)&= log_{b}(b^{log_{a}(y)log_{b}(a)})\\
    &= log_{a}(y)\cdot log_{b}(a)
    \end{align*}
    $$\therefore \quad log_{a}(y)=\frac{log_{b}(y)}{log_{b}(a)}.$$

$\square$

Ejercicio

Resuelve la ecuación:
\begin{equation*}
log_{4}(log_{3}(log_{2}(x)))=0.
\end{equation*}
Solución:
Comenzaremos realizando un cambio de variable considerando:
$$\beta =log_{3}(log_{2}(x)).$$
Por lo que tendríamos:
\begin{equation*}
log_{4}(\beta)=0.
\end{equation*}
Lo anterior implica que:
\begin{equation*}
4^{log_{4}(\beta)}=4^{0}=1.
\end{equation*}
$$\therefore \beta = 1$$
$$\therefore log_{3}(log_{2}(x))=1$$
Procedemos con un razonamiento similar para $log_{3}(log_{2}(x))=1$:
\begin{equation*}
3^{log_{3}(log_{2}(x))}=3^{1}=3.
\end{equation*}
Por lo que concluimos:
$$log_{2}(x)=3.$$
Finalmente, de $log_{2}(x)=3$ obtenemos:
\begin{equation*}
2^{log_{2}(x)}=2^{3}=8.
\end{equation*}
Así tenemos que el valor para $x$ sería:
$$x=8.$$

Realizando la comprobación vemos que se cumple:
\begin{align*}
log_{4}(log_{3}(log_{2}(x)))&=log_{4}(log_{3}(log_{2}(8)))\\
&=log_{4}(log_{3}(3))\\
&=log_{4}(1)\\
&=0
\end{align*}
$$\therefore log_{4}(log_{3}(log_{2}(x)))=0.$$

Más adelante

Ahora que hemos terminado la unidad de funciones, en la próxima entrada comenzaremos con la unidad dedicada al estudio de un tipo especial de funciones: las sucesiones de números reales. Encontrarás una introducción intuitiva sobre el concepto de sucesión para luego pasar a su definición formal y una serie de ejemplos.

Tarea moral

  • Demuestra el punto 3 de la Proposición.
  • Grafica las siguientes funciones:
    • $f(x)=ln(x-2)$
    • $f(x)=1-e^{x}$
  • Demuestra que dado $a \in (0, \infty)- \left\{1 \right\}$:
    \begin{equation*}
    log_{\frac{1}{a}}(x)=-log_{a}(x)
    \end{equation*}
  • Resuelve los siguientes ejercicios:
    • $log_{2}(log_{3}(log_{2}(x)))=1$
    • $log_{16}(x)+log_{4}(x)+log_{2}(x)=7$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»