Archivo de la etiqueta: derivabilidad y continuidad

Cálculo Diferencial e Integral I: Derivabilidad y continuidad

Introducción

En esta sección ligaremos el concepto de continuidad con el de derivabilidad; tal relación no presentará ninguna sorpresa considerando el ejemplo de la función valor absoluto revisada en la entrada anterior. Adicionalmente, nos enfocaremos en la demostración de algunas propiedades básicas de la derivada.

Relación entre derivabilidad y continuidad

Proposición. Sea $f: A \subseteq \RR \to \RR$, $x_0 \in A$, si $f$ es derivable en $x_0$, entonces $f$ es continua en $x_0$.

Demostración.

\begin{align*}
\lim_{x \to x_0} f(x) & = \lim_{x \to x_0} \left( f(x) – f(x_0) + f(x_0) \right) \\ \\
& = \lim_{x \to x_0} \left[ \left( \frac{f(x)-f(x_0)}{x-x_0} \right) (x-x_0)+f(x_0) \right] \\ \\
& = f'(x_0) \cdot 0+f(x_0) \text{, pues }f \text{ es derivable}\\ \\
& = f(x_0)
\end{align*}

$$\therefore \lim_{x \to x_0} f(x) = f(x_0)$$

Por tanto, $f$ es continua en $x_0$.

$\square$

Veremos que el regreso no es cierto, es decir, si $f$ es continua en $x_0$ no necesariamente es derivable en $x_0$.

Ejemplo. Consideremos $f: \RR \to \RR$, $f(x) = |x|$

Primero probaremos que $f$ es continua en $x_0 = 0$.

Demostración.

Sea $\varepsilon > 0$.

Consideremos $\delta = \varepsilon$

Si $|x-0| < \delta$, entonces

\begin{align*}
|f(x)-0| & = |f(x)| \\
& = ||x|| \\
& = |x| \\
& < \delta \\
& = \varepsilon
\end{align*}

$$\therefore |f(x)-0| < \varepsilon$$

Con esto, hemos probado que $f$ es continua en $x_0 = 0$, sin embargo, en la entrada anterior vimos que no era derivable en tal punto.

$\square$

Para continuar, revisaremos algunas propiedades básicas de la derivada, tal como qué sucede con la derivada de la suma o producto de funciones, y sus demostraciones se obtienen directamente de la definición, razón por la cual será conveniente tenerla presente.

Derivada de la suma de funciones

Proposición. Sean $f: A \subseteq \RR \to \RR$ y $g: A \subseteq \RR \to \RR$, $x_0 \in A$ tales que $f$ y $g$ son derivables en $x_0$, es decir, $f'(x_0)$ y $g'(x_0)$ sí existen. Entonces

  1. $f+g$ es derivable en $x_0$, además $$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$
  2. Si $c \in \RR$ es una constante, $cf$ es derivable en $x_0$, además $$(cf)'(x_0) = cf'(x_0)$$
  3. $f-g$ es derivable en $x_0$, además $$(f-g)'(x_0) = f'(x_0) – g'(x_0)$$

Demostración.

$(1)$

\begin{align*}
(f+g)'(x_0) & = \lim_{x \to x_0} \frac{(f(x)+g(x))-(f(x_0)+g(x_0))}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{f(x)+g(x)-f(x_0)-g(x_0)}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{ ( f(x)-f(x_0) ) + ( g(x)-g(x_0) )}{x-x_0} \\ \\
& = \lim_{x \to x_0} \left( \frac{f(x)-f(x_0)}{x-x_0} + \frac{g(x)-g(x_0)}{x-x_0} \right) \\ \\
& = \lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0} + \lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} \\ \\
& = f'(x_0) + g'(x_0) \text{, pues $f$ y $g$ son derivables en $x_0$}
\end{align*}

$$\therefore (f+g)'(x_0) = f'(x_0) + g'(x_0)$$

$(2) \text{ y } (3)$ quedarán como tarea moral.

$\square$

Derivada del producto de funciones

Proposición. Sean $f: A \subseteq \RR \to \RR$ y $g: A \subseteq \RR \to \RR$, $x_0 \in A$ tales que $f$ y $g$ son derivables en $x_0$, es decir, $f'(x_0)$ y $g'(x_0)$ sí existen. Entonces

  1. $f \cdot g$ es derivable en $x_0$, además $$(f \cdot g)'(x_0) = f(x_0)g'(x_0) + f'(x_0) g(x_0)$$
  2. Si $g(x_0) \neq 0$, entonces $\frac{1}{g}$ es derivable en $x_0$, además $$\left( \frac{1}{g} \right)’ (x_0) = -g(x_0) \left( \frac{1}{(g(x_0))^2} \right)$$
  3. Si $g(x_0) \neq 0$, entonces $\frac{f}{g}$ es derivable en $x_0$, además $$\left( \frac{f}{g} \right)’ (x_0) = \frac{-f(x_0)g'(x_0) + g(x_0)f'(x_0)}{(g(x_0))^2}$$

Demostración.

$(1)$

\begin{align*}
(f\cdot g)’ (x_0) & = \lim_{x \to x_0} \frac{f(x)g(x)-f(x_0)g(x_0)}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{f(x)g(x)-f(x_0)g(x)+f(x_0)g(x)-f(x_0)g(x_0)}{x-x_0} \\ \\
& = \lim_{x \to x_0} \left( \frac{f(x)-f(x_0)}{x-x_0} \cdot g(x) + f(x_0) \cdot \frac{g(x)-g(x_0)}{x-x_0} \right) \\ \\
& = f'(x_0)g(x_0) + f(x_0)g'(x_0)
\end{align*}

Notemos que en el último paso se utiliza que $f$ y $g$ son derivables, y eso en particular implica que $g$ es continua por lo cual podemos aplicar el límite.

$$\therefore (f \cdot g)'(x_0) = f(x_0)g'(x_0) + f'(x_0) g(x_0)$$

$(2)$

\begin{align*}
\left(\frac{1}{g}\right)’ (x_0) & = \lim_{x \to x_0} \frac{ \left( \frac{1}{g} \right) (x) – \left( \frac{1}{g} \right) (x_0) }{x- x_0} \\ \\
& = \lim_{x \to x_0} \frac{\frac{1}{g(x)}-\frac{1}{g(x_0)}}{x-x_0} \\ \\
& = \lim_{x \to x_0} \frac{\frac{g(x_0)-g(x)}{g(x) \cdot g(x_0)}}{x-x_0} \\ \\
& = \lim_{x \to x_0} \left( -\frac{g(x)-g(x_0)}{x-x_0} \right) \cdot \left( \frac{1}{g(x) \cdot g(x_0)} \right) \\ \\
& = -g(x_0) \left( \frac{1}{(g(x_0))^2} \right) \text{, pues $g$ es derivable (y continua)}
\end{align*}

$$\therefore \left( \frac{1}{g} \right)’ (x_0) = -g(x_0) \left( \frac{1}{(g(x_0))^2} \right)$$

$(3)$

\begin{align*}
\left( \frac{f}{g} \right)’ (x_0) & = \left( f \cdot \left( \frac{1}{g} \right) \right)’ (x_0) \\ \\
& = f(x_0) \left( \frac{1}{g} \right)’ (x_0) + f'(x_0) \left( \frac{1}{g} \right) (x_0) \tag{por (1)}\\ \\
& = f(x_0) \left( \frac{-g'(x_0)}{(g(x_0))^2} \right) + \frac{f'(x_0)}{g(x_0)} \tag{por (2)} \\ \\
& = \frac{-f(x_0)g'(x_0) + g(x_0)f'(x_0)}{(g(x_0))^2}
\end{align*}

$$\therefore \left( \frac{f}{g} \right)’ (x_0) = \frac{-f(x_0)g'(x_0) + g(x_0)f'(x_0)}{(g(x_0))^2}$$

Un par de ejemplos

Lo siguiente será revisar un par de ejemplos para aplicar las propiedades anteriores, para ello recordemos que gracias a la entrada anterior (usando también los resultados de la tarea moral) ya conocemos la derivada de algunas de las funciones:

\begin{gather*}
f_1(x) = ax+b &\qquad f’_1(x) = a\\
f_2(x) = x^2 & \qquad f’_2(x) = 2x \\
f_3(x) = c & \qquad f’_3(x) = 0 \\
f_4(x) = \sqrt{x} & \qquad f’_4(x) = \frac{1}{2\sqrt{x}}
\end{gather*}

Ejemplo. Encuentra la derivada de la función $f(x)=\sqrt{x}+x^2-10$.

Notemos que $f(x) = f_4(x) + f_2(x) – f_3(x)$. Sabemos que la derivada de una suma (resta) de funciones es la suma (resta) de sus respectivas derivadas, así tenemos que

\begin{align*}
f'(x) & = f’_4(x) + f’_2(x) – f’_3(x) \\
& = \frac{1}{2\sqrt{x}} + 2x
\end{align*}

Ejemplo. Encuentra la derivada de la función $f(x)=\frac{\sqrt{x}}{5x+30}$.

Notemos que $f(x)=\frac{f_4(x)}{f_1(x)}$. Usando la propiedad de la derivada del cociente de funciones, tenemos que

\begin{align*}
f'(x) & = \frac{-f_4(x_0)f’_1(x_0) + f_1(x_0)f’_4(x_0)}{(f_1(x_0))^2} \\ \\
& = \frac{-\sqrt{x} \cdot 5 + (5x+30) (\frac{1}{2\sqrt{x}})}{ (5x+30)^2} \\
& = \frac{- 5 \sqrt{x} + (\frac{5x+30}{2\sqrt{x}})}{ (5x+30)^2} \\ \\
& = \frac{ \frac{-10x+ 5x+30}{50 \sqrt{x}} }{ 25\cdot (x+6)^2} \\ \\
& = \frac{5(6-x)}{50 \sqrt{x} (x+6)^2} \\ \\
& = \frac{6-x}{10 \sqrt{x} (x+6)^2}
\end{align*}

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  • Sean $f: A \subseteq \RR \to \RR$ y $g: A \subseteq \RR \to \RR$, $x_0 \in A$ tales que $f$ y $g$ son derivables en $x_0$, es decir, $f'(x_0)$ y $g'(x_0)$ sí existen. Prueba que:
    • Si $c \in \RR$ es una constante, $cf$ es derivable en $x_0$, además $$(cf)'(x_0) = cf'(x_0)$$
    • $f-g$ es derivable en $x_0$, además $$(f-g)'(x_0) = f'(x_0) – g'(x_0)$$
  • Prueba que si $f_1$, $f_2$, $\cdots$, $f_n$ son funciones derivables en $x_0 \in A \subseteq \RR$, entonces
    • La función $f_1+f_2+\cdots+f_n$ es derivable en $x_0$ y $(f_1+f_2+\cdots+f_n)'(x_0) = f’_1(x_0)+f_2′(x_0)+\cdots+f_n'(x_0)$
    • La función $f_1 \cdot f_2 \cdots f_n$ es derivable en $x_0$ y
      \begin{align*}
      (f_1 \cdot f_2 \cdots f_n)'(x_0) = & f_1′(x_0) \cdot f_2(x_0) \cdots f_n(x_0)+f_1(x_0) \cdot f_2′(x_0) \cdots f_n(x_0) \\
      & + \cdots + f_1(x_0) \cdot f_2(x_0) \cdots f_n'(x_0)
      \end{align*}
  • Empleando las propiedades revisadas en esta entrada, encuentra la derivada de las siguientes funciones:
    • $f(x) = \frac{1}{\sqrt{x}}$
    • $g(x) = \frac{x-1}{5-2x+x^2}$

Más adelante…

Después de haber revisado qué sucede cuando se deriva la suma, producto y cociente de funciones surge una pregunta natural en términos de las operaciones disponibles para las funciones: ¿qué sucede con la composición?

En la siguiente entrada responderemos esta pregunta para lo cual revisaremos la famosa Regla de la Cadena.

Entradas relacionadas