Archivo de la etiqueta: base dual

Álgebra Lineal I: Bases duales, recetas y una matriz invertible

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior definimos el espacio dual de un espacio vectorial $V$. Así mismo, definimos las formas coordenadas, que son formas lineales asociadas a una base $B$ de $V$. Lo que hace la $i$-ésima forma coordenada en un vector $v$ es «leer» el $i$-ésimo coeficiente de $v$ expresado en la base $B$. Nos gustaría ver que estas formas coordenadas conforman bases del espacio dual.

Más concretamente, el objetivo de esta entrada es mostrar el teorema que enunciamos al final de la entrada anterior, hablar de problemas prácticos de bases duales y de mostrar un resultado interesante que relaciona bases, bases duales y la invertibilidad de una matriz.

Pequeño recordatorio

Como recordatorio, dada una base $B=\{e_1,\ldots,e_n\}$ de un espacio vectorial $V$ de dimensión finita $n$, podemos construir $n$ formas coordenadas $e_1^\ast,\ldots,e_n^\ast$ que quedan totalmente determinadas por lo que le hacen a los elementos de $B$ y esto es, por definición, lo siguiente:

$$
e_i^\ast(e_j)=
\begin{cases}
1\quad \text{ si $i=j$,}\\
0\quad \text{ si $i\neq j$.}
\end{cases}
$$

Recordemos también que dado un vector $v$ en $V$ podíamos construir a la forma lineal «evaluar en $v$», que era la forma $\text{ev}_v:V^\ast \to F$ dada por $\text{ev}_v(f)=f(v)$. Como manda elementos de $V^\ast$ a $F$, entonces pertenece a $V^{\ast \ast}$. A partir de esta definición, construimos la bidualidad canónica $\iota:V\to V^{\ast \ast}$ que manda $v$ a $\text{ev}_v$.

Finalmente, recordemos que dada una forma lineal $l$ y un vector $v$, usamos la notación $\langle l,v\rangle = l(v)$, y que esta notación es lineal en cada una de sus entradas. Todo esto lo puedes revisar a detalle en la entrada anterior.

El teorema de bases duales

El resultado que enunciamos previamente y que probaremos ahora es el siguiente.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B=\{e_1,\ldots,e_n\}$ una base de $V$. Entonces el conjunto de formas coordenadas $B^\ast=\{e_1^\ast, \ldots,e_n^\ast\}$ es una base de $V^\ast$. En particular, $V^\ast$ es de dimensión finita $n$. Además, la bidualidad canónica $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales.

Antes de comenzar, convéncete de que cada una de las $e_i^\ast$ son formas lineales, es decir, transformaciones lineales de $V$ a $F$.

Demostración. Veremos que $B^\ast=\{e_1^\ast,\ldots,e_n^\ast\}$ es un conjunto linealmente independiente y que genera a $V^\ast$. Veamos lo primero. Tomemos una combinación lineal igual a cero, $$z:=\alpha_1 e_1^\ast + \alpha_2 e_2^\ast+\ldots + \alpha_n e_n^\ast=0.$$ Para cada $i=1,2,\ldots,n$, podemos evaluar la forma lineal $z$ en $e_i$.

Por un lado, $z(e_i)=0$, pues estamos suponiendo que la combinación lineal de $e_i^\ast$’s es (la forma lineal) cero. Por otro lado, analizando término a término y usando que los $e_i^\ast$ son la base dual, tenemos que si $i\neq j$ entonces $e_j^\ast(e_i)$ es cero, y si $i=j$, es $1$.

Así que el único término que queda es $\alpha_i e_i^\ast(e_i)=\alpha_i$. Juntando ambas observaciones, $\alpha_i=z(e_i)=0$, de modo que todos los coeficientes de la combinación lineal son cero. Asi, $B^\ast$ es linealmente independiente.

Ahora veremos que $B^\ast$ genera a $V^\ast$. Tomemos una forma lineal arbitraria $l$, es decir, un elemento en $V^\ast$. Al evaluarla en $e_1,e_2,\ldots,e_n$ obtenemos escalares $$\langle l, e_1\rangle,\langle l, e_2\rangle,\ldots,\langle l, e_n\rangle. $$ Afirmamos que estos son los coeficientes que nos ayudarán a poner a $l$ como combinación lineal de elementos de $B^\ast$. En efecto, para cualquier vector $v$ tenemos que

\begin{align*}
\left(\sum_{i=1}^n\langle l, e_i \rangle e_i^\ast\right) (v)
&= \sum_{i=1}^{n} \langle l, e_i \rangle \langle e_i^\ast, v \rangle \\
&= \sum_{i=1}^{n} \langle l, \langle e_i^\ast, v \rangle e_i \rangle \\
&=\left \langle l, \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i \right \rangle\\
&= \langle l, v \rangle\\
&= l(v).
\end{align*}

La primer igualdad es por la definición de suma de transformaciones lineales. En la segunda usamos la linealidad de la segunda entrada para meter el escalar $\langle e_i^\ast , v\rangle$. La siguiente es de nuevo por la linealidad de la segunda entrada. En la penúltima igualdad usamos que justo $\langle e_i^\ast , v\rangle$ es el coeficiente que acompaña a $e_i$ cuando escribimos a $v$ con la base $B$. Esto muestra que $B^\ast$ genera a $V^\ast$.

Así, $B^\ast$ es base de $V^\ast$. Como $B^\ast$ tiene $n$ elementos, entonces $V^\ast$ tiene dimensión $n$.

La última parte del teorema consiste en ver que $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales. Por lo que acabamos de demostrar, $$\dim V = \dim V^\ast = \dim V^{\ast \ast}.$$ Así que basta con mostrar que $\iota$ es inyectiva pues, de ser así, mandaría a una base de $V$ a un conjunto linealmente independiente de $V^{\ast \ast}$ con $n$ elementos, que sabemos que es suficiente para que sea base. Como $\iota$ es transformación lineal, basta mostrar que el único vector que se va a la forma lineal $0$ de $V^\ast$ es el $0$ de $V$.

Supongamos que $v$ es tal que $\text{ev}_v=0$. Vamos a mostrar que $v=0$. Si $\text{ev}_v=0$, en particular para las formas coordenadas $e_i^\ast$ tenemos que $ \text{ev}_v(e_i^\ast)=0$. En otras palabras, $e_i^\ast(v)=0$ para toda $i$. Es decir, todas las coordenadas de $v$ en la base $B$ son $0$. Así, $v=0$. Con esto terminamos la prueba.

$\square$

La demostración anterior muestra cómo encontrar las coordenadas de una forma lineal $l$ en términos de la base $B^\ast$: basta con evaluar $l$ en los elementos de la base $B$. Recopilamos esto y la igualdad dual como una proposición aparte, pues resulta ser útil en varios contextos.

Proposición. Sea $V$ un espacio vectorial de dimensión finita $n$, $B=\{e_1,\ldots, e_n\}$ una base de $V$ y $B^\ast=\{e_1^\ast,\ldots,e_n^\ast\}$ la base dual. Entonces, para todo vector $v$ en $V$ y para toda forma lineal $l:V\to F$, tenemos que
\begin{align*}
v&= \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i \quad \text{ y }\\
l&= \sum_{i=1}^{n} \langle l, e_i \rangle e_i^\ast.
\end{align*}

La traza de una matriz en $M_n(F)$ es la suma de las entradas en su diagonal principal. Es sencillo verificar que la función $\text{tr}:M_n(F)\to F$ que manda a cada matriz a su traza es una forma lineal, es decir, un elemento de $M_n(F)^\ast$.

Ejemplo. Considera el espacio vectorial de matrices $M_3(\mathbb{R})$. Sea $B=\{E_{ij}\}$ su base canónica. Expresa a la forma lineal traza en términos de la base dual $B^\ast$.

Solución. Tenemos que $\text{tr}(E_{ii})=1$ y que si $i\neq j$, entonces $\text{tr}(E_{ij})=0$. De esta forma, usando la fórmula de la proposición anterior,
\begin{align*}
\text{tr}&=\sum_{i,j} \text{tr}(E_{ij}) E_{ij}^\ast\\
&=E_{11}^\ast + E_{22}^\ast + E_{33}^\ast.
\end{align*} Observa que, en efecto, esta igualdad es correcta. Lo que hace $E_{ii}^\ast$ por definición es obtener la entrada $a_{ii}$ de una matriz $A=[a_{ij}]$.

La igualdad que encontramos dice que «para obtener la traza hay que extraer las entradas $a_{11}$, $a_{22}$, $a_{33}$ de $A$ y sumarlas». En efecto, eso es justo lo que hace la traza.

$\triangle$

Algunos problemas prácticos de bases duales

Ya que introdujimos el concepto de espacio dual y de base dual, hay algunos problemas prácticos que puede que queramos resolver.

  • Dada una base $v_1,\ldots,v_n$ de $F^n$, ¿cómo podemos encontrar a la base dual $v_1^\ast, \ldots, v_n^\ast$ en términos de la base dual $e_1^\ast, \ldots, e_n^\ast$ de la base canónica?
  • Dada una base $L=\{l_1,\ldots, l_n\}$ de $V^\ast$, ¿es posible encontrar una base $B$ de $V$ tal que $B^\ast = L$? De ser así, ¿cómo encontramos esta base?

A continuación mencionamos cómo resolver ambos problemas. Las demostraciones se quedan como tarea moral. En la siguiente entrada veremos problemas ejemplo resueltos.

  • La receta para resolver el primer problema es poner a $v_1,\ldots, v_n$ como vectores columna de una matriz $A$. Las coordenadas de $v_1^\ast,\ldots, v_n^\ast$ en términos de la base $e_1^\ast,\ldots,e_n^\ast$ están dados por las filas de la matriz $A^{-1}$.
  • La receta para resolver el segundo problema es tomar una base $B’=\{e_1,\ldots, e_n\}$ cualquiera de $V$ y considerar la matriz $A$ con entradas $A=[l_i(e_j)]$. La matriz $A^{-1}$ tiene como columnas a los vectores de coordenadas de la base $B$ que buscamos con respecto a la base $B’$.

¿Por qué la matriz $A$ de la segunda receta es invertible? Esto lo mostramos en la siguiente sección.

Un teorema de bases, bases duales e invertibilidad de matrices

La demostración del siguiente teorema usa varias ideas que hemos estado desarrollando con anterioridad. Usamos que:

  • Si $V$ es de dimensión finita $n$ y $B$ es un conjunto de $n$ vectores de $V$, entonces basta con que $B$ sea linealmente independiente para ser base. Esto lo puedes repasar en la entrada del lema de intercambio de Steinitz.
  • Una matriz cuadrada $A$ es invertible si y sólo si el sistema de ecuaciones $AX=0$ sólo tiene la solución trivial $X=0$. Esto lo puedes repasar en la entrada de equivalencias de matrices invertibles.
  • Una matriz cuadrada $A$ es invertible si y sólo si su transpuesta lo es.
  • El hecho de que la bidualidad canónica $\iota$ es un isomorfismo entre $V$ y $V^{\ast \ast}$.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ sobre el campo $F$. Sea $B=\{v_1,\ldots, v_n\}$ un conjunto de vectores en $V$ y $L=\{l_1,\ldots, l_n\}$ un conjunto de elementos de $V^\ast$, es decir, de formas lineales en $V$. Consideremos a la matriz $A$ en $M_n(F)$ dada por $$A=[l_i(v_j)].$$ La matriz $A$ es invertible si y sólo si $B$ es una base de $V$ y $L$ es una base de $V^\ast$.

Demostración. Mostraremos primero que si $B$ no es base, entonces $A$ no es invertible. Como $B$ tiene $n$ elementos y no es base, entonces no es linealmente independiente, así que existe una combinación lineal no trivial $$\alpha_1 v_1+\ldots+\alpha_n v_n=0.$$ De esta forma, si definimos $v=(\alpha_1,\ldots, \alpha_n)$, este es un vector no cero, y además, la $i$-ésima entrada de $Av$ es $$\alpha_1 l_i(v_1)+\ldots+\alpha_n l_i(v_n) = l_i(\alpha_1 v_1 + \ldots + \alpha_n v_n) = 0.$$ De este modo, $AX=0$ tiene una no solución trivial y por lo tanto no es invertible.

De manera similar, si $L$ no es base, entonces hay una combinación lineal no trivial $$\beta_1 L_1 + \ldots + \beta_n L_n =0$$ y entonces el vector $w=(\beta_1,\ldots,\beta_n)$ es una solución no trivial a la ecuación $^t A X=0$, por lo que $^t A$ no es invertible, y por lo tanto $A$ tampoco lo es.

Ahora veremos que si $L$ y $B$ son bases, entonces $A$ es invertible. Si $A$ no fuera invertible, entonces tendríamos una solución no trivial $(\alpha_1,\ldots,\alpha_n)$ a la ecuación $AX=0$. Como vimos arriba, esto quiere decir que para cada $i$ tenemos que $$ l_i(\alpha_1 v_1 + \ldots + \alpha_n v_n) = 0.$$ Como $l_i$ es base de $V^\ast$, esto implica que $l(\alpha_1 v_1 + \ldots + \alpha_n v_n)=0$ para toda forma lineal $l$, y como la bidualidad canónica es un isomorfismo, tenemos que $$\alpha_1 v_1 + \ldots + \alpha_n v_n=0.$$ Esto es imposible, pues es una combinación lineal no trivial de los elementos de $B$, que por ser base, son linealmente independientes.

$\square$

Más adelante…

Esta entrada es un poco abstracta, pues habla de bastantes transformaciones aplicadas a transformaciones, y eso puede resultar un poco confuso. Se verán problemas para aterrizar estas ideas. La importancia de entenderlas y manejarlas correctamente es que serán de utilidad más adelante, cuando hablemos de los espacios ortogonales, de transposición de transformaciones lineales y de hiperplanos.

La teoría de dualidad también tiene amplias aplicaciones en otras áreas de las matemáticas. En cierto sentido, la dualidad que vemos aquí es también la que aparece en espacios proyectivos. Está fuertemente relacionada con la dualidad que aparece en teoremas importantes de optimización lineal, que permiten en ocasiones reformular un problema difícil en términos de uno más fácil, pero con el mismo punto óptimo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Usa la definición de linealidad para ver que las formas coordenadas $e_i^\ast$ en efecto son formas lineales.
  • Muestra que $\iota:V \to V^{\ast \ast}$, la bidualidad canónica, es una transformación lineal.
  • Justifica por qué la primer receta resuelve el primer problema práctico de bases duales.
  • Justifica por qué la segunda receta resuelve el segundo problema práctico de bases duales.
  • Sean $a_0,a_1,\ldots,a_n$ reales distintos. Considera el espacio vectorial $V=\mathbb{R}_n[x]$ de polinomios con coeficientes reales y grado a lo más $n$. Muestra que las funciones $\text{ev}_{a_i}:V\to \mathbb{R}$ tales que $\text{ev}_{a_i}(f)=f(a_i)$ son formas lineales linealmente independientes, y que por lo tanto son una base de $V^\ast$. Usa esta base, la base canónica de $V$ y el teorema de la última sección para mostrar que la matriz $$\begin{pmatrix} 1 & a_0 & a_0 ^2 & \ldots & a_0^n\\ 1 & a_1 & a_1^2 & \ldots & a_1^n\\ 1 & a_2 & a_2^2 & \ldots & a_2^n\\ & \vdots & & \ddots & \vdots \\ 1 & a_n & a_n^2 & \ldots & a_n^n\end{pmatrix}$$ es invertible.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»