Archivo de la etiqueta: álgebra lineal

Seminario de Resolución de Problemas: Cálculo de determinantes

Por Leonardo Ignacio Martínez Sandoval

Introducción

Una de las habilidades fundamentales que hay que desarrollar para resolver problemas de álgebra lineal es el cálculo de determinantes. Como vimos en la entrada anterior, conocer el determinante de una matriz nos permite saber si es invertible. Así mismo, los determinantes permiten encontrar soluciones a sistemas de ecuaciones lineales, y más adelante veremos que están relacionados con el rango. Además, los determinantes juegan un papel muy importante en otras áreas de las matemáticas, como cálculo y teoría de gráficas.

Todo parte de la siguiente definición:

Definición. Para una matriz $A$ de $n \times n$ con entradas reales $A=[a_{ij}]$, el determinante de $A$ es $$\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ donde la suma se hace sobre todas las permutaciones (funciones biyectivas) $\sigma$ de $\{1,\ldots,n\}$ a sí mismo y $\text{sign}(\sigma)$ es el signo de la permutación.

A $\det A$ también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

\begin{align*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}.
\end{vmatrix}.
\end{align*}

La definición permite mostrar de maneras muy elegantes las propiedades que cumplen los determinantes, pero no es nada práctica para cuando se quieren hacer las cuentas. Como la suma se hace sobre todas las permutaciones $\sigma$ de un conjunto de $n$ elementos, si quisiéramos calcular determinantes por definición se tendrían que hacer $n!$ productos, y luego sumar todos estos resultados.

Por esta razón, es muy importante encontrar otras formas de evaluar determinantes. Para empezar, esta entrada hará referencia a dos enlaces del blog en los que se discuten las propiedades básicas de determinantes. Luego, se hablará de dos tipos especiales de determinantes: los de Vandermonde y los de matrices circulantes.

Técnicas básicas de cálculo de determinantes

Lo primero y más importante es que conozcas las teoría básica para cálculo de determinantes. Aquí en el blog hay una entrada que sirve justo para conocer las propiedades y técnicas principales para encontrar determinantes.

Técnicas básicas de cálculo de determinantes

Además, es también muy importante que sepas calcular determinantes usando la expansión de Laplace. En la siguiente entrada puedes ver el enunciado de la técnica, y cómo se usa en varios ejemplos:

Problemas de cálculo de determinantes

Para fines de este curso, es importante que revises esas entradas. Puedes saltarte las demostraciones de los resultados principales, pero presta atención a cómo se usan en cada uno de los problemas.

Las siguientes secciones presentan técnicas avanzadas que a veces resultan útiles. Sin embargo, tómalas como temas optativos, dando prioridad a primero dominar los básicos.

Determinantes de Vandermonde

Teorema (determinante de Vandermonde). Sean $a_1,\ldots,a_n$ números reales. El determinante de la matriz de Vandermonde \begin{align*}
\begin{pmatrix}
1&a_1 & a_1^2 & \ldots & a_1^{n-1}\\
1 & a_2 & a_2^2 & \ldots & a_2^{n-1}\\
1&a_3 & a_3^2 & \ldots & a_3^{n-1}\\
\vdots& & & \ddots & \vdots\\
1& a_n & a_n^2 & \ldots & a_n^{n-1}\\
\end{pmatrix}
\end{align*} es igual a $$\prod_{1\leq i < j \leq n} (a_j-a_i).$$

Ejemplo. La matriz $$\begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{pmatrix}$$ es una matriz de Vandermonde, así que su determinante es $$(b-a)(c-a)(c-b).$$

$\square$

Veamos un problema en el que aparece una matriz de Vandermonde.

Problema. Sean $a$, $b$ y $c$ reales distintos de $0$. Muestra que el determinante de $$\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix}$$ es $$(a^2-bc)(b^2-ca)(c^2-ab).$$

Sugerencia pre-solución. Formula un problema equivalente usando propiedades de determinantes para que quede un determinante del tipo de Vandermonde. Aprovecha la simetría para ahorrar algunas cuentas.

Solución. Como el determinante es homogéneo en cada columna, podemos factorizar $a^2$ de la primera, $b^2$ de la segunda y $c^2$ de la tercera para obtener que
\begin{align*}
\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix} &= (abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \end{vmatrix}\\
&=-(abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \end{vmatrix}.
\end{align*}

Aquí también usamos que al intercambiar dos filas (o columnas), el determinante de una matriz cambia de signo.

Una matriz tiene el mismo determinante que su transpuesta, y la transpuesta de esta última matriz es de Vandermonde, de modo que $$-(abc)^2 \begin{vmatrix}1 & 1 & 1 \\ \frac{c}{a} & \frac{a}{b} & \frac{b}{c} \\ \frac{c^2}{a^2}& \frac{a^2}{b^2} & \frac{b^2}{c^2} \end{vmatrix} = -(abc)^2 \left(\frac{a}{b}-\frac{c}{a}\right)\left(\frac{b}{c}-\frac{c}{a}\right)\left(\frac{b}{c}-\frac{a}{b}\right).$$

Vamos a partir esta última expresión en factores simétricos. Tenemos que $$ab\left(\frac{a}{b}-\frac{c}{a}\right)=a^2-bc.$$ De manera similar, tenemos también $$-ca\left(\frac{b}{c}-\frac{c}{a}\right)=c^2-ab$$ y $$bc\left(\frac{b}{c}-\frac{a}{b}\right)=b^2-ac.$$

Así, concluimos que $$\begin{vmatrix}a^2 & b^2 & c^2\\ c^2& a^2 & b^2 \\ ca & ab & bc \end{vmatrix}= (a^2-bc)(b^2-ca)(c^2-ab).$$

$\square$

Determinantes de matrices circulantes

Teorema (determinantes circulantes) Sean $a_1,\ldots, a_n$ números reales. El determinante de la matriz circulante
\begin{align*}
\begin{pmatrix}
a_1& a_n & a_{n-1} & \ldots & a_2\\
a_2&a_1& a_{n}& \ldots & a_3\\
a_3 & a_2& a_1& \ldots & a_4\\
\vdots& & & \ddots & \vdots\\
a_n& a_{n-1} & a_{n-2} &\ldots & a_1.
\end{pmatrix}
\end{align*}

es $$\prod_{j=0}^{n-1} (a_1 + a_n \omega_j + a_{n-1} \omega_j^2 + \ldots + a_2 \omega_j^{n-1}),$$ en donde $\omega_j$ es la $n$-ésima raíz de la unidad dada por $\omega_j:= e^{j \cdot \frac{2\pi i}{n}}$.

Ejemplo. La matriz $$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a\end{pmatrix}$$ es una matriz circulante, así que su determinante es $$(a+b+c)(a+\omega b + \omega^2 c)(a+\omega^2 b+ \omega c),$$ donde $\omega$ es la raíz cúbica de la unidad de argumento positivo mínimo.

$\square$

El siguiente problema apareció en la tercera edición de la Olimpiada Iberoamericana de Matemática Universitaria. El enunciado en esa ocasión fue un poco distinto, pero lo adaptamos a la notación de esta entrada.

Problema. Sea $n\geq 3$ un entero Muestra que el determinante de la matriz circulante en donde $a_1=a_n=a_{n-1}=1$ y $a_2=\ldots=a_{n-1}=0$ es $3$ si $n$ no es un múltiplo de $3$ y es $0$ si $n$ es un múltiplo de $3$.

Sugerencia pre-solución. Para empezar, aplica el teorema de determinantes de matrices circulantes. Luego, necesitarás además un argumento de polinomios y de números complejos.

Solución. Para empezar, llamemos $A_n$ a la matriz del problema. Como $A_n$ es una matriz circulante, su determinante es $$\det(A_n) = \prod_{j=0}^{n-1} (1 + \omega_j + \omega_j^2).$$

El polinomio $1+x+x^2$ se factoriza como $(\eta-x)(\eta^2-x)$, donde $\eta$ es la raíz cúbica de la unidad de argumento positivo mínimo. De esta forma, podemos reescribir al determinante de $A_n$ como $$\det(A_n) = \prod_{j=0}^{n-1} (\eta-\omega_j)(\eta^2-\omega_j).$$

El polinomio $h(x)=x^n-1$ se factoriza como $$h(x)=(x-\omega_0)(x-\omega_1)\ldots(x-\omega_{n-1}),$$ así que $\det(A_n)$ es precisamente el producto de $h(\eta)$ con $h(\eta^2)$. En otras palabras,
\begin{align*}
\det(A_n)&= (\eta^n-1)(\eta^{2n}-1)\\
&=\eta^{3n}+1-(\eta^n+\eta^{2n})\\
&=2-(\eta^n+\eta^{2n})
\end{align*}

Finalmente, hacemos un análisis de casos:

  • Si $n$ es múltiplo de $3$, entonces $\eta^n = \eta^{2n} = 1$ y entonces $\det(A_n)=0$.
  • Si $n$ no es múltiplo de $3$, entonces $n$ y $2n$ no son congruentes módulo $3$, y entonces $\eta^n$ y $\eta^{2n}$ son $\eta$ y $\eta^2$ en algún orden. Así, $$(\eta^n+\eta^{2n})=\eta+\eta^2=-1,$$ y por lo tanto $\det(A_n)=3$.

$\square$

Más problemas

Puedes encontrar más problemas de cálculo de determinantes en la Sección 7.4 y la Sección 7.5 del libro Essential Linear Algebra de Titu Andreescu.

Álgebra Lineal I: Teorema espectral para matrices simétricas reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada demostramos el teorema espectral para matrices simétricas reales en sus dos formas. Como recordatorio, lo que probaremos es lo siguiente.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para ello, usaremos los tres resultados auxiliares que demostramos en la entrada de eigenvalores de matrices simétricas reales. Los enunciados precisos están en ese enlace. Los resumimos aquí de manera un poco informal.

  • Los eigenvalores complejos de matrices simétricas reales son números reales.
  • Si una transformación $T$ es simétrica y $W$ es un subespacio estable bajo $T$, entonces $W^\bot$ también lo es. Además, $T$ restringida a $W$ o a $W^\bot$ también es simétrica.
  • Es lo mismo que una matriz sea diagonalizable, a que exista una base formada eigenvectores de la matriz.

Además de demostrar el teorema espectral, al final de la entrada probaremos una de sus consecuencias más importantes. Veremos una clasificación de las matrices que inducen formas bilineales positivas.

Demostración de la primera versión del teorema espectral

Comenzamos mostrando la siguiente versión del teorema espectral.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Demostración. Como $V$ es espacio Euclideano, entonces tiene cierta dimensión finita $n$. Haremos inducción fuerte sobre $n$. Si $n=1$, el polinomio característico de $T$ es de grado $1$ y con coeficientes reales, así que tiene una raíz $\lambda$ real. Si $v$ es un eigenvector de $T$ para $\lambda$, entonces $\frac{v}{\norm{v}}$ también es eigenvector de $T$ y conforma una base ortonormal para $V$.

Supongamos que el resultado es cierto para todo espacio Euclideano de dimensión menor a $n$ y tomemos $V$ espacio Euclideano de dimensión $n$. Por el teorema fundamental del álgebra, el polinomio característico de $T$ tiene por lo menos una raíz $\lambda$ en $\mathbb{C}$. Como $T$ es simétrica, cualquier matriz $A$ que represente a $T$ también, y $\lambda$ sería una raíz del polinomio característico de $A$. Por el resultado que vimos en la entrada anterior, $\lambda$ es real.

Consideremos el kernel $W$ de la transformación $\lambda \text{id} – T$. Si $W$ es de dimensión $n$, entonces $W=V$, y por lo tanto $T(v)=\lambda v$ para todo vector $v$ en $V$, es decir, todo vector no cero de $V$ es eigenvector de $T$. De esta forma, cualquier base ortonormal de $V$ satisface la conclusión. De esta forma, podemos suponer que $W\neq V$ y que por lo tanto $1\leq \dim W \leq n-1$, y como $$V=W\oplus W^\bot,$$ se obtiene que $1\leq \dim W^\bot \leq n-1$. Sea $B$ una base ortonormal de $W$, que por lo tanto está formada por eigenvectores de $T$ con eigenvalor $\lambda$.

Como la restricción $T_1$ de $T$ a $W^\bot$ es una transformación simétrica, podemos aplicar la hipótesis inductiva y encontrar una base ortonormal $B’$ de eigenvectores de $T_1$ (y por lo tanto de $T$) para $W^\bot$.

Usando de nuevo que $$V=W\oplus W^\bot,$$ tenemos que $B\cup B’$ es una base de $V$ formada por eigenvectores de $T$.

El producto interior de dos elementos distintos de $B$, o de dos elementos distintos de $B’$ es cero, pues individualmente son bases ortonormales. El producto de un elemento de $B$ y uno de $B’$ es cero pues un elemento está en $W$ y el otro en $W^\bot$. Además, todos los elementos de $B\cup B’$ tiene norma $1$, pues vienen de bases ortogonales. Esto muestra que $B\cup B’$ es una base ortonormal de $V$ que consiste de eigenvectores de $T$.

$\square$

Demostración de la segunda versión del teorema espectral

Veamos ahora la demostración del teorema espectral en su enunciado con matrices.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $M_n(\mathbb{R})$, tales que $$A=P^{-1}DP.$$

Demostración. Como $A$ es una matriz simétrica, la transformación $T:F^n\to F^n$ dada por $T(X)=AX$ es simétrica. Aplicando la primer versión del teorema espectral, existe una base ortonormal de $F^n$ que consiste de eigenvectores de $T$. Digamos que estos eigenvectores son $C_1,\ldots,C_n$. Por definición de $T$, estos eigenvectores de $T$ son exactamente eigenvectores de $A$.

Anteriormente demostramos que si construimos a una matriz $B$ usando a $C_1,\ldots,C_n$ como columnas y tomamos la matriz diagonal $D$ cuyas entradas son los eigenvalores correspondientes $\lambda_1,\ldots,\lambda_n$, entonces $$A=BDB^{-1}.$$

Afirmamos que la matriz $B$ es ortogonal. En efecto, la fila $j$ de la matriz $^t B$ es precisamente $C_j$. De esta forma, la entrada $(i,j)$ del producto ${^tB} B$ es precisamente el producto punto de $C_i$ con $C_j$. Como la familia $C_1,\ldots,C_n$ es ortonormal, tenemos que dicho producto punto es uno si $i=j$ y cero en otro caso. De aquí, se concluye que ${^tB} B=I_n$.

Si una matriz es ortogonal, entonces su inversa también. Esto es sencillo de demostrar y queda como tarea moral. Así, definiendo $P=B^{-1}$, tenemos la igualdad $$A=P^{-1}DP,$$ con $D$ diagonal y $P$ ortogonal, justo como lo afirma el teorema.

$\square$

Matrices positivas y positivas definidas

Una matriz $A$ simétrica en $M_n(\mathbb{R})$ induce una forma bilineal simétrica en $\mathbb{R}^n$ mediante la asignación $$(x,y) \mapsto {^t x} A y,$$ con forma cuadrática correspondiente $$x \mapsto {^t x} A x.$$

Definición. Una matriz $A$ en $M_n(\mathbb{R})$ es positiva o positiva definida si su forma bilineal asociada es positiva o positiva definida respectivamente.

Una de las aplicaciones del teorema espectral es que nos permite dar una clasificación de las matrices simétricas positivas.

Teorema. Sea $A$ una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B$ en $M_n(\mathbb{R})$.
  4. $A= {^tC} C$ para alguna matriz $C$ en $M_n(\mathbb{R})$.

Demostración. (1) implica (2). Supongamos que $A$ es positiva y tomemos $\lambda$ un eigenvalor de $A$. Tomemos $v$ un eigenvector de eigenvalor $\lambda$. Tenemos que:
\begin{align*}
\lambda \norm{v}^2 &=\lambda {^tv} v\\
&= {^t v} (\lambda v)\\
&={^t v} Av\\
&\geq 0.
\end{align*}

Como $\norm{v}^2\geq 0$, debemos tener $\lambda \geq 0$.

(2) implica (3). Como $A$ es matriz simétrica, por el teorema espectral tiene una diagonalización $A=P^{-1}DP$ con $P$ una matriz invertible y $D$ una matriz diagonal cuyas entradas son los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$. Como los eigenvalores son no negativos, podemos considerar la matriz diagonal $E$ cuyas entradas son los reales $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}.$ Notemos que $E^2=D$, así que si definimos a la matriz $B=P^{-1}EP$, tenemos que $$B^2=P^{-1}E^2 P = P^{-1}DP = A.$$

Además, $B$ es simétrica pues como $E$ es diagonal y $P$ es ortogonal, tenemos que
\begin{align*}
{^tB} &= {^t P} {^t E} {^t (P^{-1})}\\
&= P^{-1} E P\\
&= B.
\end{align*}

(3) implica (4). Es inmediato, tomando $C=B$ y usando que $B$ es simétrica.

(4) implica (1). Si $A= {^tC} C$ y tomamos un vector $v$ en $\mathbb{R}^n$, tenemos que

\begin{align*}
{^t v} A v &= {^tv} {^tC} C v\\
&= {^t(Cv)} (Cv)\\
&=\norm{Cv}^2\\
&\geq 0,
\end{align*}

lo cual muestra que $A$ es positiva.

$\square$

También hay una versión de este teorema para matrices simétricas positivas definidas. Enunciarlo y demostrarlo queda como tarea moral.

En una entrada final, se verá otra consecuencia linda del teorema espectral: el teorema de descomposición polar. Dice que cualquier matriz con entradas reales se puede escribir como el producto de una matriz ortogonal y una matriz simétrica positiva.

Más allá del teorema espectral

Durante el curso introdujimos varias de las nociones fundamentales de álgebra lineal. Con ellas logramos llegar a uno de los teoremas más bellos: el teorema espectral. Sin embargo, la teoría de álgebra lineal no termina aquí. Si en tu formación matemática profundizas en el área, verás otros temas y resultados fundamentales como los siguientes:

  • El teorema de Cayley-Hamiltón: toda matriz se anula en su polinomio característico.
  • La clasificación de matrices diagonalizables: una matriz es diagonalizable si y sólo si su polinomio característico se factoriza en el campo de la matriz, y la multiplicidad algebraica de sus eigenvalores corresponde con la multiplicidad geométrica.
  • El teorema de la forma canónica de Jordan: aunque una matriz no se pueda diagonalizar, siempre puede ser llevada a una forma estándar «bonita».
  • Productos interiores con imágenes en $\mathbb{C}$, a los que también se les conoce como formas hermitianas.
  • Los polinomios mínimos de matrices y transformaciones, que comparten varias propiedades con el polinomio característico, pero dan información un poco más detallada.

Más adelante…

En esta entrada discutimos dos demostraciones del teorema espectral. Sólo nos falta discutir cómo podemos aplicarlo. En la siguiente entrada trabajaremos con algunos problemas, por ejemplo, ver cómo se usa para demostrar que una matriz simétrica no es diagonalizable.

Finalmente, discutiremos cómo podemos pensar en las nociones de continuidad y acotamiento en el álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la inversa de una matriz ortogonal es ortogonal.
  • Encuentra una base ortonormal de $\mathbb{R}^3$ conformada por eigenvectores de la matriz $\begin{pmatrix}10 & 0 & -7\\ 0 & 3 & 0 \\ -7 & 0 & 10\end{pmatrix}.$
  • Determina si la matriz anterior es positiva y/o positiva definida.
  • Enuncia y demuestra un teorema de clasificación de matrices simétricas positivas definidas.
  • Muestra que la matriz $$\begin{pmatrix}5 & 1 & 7\\1 & 10 & -7\\7 & -7 & 18\end{pmatrix}$$ es positiva.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: Sistemas de ecuaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Finalmente, en esta serie de entradas, veremos temas selectos de álgebra lineal y su aplicación a la resolución de problemas. Primero, hablaremos de sistemas de ecuaciones lineales. Luego, hablaremos de evaluación de determinantes. Después, veremos teoría de formas cuadráticas y matrices positivas. Finalmente, estudiaremos dos teoremas muy versátiles: el teorema de factorización $PJQ$ y el teorema de Cayley-Hamilton.

Como lo hemos hecho hasta ahora, frecuentemente no daremos las demostraciones para los resultados principales. Además, asumiremos conocimientos básicos de álgebra lineal. También, asumiremos que todos los espacios vectoriales y matrices con los que trabajaremos son sobre los reales o complejos, pero varios resultados se valen más en general.

Para cubrir los temas de álgebra lineal de manera sistemática, te recomendamos seguir un libro como el Essential Linear Algebra de Titu Andreescu, o el Linear Algebra de Friedberg, Insel y Spence. Mucho del material también lo puedes consultar en las notas de curso que tenemos disponibles en el blog.

Sistemas de ecuaciones lineales

Una ecuación lineal en $n$ incógnitas en $\mathbb{R}$ consiste en fijar reales $a_1,\ldots,a_n, b$ y determinar los valores de las variables $x_1,\ldots,x_n$ tales que $$a_1x_1+a_2x_2+\ldots+a_nx_n=b.$$

Si $a_1,\ldots,a_n$ no son todos cero, los puntos $(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ que son solución a la ecuación definen un hiperplano en $\mathbb{R}^n$.

Un sistema de ecuaciones lineales con $m$ ecuaciones y $n$ variables consiste en fijar, para $i$ en $\{1,\ldots,m\}$ y $j$ en $\{1,\ldots,n\}$ a reales $a_{ij}$ y $b_i$, y determinar los valores de las variables $x_1,\ldots,x_n$ que simultáneamente satisfacen todas las $m$ ecuaciones
$$\begin{cases}
a_{11}x_1+ a_{12}x_2+\ldots + a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots+a_{2n}x_n = b_2\\
\quad \quad \vdots\\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n = b_m.
\end{cases}$$

Este sistema de ecuaciones se puede reescribir en términos matriciales de manera muy sencilla. Si $A$ es la matriz de $m\times n$ de entradas $[a_{ij}]$, $X$ es el vector de variables $(x_1,\ldots,x_n)$ y $b$ es el vector de reales $b_1,\ldots,b_m$, entonces el sistema de ecuaciones anterior se reescribe simplemente como $$AX=b.$$

Sistemas de ecuaciones lineales con mucha simetría

En algunos sistemas de ecuaciones hay mucha simetría, y no es necesario introducir técnicas avanzadas de álgebra lineal para resolverlos. Veamos el siguiente ejemplo.

Problema. Resuelve el sistema de ecuaciones

$$\begin{cases}
7a+2b+2c+2d+2e= -2020\\
2a+7b+2c+2d+2e=-1010\\
2a+2b+7c+2d+2e=0\\
2a+2b+2c+7d+2e=1010\\
2a+2b+2c+2d+7e=2020.
\end{cases}$$

Sugerencia pre-solución. Trabaja hacia atrás, suponiendo que el sistema tiene una solución. A partir de ahí, puedes usar las cinco ecuaciones y combinarlas con sumas o restas para obtener información.

Solución. Al sumar las cinco ecuaciones, obtenemos que $$15(a+b+c+d+e)=0,$$ de donde $2(a+b+c+d+e)=0$. Restando esta igualdad a cada una de las ecuaciones del sistema original, obtenemos que
$$\begin{cases}
5a= -2020\\
5b=-1010\\
5c=0\\
5d=1010\\
5e=2020.
\end{cases}$$

De aquí, si el sistema tiene alguna solución, debe suceder que
\begin{align*}
a&=\frac{-2020}{5}=-404\\
b&=\frac{-2020}{5}=-202\\
c&=\frac{-2020}{5}= 0\\
d&=\frac{-2020}{5}=202\\
e&=\frac{-2020}{5}=404.
\end{align*}

Como estamos trabajando hacia atrás, esta es sólo una condición necesaria para la solución. Sin embargo, una verificación sencilla muestra que también es una condición suficiente.

$\square$

Sistemas de ecuaciones de n x n y regla de Cramer

Si tenemos un sistema de $n$ variables y $n$ incógnitas, entonces es de la forma $$AX=b$$ con una matriz $A$ cuadrada de $n\times n$. Dos resultados importantes para sistemas de este tipo son el teorema de existencia y unicidad, y las fórmulas de Cramer.

Teorema (existencia y unicidad de soluciones). Si $A$ es una matriz cuadrada invertible de $n\times n$ y $b$ es un vector de $n$ entradas, entonces el sistema lineal de ecuaciones $$AX=b$$ tiene una solución única y está dada por $X=A^{-1}b$.

El teorema anterior requiere saber determinar si una matriz es invertible o no. Hay varias formas de hacer esto:

  • Una matriz cuadrada es invertible si y sólo si su determinante no es cero. Más adelante hablaremos de varias técnicas para evaluar determinantes.
  • Una matriz cuadrada es invertible si y sólo si al aplicar reducción gaussiana, se llega a la identidad.
  • También ,para mostrar que una matriz es invertible, se puede mostrar que cumple alguna de las equivalencias de invertibilidad.

Problema. Demuestra que el sistema lineal de ecuaciones

$$\begin{cases}
147a+85b+210c+483d+133e= 7\\
91a+245b+226c+273d+154e=77\\
-119a+903b+217c+220d+168e=777\\
189a+154b-210c-203d-108e=7777\\
229a+224b+266c-133d+98e=77777.
\end{cases}$$

tiene una solución única.

Sugerencia pre-solución. Reduce el problema a mostrar que cierta matriz es invertible. Para ello, usa alguno de los métodos mencionados. Luego, para simplificar mucho el problema, necesitarás un argumento de aritmética modular. Para elegir en qué módulo trabajar, busca un patrón en las entradas de la matriz.

Solución. Primero, notemos que el problema es equivalente a demostrar que la matriz

$$A=\begin{pmatrix}
147 & 85 & 210 & 483 & 133\\
91 & 245 & 226 & 273 & 154\\
-119 & 903 & 217 & 220 & 168\\
189 & 154 & -210 & -203 & -108 \\
229 & 224 & 266 & -133 & 98
\end{pmatrix}$$

es invertible. Mostraremos que su determinante no es $0$. Pero no calcularemos todo el determinante, pues esto es complicado.

Notemos que como $A$ es una matriz de entradas enteras, entonces su determinante (que es suma de productos de entradas), también es entero. Además, como trabajar en aritmética modular respeta sumas y productos, para encontrar el residuo de $\det(A)$ al dividirse entre $7$ se puede primero reducir las entradas de $A$ módulo $7$, y luego hacer la cuenta de determinante.

Al reducir las entradas módulo $7$, tenemos la matriz

$$B=\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0&0 & 2 & 0 & 0\\
0 & 0 & 0 & 3 & 0\\
0&0 & 0 & 0 & 4 \\
5& 0 & 0 & 0 & 0
\end{pmatrix}.$$

El determinante de la matriz $B$ es $-(1\cdot 2 \cdot 3 \cdot 4 \cdot 5)=-120$. Así,
\begin{align*}
\det(A) & \equiv \det(B)\\
&=-120\\
&\equiv 6 \pmod 7.
\end{align*}

Concluimos que $\det(A)$ es un entero que no es divisible entre $7$, por lo cual no puede ser cero. Así, $A$ es invertible.

$\square$

Por supuesto, en cualquier otro módulo podemos hacer la equivalencia y simplificar las cuentas. Pero $7$ es particularmente útil para el problema anterior pues se simplifican casi todas las entradas, y además funciona para dar un residuo no cero.

Ahora veremos otra herramienta importante para resolver problemas de ecuaciones lineales: las fórmulas de Cramer.

Teorema (fórmulas de Cramer). Sea $A$ una matriz invertible de $n\times n$ con entradas reales y $b=(b_1,\ldots,b_n)$ un vector de reales. Entonces el sistema lineal de ecuaciones $AX=b$ tiene una única solución $X=(x_1,\ldots,x_n)$ dada por $$x_i=\frac{\det A_i}{\det A},$$ en donde $A_i$ es la matriz obtenida al reemplazar la $i$-ésima columna de $A$ por el vector columna $b$.

En realidad este método no es tan útil en términos prácticos, pues requiere que se evalúen muchos determinantes, y esto no suele ser sencillo. Sin embargo, las fórmulas de Cramer tienen varias consecuencias teóricas importantes.

Problema. Muestra que una matriz invertible $A$ de $n\times n$ con entradas enteras cumple que su inversa también tiene entradas enteras si y sólo si el determinante de la matriz es $1$ ó $-1$.

Sugerencia pre-solución. Para uno de los lados necesitarás las fórmulas de Cramer, y para el otro necesitarás que el determinante es multiplicativo.

Solución. El determinante de una matriz con entradas enteras es un número entero. Si la inversa de $A$ tiene entradas enteras, entonces su determinante es un entero. Usando que el determinante es multiplicativo, tendríamos que $$\det(A)\cdot \det(A^{-1}) = \det (I) = 1.$$ La única forma en la que dos enteros tengan producto $1$ es si ambos son $1$ o si ambos son $-1$. Esto muestra una de las implicaciones.

Ahora, supongamos que $A$ tiene determinante $\pm 1$. Si tenemos una matriz $B$ de columnas $C_1,\ldots,C_n$, entonces para $j$ en $\{1,\ldots,n\}$ la $j$-ésima columna de $AB$ es $AC_j$. De este modo, si $D_1,\ldots, D_n$ son las columnas de $A^{-1}$, se debe cumplir para cada $j$ en $\{1,\ldots,n\}$ que $$AD_j= e_j,$$ en donde $e_j$ es el $j$-ésimo elemento de la base canónica. Para cada $j$ fija, esto es un sistema de ecuaciones.

Por las fórmulas de Cramer, la $i$-ésima entrada de $C_j$, que es la entrada $x_{ij}$ de la matriz $A^{-1}$, está dada por $$x_{ij}=\frac{\det(A_{ij})}{\det(A)}=\pm \det(A_{ij}),$$ donde $A_{ij}$ es la matriz obtenida de colocar al vector $e_j$ en la $i$-ésima columna de $A$.

La matriz $A_{ij}$ tiene entradas enteras, así que $x_{ij}=\pm \det(A_{ij})$ es un número entero. Así, $A^{-1}$ es una matriz de entradas enteras.

$\square$

Sistemas de ecuaciones de m x n y teorema de Rouché-Capelli

Hasta aquí, sólo hemos hablando de sistemas de ecuaciones que tienen matrices cuadradas asociadas. También, sólo hemos hablado de los casos en los que no hay solución, o bien en los que cuando la hay es única. Los sistemas de ecuaciones lineales en general tienen comportamientos más interesantes. El siguiente resultado caracteriza de manera elegante todo lo que puede pasar.

Teorema (Rouché-Capelli). Sea $A$ una matriz de $m\times n$ con entradas reales, $(b_1,\ldots,b_m)$ un vector de reales y $(x_1,\ldots,x_n)$ un vector de incógnitas. Supongamos que $A$ tiene rango $r$. Entonces:

  • El sistema $AX=b$ tiene al menos una solución $X_0$ si y sólo si el rango de la matriz de $m\times (n+1)$ obtenida de colocar el vector $b$ como columna al final de la matriz $A$ también tiene rango $r$.
  • El conjunto solución del sistema $AX=(0,0,\ldots,0)$ es un subespacio vectorial $\mathcal{S}$ de $\mathbb{R}^n$ de dimensión $n-r$.
  • Toda solución al sistema $AX=b$ se obtiene de sumar $X_0$ y un elemento de $\mathcal{S}$.

Problema. Encuentra todos los polinomios $p(x)$ con coeficientes reales y de grado a lo más $3$ tales que $p(2)=3$ y $p(3)=2$.

Sugerencia pre-solución. Usa notación efectiva, eligiendo variables para cada uno de los coeficientes de $p(x)$. Luego, enuncia cada hipótesis como una ecuación.

Solución. Tomemos $p(x)=ax^3+bx^2+cx+d$. La hipótesis implica que

$$\begin{cases}
8a+4b+2c+d=p(2)= 3\\
27a+9b+3c+d=p(3)=2.
\end{cases}$$

El rango de la matriz $$\begin{pmatrix} 8 & 4 & 2 & 1\\ 27 & 9 & 3 & 1\end{pmatrix}$$ es a lo más $2$, pues tiene $2$ renglones. Pero es al menos $2$, pues los dos vectores columna $(2,3)$ y $(1,1)$ son linealmente independientes. Exactamente el mismo argumento muestra que la matriz aumentada $$\begin{pmatrix} 8 & 4 & 2 & 1 & 3\\ 27 & 9 & 3 & 1 & 2\end{pmatrix}$$ es de rango $2$. Por el primer punto del teorema de Rouché-Capelli, este sistema tiene solución.

Para encontrar esta solución de manera práctica, fijamos reales $a$ y $b$ y notamos que ahora

$$\begin{cases}
2c+d= 3-8a-4b\\
3c+d=2-27a-9b
\end{cases}$$

es un sistema en $2$ variables, y como $$\det\begin{pmatrix} 2 & 1\\ 3 & 1\end{pmatrix}=-1,$$ tiene una única solución para $c$ y $d$. Al hacer las cuentas, o usar fórmulas de Cramer, obtenemos que
\begin{align*}
c&=-1-19a-5b\\
d&=5+30a+6b.
\end{align*}

Así, concluimos que los polinomios $p(x)$ solución consisten de elegir cualesquiera reales $a$ y $b$ y tomar $$p(x)=ax^3+bx^2-(1+19a+5b)x+(5+20a+6b).$$

$\square$

Por supuesto, para usar este teorema es necesario conocer el rango de la matriz $A$. En el problema tuvimos la suerte de que eso es sencillo. Hablaremos más adelante de varias técnicas para encontrar el rango de matrices.

Más problemas

Puedes encontrar más problemas de sistemas de ecuaciones lineales en el Capítulo 3 y en la Sección 7.6 del libro Essential Linear Algebra de Titu Andreescu.

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Por Blanca Radillo

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema 1. Considera los vectores

$v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)$

en $\mathbb{R}^4$. Prueba que para cualquier elección de $x\in\mathbb{R}$, los vectores $v_1,v_2,v_3$ son linealmente independientes.

Solución. Sea $A$ la matriz cuyas columnas son $v_1,v_2,v_3$, es decir,

$A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

Sabemos que $v_1,v_2,v_3$ son linealmente independiente si y sólo si $\text{dim(span}(v_1,v_2,v_3))=3$, ya que $\text{rank}(A)=3$, y eso es equivalente (por la clase del lunes) a demostrar que $A$ tiene una submatriz de $3\times 3$ invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,$

lo que implica que es invertible, y por lo tanto $v_1,v_2, v_3$ son vectores linealmente independientes.

$\square$

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre $\mathbb{R}$ o sobre $\mathbb{C}$. Como $\mathbb{R}\subset \mathbb{C}$, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en $\mathbb{R}$ se cumplen en $\mathbb{C}$. En este caso particular, si las soluciones de una matriz en $M_{m,n}(\mathbb{R})$ son soluciones de la misma matriz pero vista como elemento en $M_{m,n}(\mathbb{C})$. El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea $A\in M_{m,n}(F)$ y sea $F_1$ un campo contenido en $F$. Consideremos el sistema lineal $AX=0$. Si el sistema tiene una solución no trivial en $F_1^n$, entonces tiene una solución no trivial en $F^n$.

Demostración. Dado que el sistema tiene una solución no trivial en $F_1^n$, $r:=\text{rank}(A) < n$ vista como elemento en $M_{m,n}(F_1)$. Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a $A$ como elemento de $M_{m,n}(F_1)$ o de $M_{m,n}(F)$. Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de $F^n$ de dimensión $n-r>0$. Por lo tanto, el sistema $AX=0$ tiene una solución no trivial en $F^n$.

$\square$

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. 2 Sea $S_a$ el siguiente sistema lineal:

$\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.$

Encuentra los valores de $a$ para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como $AX=b$ donde

$A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$

Notemos que

$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,$

entonces si $a\neq 1/8$, $A$ es invertible, y por lo tanto $\text{rank}(A)=3$, mientras que si $a=1/8$, $A$ no es invertible y $\text{rank}(A)=2$ ya que la submatriz es invertible

$\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.$

Además, si la matriz $(A,b)$ es igual a

$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},$

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, $\text{rank}(A,b)=3$.

Aplicando el Teorema de Rouché-Capelli, para $a=1/8$, el sistema $AX=b$ no tiene soluciones. También podemos concluir que como $\text{rank}(A)=3$ para todo $a\neq 1/8$, el sistema tiene exactamente una solución. (Y $AX=b$ nunca tiene infinitas soluciones).

$\triangle$

Problema 3. Sean $a,b,c$ números reales dados. Resuelve el sistema lineal

$\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.$

Solución. La matriz del sistema es

$A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.$

No es difícil ver que $\text{det}(A)=4abc$. Si $abc\neq 0$, usando la regla de Cramer, la única solución al sistema está dada por

$x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}$

$y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},$

resolviendo los determinantes obtenemos que

$x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.$

Ahora, si $abc=0$, entonces $A$ no es invertible ($\text{rank}(A)<3$). El sistema es consistente si y sólo si $\text{rank}(A)=\text{rank}(A,b)$.

Sin pérdida de generalidad, decimos que $a=0$ (pues $abc=0$). Esto reduce el sistema a

$\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.$

El sistema es consistente si $b=c$ y distintos de cero. En este caso, tenemos que $b(2x+y+z)=1$ y $b(y+z)=1$, implicando $x=0$, $y+z=1/b$. De manera similar, obtenemos las posibles soluciones si $b=0$ o si $c=0$.

Resumiendo:

  • Si $abc\neq 0$, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) $a=0$ y $b=c \neq 0$; caso 2) $b=0$ y $a=c\neq 0$; caso 3) $c=0$ y $a=b\neq 0$, tenemos infinitas soluciones descritas como, para todo $w\in \mathbb{R}$: caso 1) $(0,w,1/b-w)$; caso 2) $(w,0,1/a-w)$; caso 3) $(w,1/a-w,0)$.
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para $a,b,c$, el sistema no es consistente.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Determinantes de matrices y transformaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior dimos la definición de determinante para ciertos vectores con respecto a una base. En esta entrada continuamos con la construcción de determinantes. Primero, basados en la teoría que desarrollamos anteriormente, definiremos determinantes de transformaciones lineales. Luego, mediante la cercanía entre transformaciones lineales y matrices, definimos determinantes de matrices.

Determinantes de transformaciones lineales

Ahora definiremos el determinante para transformaciones lineales. Antes de esto, necesitamos hacer algunas observaciones iniciales y demostrar un resultado.

Si tomamos un espacio vectorial $V$ de dimensión finita $n\geq 1$ sobre un campo $F$, una transformación lineal $T:V\to V$ y una forma $n$-lineal $f:V^n\to F$, se puede mostrar que la transformación $$T_f:V^n\to F$$ dada por $$T_f(x_1,\ldots,x_n)=f(T(x_1),\ldots,T(x_n))$$ también es una forma $n$-lineal. Además, se puede mostrar que si $f$ es alternante, entonces $T_f$ también lo es. Mostrar ambas cosas es relativamente sencillo y queda como tarea moral.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n\geq 1$ sobre el campo $F$. Para cualquier transformación lineal $T:V\to V$ existe un único escalar $\det T$ en $F$ tal que $$f(T(x_1),\ldots,T(x_n))=\det T\cdot f(x_1,\ldots, x_n)$$ para cualquier forma $n$-lineal alternante $f:V^n\to F$ y cualquier elección $x_1,\ldots,x_n$ de vectores en $V$.

Demostración. Fijemos una base $B=(b_1,\ldots,b_n)$ cualquiera de $V$. Llamemos $g$ a la forma $n$-lineal alternante $\det_{(b_1,\ldots,b_n)}$. Por la discusión de arriba, la asignación $T_g:V^n\to F$ dada por $$(x_1,\ldots,x_n)\mapsto g(T(x_1),\ldots,T(x_n))$$ es una forma $n$-lineal y alternante.

Por el teorema que mostramos en la entrada de determinantes de vectores, se debe cumplir que $$T_g = T_g(b_1,\ldots,b_n) \cdot g.$$ Afirmamos que $\det T:= T_g(b_1,\ldots, b_n)$ es el escalar que estamos buscando.

En efecto, para cualquier otra forma $n$-lineal alternante $f$, tenemos por el mismo teorema que $$f=f(b_1,\ldots,b_n) \cdot g.$$ Usando la linealidad de $T$ y la igualdad anterior, se tiene que

\begin{align*}
T_f &= f(b_1,\ldots,b_n)\cdot T_g\\
&=f(b_1,\ldots,b_n) \cdot \det T \cdot g\\
&= \det T \cdot f.
\end{align*}

Con esto se prueba que $\det T$ funciona para cualquier forma lineal $f$. La unicidad sale eligiendo $(x_1,\ldots,x_n)=(b_1,\ldots,b_n)$ y $f=g$ en el enunciado del teorema, pues esto forza a que $$\det T = g(T(b_1),\ldots,T(b_n)).$$

$\square$

Ahora sí, estamos listos para definir el determinante de una transformación lineal.

Definición. El escalar $\det T$ del teorema anterior es el determinante de la transformación lineal $T$.

Para obtener el valor de $\det T$, podemos entonces simplemente fijar una base $B=(b_1,\ldots,b_n)$ y el determinante estará dado por $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n)).$$ Como el teorema también prueba unicidad, sin importar que base $B$ elijamos este número siempre será el mismo.

Ejemplo 1. Vamos a encontrar el determinante de la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(2z,2y,2x).$$ Para ello, usaremos la base canónica de $\mathbb{R}^3$. Tenemos que
\begin{align*}
T(1,0,0)&=(0,0,2)=2e_3\\
T(0,1,0)&=(0,2,0)=2e_2\\
T(0,0,1)&=(2,0,0)=2e_1.
\end{align*}

De acuerdo al teorema anterior, podemos encontrar al determinante de $T$ como $$\det T = \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1).$$

Como el determinante (para vectores) es antisimétrico, al intercambiar las entradas $1$ y $3$ su signo cambia en $-1$. Usando la $3$-linealidad en cada entrada, podemos sacar un factor $2$ de cada una. Así, tenemos:
\begin{align*}
\det T &= \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1)\\
&= -\det_{(e_1,e_2,e_3)}(2e_1,2e_2,2e_3)\\
&=-8\det_{(e_1,e_2,e_3)}(e_1,e_2,e_3)\\
&=-8.
\end{align*}

Concluimos entonces que el determinante de $T$ es $-8$.

$\triangle$

Ejemplo 2. Vamos ahora a encontrar el determinante de la transformación $T:\mathbb{R}_n[x]\to \mathbb{R}_n[x]$ que deriva polinomios, es decir, tal que $T(p)=p’$. Tomemos $q_0=1,q_1=x,\ldots,q_n=x^n$ la base canónica de $\mathbb{R}_n[x]$.

Notemos que, $T(1)=0$, de modo que los vectores $T(1),\ldots,T(x^n)$ son linealmente dependientes. Así, sin tener que hacer el resto de los cálculos, podemos deducir ya que $$\det_{(q_0,\ldots,q_n)}(T(q_0),\ldots,T(q_n))=0.$$ Concluimos entonces que $\det T = 0$.

$\triangle$

Determinantes de matrices

La expresión $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n))$$ para una transformación lineal $T$ también nos permite poner al determinante en términos de las entradas de la matriz de $T$ con respecto a la base $B$. Recordemos que dicha matriz $A_T=[a_{ij}]$ tiene en la columna $i$ las coordenadas de $b_i$ en la base $B$. En otras palabras, para cada $i$ se cumple que $$T(b_i)=\sum_{j=1}^n a_{ji}b_i.$$

Usando esta notación, obtenemos que $$\det T = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ de manera que podemos expresar a $\det T$ en términos únicamente de su matriz en la base $B$.

Esto nos motiva a definir el determinante de una matriz en general.

Definición. Para una matriz $A$ en $M_n(F)$ de entradas $A=[a_{ij}]$, el determinante de $A$ es $$\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$ A $\det A$ también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

\begin{align*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}.
\end{vmatrix}
\end{align*}

Ejemplo. Si queremos calcular el determinante de una matriz en $M_2(F)$, digamos $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},$$ debemos considerar dos permutaciones: la identidad y la transposición $(1,2)$.

La identidad tiene signo $1$ y le corresponde el sumando $ad$. La transposición tiene signo $-1$ y le corresponde el sumando $bc$. Así, $$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc.$$

$\triangle$

Retomando la discusión antes de la definición, tenemos entonces que $\det T = \det A_T$, en donde a la izquierda hablamos de un determinante de transformaciones lineales y a la derecha de uno de matrices. La matriz de $T$ depende de la base elegida, pero como vimos, el determinante de $T$ no. Esta es una conclusión muy importante, y la enunciamos como teorema en términos de matrices.

Teorema. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. El determinante de $A$ y el de $P^{-1}AP$ son iguales.

Determinantes de matrices triangulares

Terminamos esta entrada con un problema que nos ayudará a repasar la definición y que más adelante servirá para calcular determinantes.

Problema. Muestra que el determinante de una matriz triangular superior o triangular inferior es igual al producto de las entradas de su diagonal.

Solución. En una matriz triangular superior tenemos que $a_{ij}=0$ si $i>j$. Vamos a estudiar la expresión $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$

Si una permutación $\sigma$ no es la identidad, entonces hay un entero $i$ que no deja fijo, digamos $\sigma(i)\neq i$. Tomemos a $i$ como el mayor entero que $\sigma$ no deja fijo. Notemos que $\sigma(i)$ tampoco queda fijo por $\sigma$ pues $\sigma(\sigma(i))=\sigma(i)$ implica $\sigma(i)=i$, ya que $\sigma$ es biyectiva, y estamos suponiendo $\sigma(i)\neq i$. Por la maximalidad de $i$, concluimos que $\sigma(i)<i$.Entonces el sumando correspondiente a $\sigma$ es $0$ pues tiene como factor a la entrada $a_{i\sigma(i)}=0$.

En otras palabras, la única permutación a la que le puede corresponder un sumando no cero es la identidad, cuyo signo es $1$. De esta forma,
\begin{align*}
\det(A) &= \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\\
&=a_{11}\cdot \ldots \cdot a_{nn}.
\end{align*}

$\square$

Más adelante…

En esta entrada planteamos cómo se define el concepto de matriz para transformaciones lineales y cómo esta definición se extiende naturalmente a la definición del determinante de una matriz, recordando que a cada transformación lineal se le puede asociar una matriz y viceversa.

En las siguientes entradas vamos a ver qué propiedades que cumplen los determinantes y aprenderemos diferentes técnicas para calcularlos. A lo largo de la unidad, desarrollaremos bastante práctica en el cálculo y la manipulación de los determinantes, ya sea el determinante de un conjunto de vectores, de una transformación lineal o de una matriz.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que la transformación $T_f$ definida en la entrada es $n$-lineal y alternante.
  • Usando la definición de determinante para transformaciones lineales, encuentra el determinante de la transformación lineal $T:\mathbb{R}^n \to \mathbb{R}^n$ dada por $$T(x_1,x_2,\ldots,x_n)=(x_2,x_3,\ldots,x_1).$$
  • Calcula por definición el determinante de las matrices $$\begin{pmatrix} 3 & 2 \\ 4 & 1\end{pmatrix}$$ y $$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.$$
  • Calcula por definición el determinante de la matriz $$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{pmatrix}$$ y compáralo con el de la matriz de $3\times 3$ del inciso anterior. ¿Qué notas?
  • Completa el argumento para mostrar que el determinante de una matriz triangular inferior es el producto de las entradas en su diagonal.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»