Archivo de la etiqueta: álgebra lineal

Álgebra Lineal I: Forma matricial de una transformación lineal

Por Ayax Calderón

Introducción

Durante la primera unidad de este curso vimos que las transformaciones lineales $T:F^n \to F^m$ pueden ser descritas por medio de matrices $A\in M_{m,n}(F)$. Nuestro objetivo ahora es extender este resultado para describir transformaciones lineales $T:V\to W$ entre espacios vectoriales de dimensión finita $V$ y $W$. Es decir, para cada una de estas transformaciones, queremos ver cómo se ven en forma matricial.

Sin embargo, a diferencia de lo que sucedía antes, la descripción en esta forma no será única. Para construir una matriz que represente a una transformación lineal, necesitaremos fijar bases para $V$ y $W$. Distintas bases nos darán distintas matrices.

Para esta entrada todos los espacios vectoriales que usemos son de dimensión finita sobre el campo $F$. Usaremos los resultados de la entrada pasada, en la que estudiamos qué le hacen las transformaciones lineales a los conjuntos linealmente independientes, a los generadores y a las bases.

Un paréntesis técnico de isomorfismos

Quizás a estas alturas ya te hayas dado cuenta de que, en cierto sentido, los espacios vectoriales con la misma dimensión se parecen mucho entre sí. Por ejemplo, los espacios vectoriales $\mathbb{R}^4$, $M_2(\mathbb{R}) $ y $\mathbb{R}_3[x]$ pueden pensarse «como el mismo» si identificamos a cada vector $(a,b,c,d)$ con la matriz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, o bien con el polinomio $a+bx+cx^2+dx^3$. Esta identificación es biyectiva y «respeta las operaciones».

Con esta motivación, veamos una definición formal.

Definición. Decimos que una transformación lineal $T:V\to W$ es un isomorfismo de espacios vectoriales si es biyectiva. Lo denotamos como $V\simeq_{T} W$, que se lee «$V$ isomorfo a $W$ mediante $T$».

Problema. Sea $T:V\to W$ un isomorfismo de espacios vectoriales. Prueba que su inversa $T^{-1}:W\to V$ es un isomorfismo de espacios vectoriales.

Demostración. La transformación $T^{-1}$ es biyectiva, pues es invertible de inversa $T$, así que sólo hace falta checar que $T^{-1}$ es lineal. Tomemos $w_1$, $w_2$ en $W$, y $c$ en el campo. Como $T$ es suprayectiva, podemos tomar $v_1=T^{-1}(w_1)$ y $v_2=T^{-1}(w_2)$. Entonces $T(v_1)=w_1$ y $T(v_2)=w_2$, así
\begin{align*}
T^{-1}(w_1+cw_2)&=T^{-1}(T(v_1)+cT(v_2))\\
&=T^{-1}(T(v_1+cv_2))\\
&=v_1+cv_2
\end{align*}

En la segunda igualdad estamos usando que $T$ es lineal. De esta forma, concluimos que $T^{-1}$ es lineal también.

$\square$

Formalicemos ahora sí nuestra intuición de que «todos los espacios vectoriales de la misma dimensión finta $n$ sobre un mismo campo se comportan igual». En términos matemáticos, decimos que «es posible clasificar los espacios vectoriales de dimensión finita distintos de $\{0\}$, salvo isomorfismos». Para mostrar esto, veremos que para cada entero positivo $n$ todos los espacios vectoriales de dimensión $n$ son isomorfos a $F^n$. El siguiente resultado da el isomorfismo de manera explícita.

Teorema. Sea $n$ un entero positivo y sea $V$ un espacio vectorial de dimensión finita sobre $F$. Si $B={e_1,\dots,e_n}$ es una base de $V$, entonces la transformación $i_B:F^n\to V$ definida por $$i_B(x_1,\dots,x_n)=x_1e_1+x_2e_2+\dots+x_ne_n$$ es un isomorfismo de espacios vectoriales.

La verificación de los detalles de este teorema queda como tarea moral. Como sugerencia, recuerda que una base $B$ de $V$ te permite expresar a cada vector de $V$ (de aquí saldrá la suprayectividad) de manera única (de aquí saldrá la inyectividad) como combinación lineal de elementos de $B$.

Corolario. Si $T:V\to W$ es un isomorfismo de espacios vectoriales, entonces $\dim V=\dim W$.

Bases ordenadas

Sea $V$ un espacio vectorial de dimensión finita $n$. Una base ordenada de $V$ es simplemente una base para la cual nos importa en qué orden están sus elementos. La escribimos con notación de paréntesis en vez de llaves, es decir, en vez de poner $B=\{v_1,\ldots,v_n\}$, ponemos $B=(v_1,\ldots,v_n)$ para hacer énfasis en el orden.

Ejemplo 1. El conjunto $\{(1,2),(3,4)\}$ es una base de $\mathbb{R}^2$. De aquí, podemos obtener dos bases ordenadas, $B=((1,2),(3,4))$ y $B’=((3,4),(1,2))$. Aunque tienen a los mismos elementos, las pensamos como bases ordenadas diferentes pues sus elementos aparecen en diferente orden.

Del mismo modo, las bases $B=(1,x,x^2,x^3)$ y $B’=(x^3,x^2,x,1)$ son la misma base de $\mathbb{R}_2[x]$, pero son distintas como bases ordenadas.

$\triangle$

Por las discusión en la sección anterior, la elección de una base ordenada en un espacio vectorial $V$ de dimensión $n$ nos permite identificar $V$ con $F^{n}$. Es decir, dada una base $B$, podemos «ponerle coordenadas» a los elementos de $V$. Dependiendo de la base ordenada escogida, es posible que obtengamos diferentes coordenadas.

Ejemplo 2. Consideremos el espacio vectorial $M_2(\mathbb{R})$. Se puede verificar que cada uno de los siguientes conjuntos ordenados son una base:

\begin{align*}
B&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B’&=\left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)\\
B»&=\left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right)
\end{align*}

Como cada uno de ellos es una base, entonces podemos escribir a la matriz $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ como combinación lineal de elementos de cada uno de $B$, $B’$ o $B»$.

Si lo hacemos para $B$, tendríamos (en orden), a los coeficientes $1,2,3,4$, así que las coordenadas de $A$ en la base ordenada $B$ serían $(1,2,3,4)$.

Si lo hacemos para $B’$, tendríamos (en orden), a los coeficientes $1,3,2,4$, así que las coordenadas de $A$ en la base ordenada $B’$ serían $(1,3,2,4)$. Aunque $B$ y $B’$ tengan los mismos elementos, las coordenadas difieren pues como bases ordenadas $B$ y $B’$ son distintas.

Si lo hacemos para $B»$, tendríamos (en orden), a los coeficientes $1,1,1,1$, así que las coordenadas de $A$ en la base ordenada $B»$ serían $(1,1,1,1)$. Aquí obtenemos coordenadas muy distintas pues $B$ y $B»$ ni siquiera tienen a los mismos elementos.

$\triangle$

La forma matricial de una transformación lineal

Consideremos ahora espacios vectoriales $V$ y $W$ de dimensiones $n$ y $m$ respectivamente. Supongamos que tenemos una transformación lineal $T:V\to W$. Escogemos bases ordenadas $B_V=(v_1,\dots, v_n)$ y $B_W=(w_1,\dots,w_m)$ de $V$ y $W$ respectivamente. Ten cuidado, aquí $(v_1,\dots, v_n)$ no es un vector de $F^n$, sino una colección ordenada de vectores de $V$.

Por el teorema de caracterización de espacios vectoriales de dimensión finita, tenemos los isomorfismos $$i_{B_{V}}:F^n\to V,$$ $$i_{B_{W}}:F^m\to W.$$

¿Cómo podemos usar todas estas transformaciones para construir una transformación $F^n\to F^m$? La idea es usar el inverso de $i_{B_W}$ y componer todo.

Así, consideramos $\psi_T$ como la composición de las transformaciones $i_{B_{V}}, T, i_{B_{W}}^{-1}$, es decir, $$\psi_T:F^n\to F^m,$$ está dada por $$\psi_T=i_{B_W}^{-1}\circ T\circ i_{B_{V}}.$$

De esta forma, $\psi_T$ es una transformación lineal entre $F^n$ y $F^m$. ¡Este tipo de transformaciones ya las conocemos! Sabemos que $\psi_T$ se describe de manera única por medio de una matriz $A\in M_{m,n}(F).$ Esta es, por definición, la matriz asociada a $T$ con respecto a las bases $B_V$ y $B_W$ o bien la forma matricial de $T$. Dicha matriz depende fuertemente de las dos bases, así que la denotaremos como $\text{Mat}_{B_W,B_V}(T)$ . Por el momento sólo pongamos mucha atención en el orden en el que escribimos las bases en los subíndices. Es importante más adelante veremos que resulta útil escribirlo así.

Cuando $T:V\to V$ va de un espacio vectorial a sí mismo y usamos sólo una base $B$, simplificamos la notación a $\text{Mat}_B(T)$.

Evaluar $T$ usando su forma matricial

La construcción anterior parece muy complicada, pero en realidad es muy natural. Lo que está sucediendo es lo siguiente. Ya sabemos que toda transformación lineal entre $F^n$ y $F^m$ está dada por matrices. Podemos extender esto a una descripción de transformaciones lineales entre $V$ y $W$ identificando $V$ con $F^n$ y $W$ con $F^m$ vía la elección de bases en $V$ y $W$.

Notemos que si definimos $A:=\text{Mat}_{B_{W},B_{V}}(T)$, entonces tenemos que

$i_{B_{W}}(Ax)=T(i_{B_{V}}(x))$ … (1)

Esta igualdad nos va a ayudar a decir quién es $T$ en términos de las entradas de la matriz $A$. Sea $\{e_1,\dots,e_n\}$ la base canónica de $F^n$ y $\{f_1,\dots,f_m\}$ la base canónica de $F^m$. Si$ A=[a_{ij}]$, entonces por definición $Ae_i=a_{1i}f_1+\dots+a_{mi}f_{m}$, así para $x=e_i$ se tiene

$i_{B_{W}}(Ax)=i_{B_{W}}(a_{1i}f_1+\dots + a_{mi}f_m) = a_{1i}w_1+\dots + a_{mi}w_m.$

Por otro lado, $i_{B_{V}}(e_i)=v_i$, de manera que la relación (1) es equivalente a la relación

$T(v_i)=a_{1i}w_1+\dots + a_{mi}w_m$

Aquí empieza a haber mucha notación, pero no hay que perderse. Hasta ahora lo que tenemos es que «podemos saber cuánto vale la transformación $T$ en cada elemento de la base de $V$ en términos de la matriz $A$». ¡Este es un paso importante, pues en la entrada anterior vimos que basta saber qué le hace una transformación a los elementos de la base para saber qué le hace a cualquier vector! Resumimos lo obtenido hasta ahora.

Proposición. Sea $T:V\to W$ una transformación lineal y sean $B_V=\{v_1,\dots v_n\}, B_W=\{w_1,\dots,w_m\}$ bases en $V$ y $W$, respectivamente. Escribamos $\text{Mat}_{B_W,B_V}(T)=[a_{ij}]$. Entonces para toda $1\leq i\leq n$ se tiene $$T(v_i)=\displaystyle\sum_{j=1}^m a_{ji}w_j.$$

Así, si tenemos la matriz $A$ que representa a $T$ en las bases $B_V$ y $B_W$ y un vector arbitrario $v$ en $V$, para saber quién es $T(V)$ basta:

  • Usar la proposición anterior para saber quién es $T(v_i)$ para cada $v_i$ en la base $B_V$.
  • Expresar a $v$ en términos de la base $B_V$ como, digamos, $v=c_1v_1+\ldots+c_nv_n$.
  • Usar que $T$ es lineal para concluir que $T(v)=c_1T(v_1)+\ldots+c_nT(v_n)$ y usar los valores de $T(v_i)$ encontrados en el primer inciso.

Forma matricial de composiciones de transformaciones lineales

Para finalizar esta entrada queremos entender la relación entre la composición $S\circ T$ de transformaciones lineales y las matrices asociadas de $T$ y $S$. En otras palabras, sean $T:V\to W$ y $S:W\to U$ transformaciones lineales fijas y supongamos que $m=dimV$, $n=dimW$, $p=dimU$. También fijemos las bases $B_U, B_V, B_W$ en $U,V,W$, respectivamente. Para simplificar las cosas escribamos

$\mathcal{A}=\text{Mat}_{B_U,B_W}(S)$ y $\mathcal{B}=\text{Mat}_{B_W,B_V}(T)$

Con respecto a las bases $B_U,B_V,B_W$ se tienen los isomorfismos $i_{B_U}, i_{B_V}, i_{B_W}$ definidos como lo hicimos anteriormente en esta misma entrada del blog, y por definición de $\mathcal{A}, \mathcal{B}$ se tiene

$i_{B_W}(\mathcal{B}x)=T(i_{B_V}(x))$ con $x\in F^m$,

$i_{B_U}(\mathcal{A}y)=S(i_{B_W}(y))$ con $y\in F^n$.

Aplicando $S$ en la primera relación y después usando la segunda relación, se tiene para $x\in F^m$

$(S\circ T)(i_{B_V}(x))=S(i_{B_W}(\mathcal{B}x))=i_{B_U}(\mathcal{A} \mathcal{B}x)$.

Esta última relación y la definición de $\text{Mat}_{B_U,B_V}(S\circ T)$ nos muestra que

$\text{Mat}_{B_U,B_V}(S\circ T)=\mathcal{A} \cdot \mathcal{B}$.

En otras palabras, la composición de transformaciones lineales se reduce a multiplicar sus matrices asociadas o de manera más formal

Teorema. Sean $T:V\to W$ y $S:W\to U$ transformaciones lineales entre espacios vectoriales de dimensión finita y sean $B_U, B_V, B_W$ bases de $U,V,W$, respectivamente. Entonces

$\text{Mat}_{B_U,B_V}(S\circ T)=\text{Mat}_{B_U,B_W}(S)\cdot \text{Mat}_{B_W,B_V}(T).$

Cuando tenemos transformaciones lineales de un espacio vectorial $V$ a sí mismo, y usamos la misma base $B$, el resultado anterior se puede escribir de una manera más sencilla.

Corolario. Sean $T_1,T_2:V\to V$ transformaciones lineales en un espacio vectorial de dimensión finita $V$, y sea $B$ una base de $V$. Entonces

$\text{Mat}_{B}(T_1\circ T_2)=\text{Mat}_{B}(T_1)\cdot \text{Mat}_{B}(T_2)$.

Más adelante…

En esta entrada comenzamos con una transformación lineal $T:V\to W$ y bases ordenadas de de $V$ y $W$ para representar a $T$ como una matriz. Así mismo, vimos cómo tras una elección de base podemos pensar a cualquier vector en términos de sus «coordenadas», usando a los coeficientes que permiten expresarlo (de manera única) como combinación lineal de elementos de la base. Las matrices y coordenadas que así obtenemos nos ayudarán mucho. Sin embargo, será fundamental entender qué es lo que sucede con estas representaciones cuando elegimos bases diferentes, y cómo podemos cambiar de ciertas coordenadas o matrices a otras cuando hacemos un cambio de base. Esto es lo que estudiaremos en las siguientes entradas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que la relación «son isomorfos» para espacios vectoriales es una relación de equivalencia.
  • Muestra que la transformación $i_B$ dada en el teorema de clasificación de espacios vectoriales de dimensión finita en efecto es un isomorfismo.
  • Asegúrate de entender el último corolario.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Transformaciones lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas pasadas ya platicamos de espacios vectoriales y de subespacios. También desarrollamos teoría de dimensión para espacios vectoriales de dimensión finita. Para ello, hablamos de conjuntos generadores, de independientes y de bases. Esto nos ayuda a entender a los espacios vectoriales «uno por uno». Lo que queremos entender ahora es cómo interactúan los espacios vectoriales entre sí. Para ello, hablaremos de transformaciones lineales entre espacios vectoriales.

Ya platicamos un poco de transformaciones lineales cuando estudiamos $F^n$ a detalle. En esa parte del curso, vimos cómo cualquier matriz en $M_{m,n}(F)$ se podía ver como una transformación lineal de $F^n$ a $F^m$ y viceversa. Retomaremos varias de estas ideas, pues son fundamentales para esta unidad y las siguientes.

La idea de esta entrada es:

  • Dar la intuición y definición de transformaciones lineales en general.
  • Probar propiedades básicas de las transformaciones lineales.
  • Dar varios ejemplos de transformaciones lineales.
  • Dar las definiciones de kernel (o núcleo) y de imagen para una transformación lineal.
  • Ver un ejemplo que abarque ambas definiciones.
  • Finalmente, probar que el kernel y la imagen son subespacios vectoriales.

A grandes rasgos, las transformaciones lineales se pueden pensar como «funciones bonitas» entre espacios vectoriales que «preservan las operaciones de suma y multiplicación por escalar».

Definición de transformaciones lineales

Definición. Para $V$ y $W$ espacios vectoriales sobre un campo $F$, una transformación lineal entre $V$ y $W$ es una función $T:V\to W$ tal que:

  • Para todo $v_1$ y $v_2$ en $V$ se tiene que $T(v_1+v_2)=T(v_1)+T(v_2)$. Esto informalmente se le conoce como que «$T$ abre sumas».
  • Para todo $v$ en $V$ y $c$ en el campo $F$ se tiene que $T(cv)=cT(v)$. A esto se le conoce como que «$T$ saca escalares».

En la primer condición la suma de la izquierda (dentro del paréntesis) es «la suma de $V$» y la suma de la derecha es «la suma de $W$». De manera similar, en la segunda condición el producto por escalar de la izquierda (dentro del paréntesis) es el de $V$ y el de la derecha es el de $W$.

En lo que resta de esta entrada, supondremos que los espacios vectoriales son sobre un mismo campo $F$.

Ejemplos de tranformaciones lineales

Ejemplo 1. La función $T:\mathbb{R}^2 \to \mathbb{R}$ dada por $T(x,y)=x+y+1$ no es una transformación lineal. De hecho falla en ambas condiciones. Falla en abrir sumas pues, por ejemplo, $T(1,1)=3$, $T(2,2)=5$, pero $(1,1)+(2,2)=(3,3)$ y $$T(3,3)=7\neq 5 = T(1,1)+T(2,2.)$$ También falla en sacar escalares pues, por ejemplo $$T(4,2)=7\neq 8 = 2T(2,1).$$

$\triangle$

Ejemplo 2. La función $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $T(x,y,z)=(2x,2y,2z)$ es una transformación lineal.

Para convencernos de que esto es cierto, notemos que si $v=(x,y,z)$ entonces la transformación está dada por $T(v)=2v$. Ahora, tomemos dos vectores $v_1$ y $v_2$ en $V$, y un real $c$. Tenemos por la asociatividad y conmutatividad de multiplicar por escalares en $\mathbb{R}^3$ que: \begin{align*}T(v_1+v_2)&=2(v_1+v_2)\\&=2v_1+2v_2\\&=T(v_1)+T(v_2),\end{align*} y que $$T(cv_1)=2(cv_1)=c(2v_1)=cT(v_1).$$ Esto muestra que $T$ es transformación lineal.

$\triangle$

Ejemplo 3. De hecho, para cualquier espacio vectorial $V$ sobre el campo $F$ y $c$ un escalar de $F$, la función $T:V\to V$ dada por $T(v)=cv$ es una transformación lineal. El argumento es similar.

$\triangle$

Recuerda que $F_n[x]$ es el espacio vectorial de polinomios con coeficientes en $F$ y grado a lo más $n$. Recuerda también que hemos visto muchos tipos de espacios vectoriales, los $F^n$, los de polinomios, los de matrices, etc. Entre cualesquiera de ellos se pueden tener transformaciones lineales. La única condición es que sean espacios vectoriales sobre el mismo campo $F$.

Ejemplo 4. La función $T:\mathbb{R}^2\to \mathbb{R}_2[x]$ que manda al vector $(a,b)$ al polinomio $x^2+(a-b)x+ab$ no es una transformación lineal. Esto lo podemos verificar viendo que falla la parte de sacar escalares. Por un lado $$2(T(1,1))=2(x^2+1)=2x^2+2,$$ mientras que por otro lado $$T(2,2)=x^2+4,$$ así que $2(T(1,1))\neq T(2,2)$, de modo que $T$ no saca escalares.

$\triangle$

En cambio, si tomamos la función que manda al vector $(a,b)$ al polinomio $ax^2+(a-b)x+a+b$, puedes verificar por tu cuenta que sí es una transformación lineal.

Ejemplo 5. La función $T:M_{2,3}(\mathbb{R})\to \mathbb{R}^3$ que manda a la matriz $$M=\begin{pmatrix}
a & b & c\\
d & e & f
\end{pmatrix}$$ al vector $$T(M):= (a-d, b-e, c-f)$$ es una transfomación lineal.

Veamos que $T$ abre sumas. Tomemos dos matrices $M_1=\begin{pmatrix}
a_1 & b_1 & c_1\\
d_1 & e_1 & f_1
\end{pmatrix}$ y $M_2=\begin{pmatrix}
a_2 & b_2 & c_2\\
d_2 & e_2 & f_2
\end{pmatrix}.$ Por un lado \begin{align*}T(M_1)&=(a_1-d_1,b_1-e_1,c_1-f_1)\\T(M_2)&=(a_2-d_2,b_2-e_2,c_2-f_2),\end{align*} de modo que sumando los vectores y reacomodando tenemos que $$T(M_1)+T(M_2)=((a_1+a_2)-(d_1+d_2),(b_1+b_2)-(e_1+e_2),(c_1+c_2)-(f_1+f_2)).$$

Por otro lado, si primero sumamos las matrices, obtenemos la matriz $$M_1+M_2=\begin{pmatrix}
a_1+a_2 & b_1+b_2 & c_1+c_2\\
d_1+d_2 & e_1+e_2 & f_1+f_2
\end{pmatrix}.$$

Así, $$T(M_1+M_2)=((a_1+a_2)-(d_1+d_2),(b_1+b_2)-(e_1+e_2),(c_1+c_2)-(f_1+f_2)).$$ Esto muestra que $T(M_1+M_2)=T(M_1)+T(M_2)$, es decir, que $T$ abre sumas. Con un argumento parecido se puede mostrar que saca escalares.

$\triangle$

Ejemplo 6. La función $T:\mathbb{R}^2\to \mathbb{R}_2[x]$ que manda al vector $(a,b)$ al polinomio $T(a,b)=(a+b)x^2+(a-b)x+b$ es una transformación lineal.

$\triangle$

Recuerda que $C[0,1]$ es el espacio vectorial de funciones $f:[0,1]\to \mathbb{R}$ continuas.

Ejemplo 7. La función $T:C[0,1]\to \mathbb{R}$ que manda a la función $f$ al real $$T(f):=\int_0^1 f(x)\, dx$$ es una transformación lineal. En efecto, para dos funciones $f$ y $g$ continuas en el $[0,1]$ y un real $c$ se tiene por definición de suma de funciones, de multiplicación por escalar y de propiedades de la integral que \begin{align*}\int_0^1 (f+g)(x)\, dx&=\int_0^1 f(x)+g(x)\, dx\\&=\int_0^1 f(x) \, dx+\int_0^1 g(x)\, dx\end{align*} y que \begin{align*}\int_0^1 (cf)(x)\, dx &= \int_0^1 cf(x)\, dx \\&=c \int_0^1 f(x)\, dx.\end{align*}

En otras palabras, $T(f+g)=T(f)+T(g)$ y $T(cf)=cT(f)$.

$\triangle$

Propiedades básicas de transformaciones lineales

La definición de «transformación lineal» pide dos cosas por separado: abrir sumar y sacar escalares. Es bueno tenerlas por separado para referirnos a ellas individualmente. Sin embargo, la siguiente proposición nos ayuda a probar de manera más práctica que $T$ es una transformación lineal.

Proposición (verificación abreviada). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo $F$. $T:V\to W$ es una transformación lineal si y sólo si para todo $v_1,v_2$ en $V$ y $c$ en $F$ se tiene que $$T(cv_1+v_2)=cT(v_1)+T(v_2).$$

Demostración. En efecto, si $T$ es transformación lineal, entonces $T(cv_1)=cT(v_1)$ porque $T$ saca escalares y así \begin{align*}T(cv_1+v_2)&=T(cv_1)+T(v_2)\\&=cT(v_1)+T(v_2).\end{align*} Por otro lado, si se cumple $T(cv_1+v_2)=cT(v_1)+T(v_2)$ para todos $v_1$ y $v_2$ vectores en $V$ y $c$ escalar en $F$, entonces con $v_2=0$ recuperamos que $T$ saca escalares y con $c=1$ recuperamos que $T$ abre sumas.

$\square$

Las transformaciones lineales mandan al cero de un espacio vectorial al cero del otro.

Proposición (cero va a cero). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $T(0)=0$.

Demostración. El truco es encontrar $T(0+0)$ de dos formas distintas. Por un lado, como $0+0=0$, tenemos que $T(0+0)=T(0)$. Por otro lado, como $T$ abre sumas, tenemos que $T(0+0)=T(0)+T(0)$. Así, tenemos que $$T(0)+T(0)=T(0).$$ Restando $T(0)$ de ambos lados obtenemos $T(0)=0$.

$\square$

De hecho, hay otra forma de probar la proposición anterior usando que $T$ saca escalares: $T(0)=T(0\cdot 0)=0T(0)=0$. Piensa en por qué cada una de estas igualdades se vale y por qué adentro del paréntesis que hay dos ceros, uno de ellos es vector y el otro escalar.

Las transformaciones lineales también «respetan» inversos aditivos.

Proposición (inversos aditivos van a inversos aditivos). Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $T(-v)=-T(v)$.

La demostración es sencilla y la puedes pensar por tu cuenta.

El haber enunciado estas proposiciones nos puede ayudar para decir, de golpe, que algunas funciones no son transformaciones lineales: si una función falla en tener alguna de las propiedades anteriores, entonces no es transformación lineal.

Ejemplo 1. Sea $V$ el espacio vectorial $\mathbb{R}^2$ y $W$ el espacio vectorial de matrices de $2\times 2$ con entradas complejas, pero visto como espacio vectorial sobre $\mathbb{R}$ (sólo se permite usar reales para la multiplicación escalar).

La transformación $T:V\to W$ que manda al vector real $(a,b)$ a la matriz de entradas complejas $T(a,b)=\begin{pmatrix}
a+ib & a-ib \\
a-ib & 1+abi\end{pmatrix}$ no es una transformación lineal pues manda al $(0,0)$ a la matriz $\begin{pmatrix}
0 & 0 \\
0 & 1\end{pmatrix},$ la cual no es la matriz $0$.

$\triangle$

Sin embargo, una pequeña advertencia. Es posible que $T$ sí mande el $0$ al $0$, pero que de cualquier forma no sea una transformación lineal, debido a que falle por otras razones.

Ejemplo 2. La transformación $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(x+y+z,xy+yz+zx,xyz)$$ cumple que $T(0,0,0)=(0,0,0)$, pero no es una transformación lineal pues no saca escalares. Por ejemplo, $$T(3,3,3)=(9,27,27)\neq 3(3,3,1)= 3T(1,1,1).$$

$\triangle$

Kernel e imagen de una transformación lineal

Tomemos $T:V\to W$ una transformación lineal. Hay dos conjuntos muy importantes relacionados con $T$.

El kernel (o núcleo) de $T$ es el conjunto de vectores en $V$ que se van al vector $0$ de $W$ cuando les aplicamos $T$. En símbolos, $$\ker(T)=\{v\in V: T(v)=0\}.$$

La imagen de $T$ son los vectores en $W$ que se pueden escribir de la forma $T(v)$ para algún $v$ en $V$, es decir, es la imagen en el sentido clásico de teoría de conjuntos o de cálculo. En símbolos, $$\Ima(T)=\{T(v): v\in V\}.$$

Haciendo énfasis de nuevo: $\ker(T)$ es un subconjunto de vectores de $V$ e $\Ima(T)$ es un subconjunto de vectores de $W$. Veamos un ejemplo que nos ayudará a repasar varios de los conceptos clave de esta entrada.

Problema. Consideremos la transformación $T:M_2(\mathbb{R})\to M_{2,3}(\mathbb{R})$ dada por $$T\begin{pmatrix}a & b \\ c & d\end{pmatrix}=\begin{pmatrix}a & b \\ c & d \end{pmatrix} \begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\end{pmatrix}.$$

Muestra que $T$ es una transformación lineal y determina $\ker(T)$ e $\Ima(T)$.

Intenta resolver este problema por tu cuenta antes de seguir.

Solución. Sean $A$ y $B$ matrices de $2\times 2$ con entradas reales y $r$ un real. Nombremos $C=\begin{pmatrix}
1 & 1 & 1\\
1 & 1 & 1\end{pmatrix}$. Por propiedades de producto de matrices, tenemos que \begin{align*}T(rA+B)&=(rA+B)C \\ &=r(AC)+BC\\ &=rT(A)+T(B),\end{align*} así que por la proposición de verificación abreviada, tenemos que $T$ es una transformación lineal.

Ahora, tomemos una matriz $A=\begin{pmatrix}
a & b \\
c & d \end{pmatrix}$ y notemos al hacer la multiplicación de manera explícita, obtenemos que $T(A)$ es la matriz $$\begin{pmatrix}
a+b & a+b & a+b\\
c+d & c+d & c+d \end{pmatrix}.$$

Determinemos quién es $\Ima(T)$. Para que una matriz $M:=\begin{pmatrix}
e & f & g\\
h & i & j \end{pmatrix}$ esté en la imagen de $T$, se tiene que cumplir que $e=f=g$ y que $h=i=j$.

Y viceversa, si $e=f=g$ y $h=i=j$, entonces $M$ está en la imagen de $T$ pues, por ejemplo $$T\begin{pmatrix}
e & 0\\
h & 0 \end{pmatrix}=\begin{pmatrix}
e & e & e\\
h & h & h\end{pmatrix}=M.$$

Esto muestra que $$\Ima (T) = \left\{\begin{pmatrix}
e & e & e\\
h & h & h \end{pmatrix}: e,h \in \mathbb{R}\right\}.$$

Ahora determinemos quién es $\ker(T)$. Para que $A$ esté en el kernel de $T$, necesitamos que todas las entradas de $T(A)$ sean $0$. Para esto es suficiente y necesario que $a+b=0$ y que $c+d=0$, o dicho de otra forma, que $A$ sea de la forma $A=\begin{pmatrix}
a & -a \\
c & -c \end{pmatrix}$. Así, concluimos que $$\ker(T)=\left\{\begin{pmatrix}
a & -a \\
c & -c \end{pmatrix}: a,c \in \mathbb{R}\right\}.$$

$\square$

Con esto ya terminamos lo que pide el problema. Sin embargo, hagamos una observación clave. En el problema anterior, $\ker(T)$ e $\Ima(T)$ no solamente son subconjuntos de $M_2(\mathbb{R})$ y de $M_{2,3}(\mathbb{R})$ respectivamente, sino que además son subespacios. Esto no es casualidad.

Los kernels e imágenes de transformaciones lineales son subespacios

Teorema. Sean $V$ y $W$ espacios vectoriales sobre un mismo campo. Si $T:V\to W$ es una transformación lineal, entonces $\ker(T)$ es un subespacio de $V$ e $\Ima(T)$ es un subespacio de $W$.

Demostración. Demostraremos primero que $\ker(T)$ es un subespacio de $V$. Para ello basta con tomar $v_1,v_2$ en $\ker(T)$ y $c$ en el campo $F$ y mostrar que $cv_1+v_2$ también está en $\ker(T)$, es decir, que también sucede que $T(cv_1+v_2)=0$. Esto se debe a la siguiente cadena de igualdades, que justificamos abajo \begin{align*}
T(cv_1+v_2)&=T(cv_1)+T(v_2)\\
&=cT(v_1)+T(v_2)\\
&=c\cdot 0 + 0 \\
&= 0.
\end{align*}

La primera igualdad se debe a que $T$ abre sumas. La segunda a que $T$ saca escalares. La tercera a que $v_1$ y $v_2$ están en el kernel de $T$ y por lo tanto sabemos que $T(v_1)=T(v_2)=0$. La última es simplemente hacer la operación. Con esto mostramos que $\ker(T)$ es un subespacio de $V$.

Ahora, veremos que $\Ima(T)$ es un subespacio de $W$. Tomemos $w_1$ y $w_2$ en $\Ima(T)$, y un escalar $c$ en el campo $F$. De nuevo, basta mostrar que $cw_1+w_2$ está en $\Ima(T)$. Como $w_1$ y $w_2$ están en la imagen de $T$, esto quiere decir que existen vectores $v_1$ y $v_2$ en $V$ tales que $T(v_1)=w_1$ y $T(v_2)=w_2$. Notemos que entonces:
\begin{align*}
cw_1+w_2&=cT(v_1)+T(v_2)\\
&=T(cv_1)+T(v_2)\\
&=T(cv_1+v_2).
\end{align*}

La segunda y tercera igualdad vienen de que $T$ saca escalares y abre sumas respectivamente. Esta cadena de igualdades muestra que podemos poner a $cw_1+w_2$ como imagen de alguien en $V$ bajo $T$, es decir, que $cw_1+w_2$ pertenece a $\Ima(T)$. Esto es lo que queríamos mostrar.

$\square$

Más adelante…

En esta entrada definimos los conceptos de transformación lineal, de imagen y de kernel. También vimos que la imagen y kernel de transformaciones lineales son subespacios. Más adelante veremos que $\ker(T)$ e $\Ima(T)$ están de hecho relacionados más profundamente.

Por ahora, nota que en el ejemplo antes del teorema tenemos que $\begin{pmatrix}
1 & 1 & 1\\
0 & 0 & 0 \end{pmatrix}$ y $\begin{pmatrix}
0 & 0 & 0\\
1 & 1 & 1 \end{pmatrix}$ forman una base de $\Ima(T)$ pues son linealmente independientes y todo elemento en la imagen es combinación lineal de estas matrices. Además, nota que de manera similar $\begin{pmatrix}
1 & -1 \\
0 & 0 \end{pmatrix}$ y $\begin{pmatrix}
0 & 0 \\
1 & -1 \end{pmatrix}$ forman una base de $\ker(T)$.

Esto nos dice que $\dim(\Ima(T))=2$ y que $\dim(\ker(T))=2$. Si sumamos ambos, nos da la dimensión de $M_2(\mathbb{R})$. ¿Será casualidad?

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que las transformaciones lineales que se pusieron como ejemplo en efecto abren sumas y sacan escalares.
  • Asegúrate de entender los detalles de la prueba de la proposición de la verificación abreviada. Úsala para mostrar que la función que manda al vector $(a,b,c)$ a la matriz $$\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$ es una transformación lineal de $\mathbb{R}^3$ a $M_3(\mathbb{R})$.
  • Muestra la proposición de que inversos aditivos van a inversos aditivos.
  • Determina el kernel y la imagen de las transformaciones lineales $T:V\to W$ que se dieron como ejemplo.
  • Para cada kernel e imagen que encuentres, convéncete de que son subespacios. Determina si tienen dimensión finita y, en ese caso, determina la dimensión. Para estos casos, ¿cómo están relacionados $\dim(\Ima(T)),\dim(\ker(T)),\dim(V)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»