Teorema de la función inversa: motivación y ejemplo

Por Leonardo Ignacio Martínez Sandoval

Introducción

Imagina, por un momento, que en un futuro trabajas en la Agencia Espacial Mexicana (AEM). De repente, llega la directora y trae una función en las manos. «Para una misión crítica necesito que me conviertas esta función en una función invertible, cuanto antes posible». Te da la función. Le respondes «Ok, directora y, ¿cómo la quiere o qué?». Pero es demasiado tarde. Ya salió y hay que ponerse a trabajar. Entonces tomas la función, la pones en el gis y comienzas a estudiarla en el pizarrón.

Resulta que es una función de varias variables. Específicamente, es la función que pasa de coordenadas polares a coordenadas cartesianas. Es decir, es la función $F:\mathbb{R}^2 \to \mathbb{R}^2$ dada por:

$$F(r,\theta)=(r\cos\theta, r \sin\theta).$$

La función sí es suprayectiva, así que ya va parte del trabajo hecho. Pero el problema es que no es inyectiva. Por ejemplo,

$$F\left(1,\frac{\pi}{2}\right)=\left(\cos\frac{\pi}{2},\sin\frac{\pi}{2}\right)=(0,1)=F\left(1,\frac{5\pi}{2}\right).$$

Peor aún, para todo $\theta \in \mathbb{R}$ se tiene que $F(0,\theta)=(0,0)$.

Pero la situación no es tan terrible. Una forma de solucionarla es restringir el dominio de la función. Si en vez de pensarla en una función $F:\mathbb{R}^2\to \mathbb{R}^2$ la pensamos como una restricción $F:U\to V$ para algunos conjuntos $U$ y $V$, entonces muy posiblemente la podamos «convertir» en una función biyectiva.

No podemos ser demasiado arbitrarios. Por ejemplo, si tomamos $U=\{(0,0)\}$ y $V=\{(0,0)\}$, entonces claramente la restricción es una biyección, pero está muy chafa: sólo nos quedamos con un punto. Por esta razón, vamos a poner una meta un poco más ambiciosa y a la vez más concreta: lograr que $U$ y $V$ sean conjuntos abiertos alrededor de los puntos $x$ y $y:=F(x)$ para algún $x\in \mathbb{R}^2$. Si lo logramos, habremos encontrado una biyección «cerquita de $x$» en conjuntos «más gorditos». Para algunos puntos $x$ lo podemos hacer, y para algunos otros puntos $x$ es imposible. Veamos ejemplos de ambas situaciones.

Si $x=\left(\sqrt{2},\frac{\pi}{4}\right)$, entonces $y=\left(\sqrt{2}\cos \frac{\pi}{4}, \sqrt{2}\sin\frac{\pi}{4}\right)=(1,1)$. En este caso, podemos elegir una vecindad pequeña $U$ alrededor de $x$ y tomar $V:=F(U)$, pues los otros puntos $w$ con $F(x)=F(w)$ están lejos (están a brincos verticales de tamaño $2\pi$ de $x$). Para resolver el problema de la AEM, basta restringir $F$ a $U$.

Sin embargo, si $x=\left(0, \frac{\pi}{4}\right)$, entonces $y=(0,0)$. Sin importar qué tan pequeña tomemos la vecindad abierta $U$ alrededor de $x$, vamos a seguir tomando puntos $w$ sobre la recta $r=0$, para los cuales sucede $F(x)=0=F(w)$. Si la directora de la AEM insiste en que haya un punto con $r=0$, entonces no hay invertibilidad en todo un abierto alrededor de este punto. Esperemos que la misión no dependa de eso.

Aplicando el teorema de la función inversa

El teorema de la función inversa es una herramienta que da condiciones suficientes para que una función $F:\mathbb{R}^n\to \mathbb{R}^n$ pueda invertirse localmente «cerca» de un punto de su dominio. Podemos utilizar este resultado cuando la función que estudiamos es «bien portada», donde esto quiere decir que sea continuamente diferenciable. Si bien hay ligeras variantes en la literatura, el enunciado que presento aquí es el siguiente:

Teorema de la función inversa

Sea $F:\mathbb{R}^n\to \mathbb{R}^n$ una función de clase $\mathcal{C}^1$ con matriz Jacobiana $DF$. Supongamos que $F(a)=b$ y que $DF(a)$ es invertible. Entonces existen vecindades abiertas $U$ y $V$ de $a$ y $b$ respectivamente para las cuales:

a) $F:U\to V$ es una biyección,
b) su inversa $F^{-1}:V\to U$ es de clase $\mathcal{C}^1$ y
c) $DF^{-1}(b)=DF(a)^{-1}$.

En otra entrada hablo de la intuición de este teorema, así como de su demostración. Por el momento sólo me enfocaré en dar un ejemplo de cómo podemos usarlo.

Regresemos al ejemplo de la Agencia Espacial Mexicana. La función que tenemos es $F:\mathbb{R}^2\to \mathbb{R}^2$ que está dada por

$$F(r,\theta)=(F_1(r,\theta),F_2(r,\theta))=(r\cos\theta, r \sin\theta).$$

Para usar el teorema de la función inversa, tenemos que estudiar la invertibilidad de $DF$, su matriz Jacobiana. Esta está construida a partir de las derivadas parciales de las funciones coordenadas como sigue:

$$DF(r,\theta)= \begin{pmatrix}
\frac{\partial F_1}{\partial r}(r,\theta) & \frac{\partial F_1}{\partial \theta}(r,\theta)\\
\frac{\partial F_2}{\partial r}(r,\theta) & \frac{\partial F_2}{\partial \theta}(r,\theta)
\end{pmatrix}= \begin{pmatrix}
\cos \theta & -r\sin \theta\\
\sin \theta & r \cos \theta.
\end{pmatrix} $$

Para estudiar su invertibilidad, notamos que su determinante es

\begin{align*}
\det(DF(r,\theta))&=\cos \theta \cdot r\cos \theta – \sin \theta \cdot (-r\sin \theta) \\
&= r\cos^2\theta+r\sin^2\theta \\
&= r,
\end{align*}

y que es distinto de $0$ si y sólo si $r\neq 0$. Esto coincide con las observaciones que hicimos «a mano»: la función es invertible localmente en $(r,\theta)$ si $r\neq 0$. Cuando $r=0$, la invertibilidad no está garantizada.

El teorema de la función inversa tiene más implicaciones. Nos dice además que la inversa $F^{-1}$ también es continuamente diferenciable y que su derivada es la inversa de $F$. Como ejemplo, consideremos el punto $\left(\sqrt{2},\frac{\pi}{4}\right)$. Tenemos que

$$F\left(\sqrt{2},\frac{\pi}{4}\right) = (1,1),$$

que

$$DF\left(\sqrt{2},\frac{\pi}{4}\right) = \begin{pmatrix}
\frac{1}{\sqrt{2}}& -1\\
\frac{1}{\sqrt{2}} & 1
\end{pmatrix},$$

y que $\det\left(DF\left(\sqrt{2},\frac{\pi}{4}\right)\right)=\sqrt{2}$.

Así, $F$ es invertible localmente alrededor de $
\left(\sqrt{2},\frac{\pi}{4}\right)$, su inversa es continuamente diferenciable y además

$$D(F^{-1})(1,1)=DF\left(\sqrt{2},\frac{\pi}{4}\right)^{-1} =\frac{1}{\sqrt{2}}
\begin{pmatrix}
1 & 1\\
-\frac{1}{\sqrt{2}}& \frac{1}{\sqrt{2}}
\end{pmatrix}.$$

Esto termina la motivación y el ejemplo del teorema de la función inversa. Si quieres entender un poco mejor la intuición detrás del teorema, así como su demostración, puedes darte una vuelta por esta otra entrada.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Una prueba del teorema de la función inversa

Por Leonardo Ignacio Martínez Sandoval

Introducción

Uno de los teoremas clave de los cursos de cálculo de varias variables es el teorema de la función inversa (TFI). En la Facultad de Ciencias de la UNAM se estudia en la materia Cálculo III. En esta entrada me gustaría presentar de la manera más auto-contenida posible este resultado.

Platicaré un poco de las definiciones de los términos que aparecen en el enunciado, así como de la intuición de por qué el teorema es cierto. Después presentaré los ingredientes principales para una prueba. Finalmente, presentaré la prueba intentando motivarla y dividiéndola en secciones pequeñas.

El enunciado con el que trabajaremos es el siguiente:

Teorema de la función inversa. Sea $F:\mathbb{R}^n\to \mathbb{R}^n$ una función de clase $\mathcal{C}^1$ con matriz Jacobiana $DF$. Supongamos que $F(a)=b$ y que $DF(a)$ es invertible. Entonces existen vecindades abiertas $U$ y $V$ de $a$ y $b$ respectivamente para las cuales:

a) $F:U\to V$ es una biyección,
b) su inversa $F^{-1}:V\to U$ es de clase $\mathcal{C}^1$ y
c) $DF^{-1}(b)=DF(a)^{-1}$.

Lo que nos espera es aproximadamente lo que está en el siguiente diagrama, donde las flechas indican a grandes rasgos qué resultado se usa para probar qué otro.

Definiciones e intuición

La función con la que comenzamos es una función de $\mathbb{R}^n$ a $\mathbb{R}^n$, así que la podemos descomponer en sus funciones coordenadas de la siguiente manera: $$F(x)=(F_1(x), F_2(x),\ldots, F_n(x)).$$

Que la función sea de clase $\mathcal{C}^1$ quiere decir que las derivadas parciales con respecto a cada una de las variables existen, que estas son continuas y que localmente $F$ «se comporta» como la transformación lineal correspondiente a la matriz Jacobiana siguiente:

$$DF(x)=\begin{pmatrix}
\frac{\partial F_1}{\partial x_1}(x) & \cdots & \frac{\partial F_1}{\partial x_n}(x)\\
\vdots & \ddots & \vdots \\
\frac{\partial F_n}{\partial x_1}(x) & \cdots & \frac{\partial F_n}{\partial x_n}(x)
\end{pmatrix}.$$

Entonces, a grandes rasgos lo que nos dice el teorema de la función inversa es lo siguiente. Si $F$ se comporta como una transformación lineal $T$ invertible «cerquita» del punto $a$, entonces en realidad es invertible «cerquita» del punto $a$ y más aún, la inversa se comporta como la transformación lineal $T^{-1}$ «cerquita» del punto $b=f(a)$.

Suena bastante razonable, pero hay algunos aspectos que son sorprendentes. Uno es que se garantiza la invertibilidad en todo un abierto $U$. Si no se requiriera que fuera abierto, sería chafa porque podríamos tomar $U=\{a\}$ y $V=\{b\}$ y la restricción sería trivialmente invertible. Lo otro es que el teorema también garantiza que la inversa es diferenciable, lo cual de entrada no es evidente.

Para la prueba necesitamos hablar de dos normas. Cuando tengamos un vector $x=(x_1,\ldots,x_n)$ en $\mathbb{R}^n$, $\norm{x}$ denotará la norma euclideana $$\norm{x}=\sqrt{\sum_{i=1}^nx_i^2}.$$

Necesitaremos también la norma de Frobenius. Como recordatorio, para una matriz $A=(a_{ij})$ de $n\times n$, su norma de Frobenius está dada por $$\norm{A}=\sqrt{\sum_{i=1}^n\sum_{j=1}^n a_{ij}^2},$$

o equivalentemente, si $A_i$ es el $i$-ésimo renglón de $A$, tenemos que

$$\norm{A}=\sqrt{\sum_{i=1}^n\norm{A_{i}}^2},$$

pues ambas expresiones suman todas las entradas de la matriz al cuadrado.

Ingredientes para la prueba

Pasemos ahora a algunos resultados auxiliares que es más cómodo probar desde antes. Algunos de ellos son más generales que lo que enuncio (e incluso con la misma prueba), pero con el fin de que la demostración sea auto-contenida, he decidido enunciar sólo lo que necesitamos.

Teorema del punto fijo de Banach (para $\mathbb{R}^n$). Sea $X$ un compacto de $\mathbb{R}^n$ y $\varphi:X\to X$ una función continua. Supongamos que $\varphi$ es una contracción, es decir, que existe un real $0<\lambda<1$ para el cual $\norm{\varphi(x)-\varphi(y)}\leq\lambda \norm{x-y}$ para todos $x,y \in X$.

Entonces $\varphi$ tiene un único punto fijo, es decir existe uno y sólo un punto $x_0\in X$ para el cual $\varphi(x_0)=x_0$.

Para probar el teorema del punto fijo de Banach basta tomar cualquier punto inicial $x_1$ y considerar la sucesión $\{x_m\}$ construida recursivamente con la regla $x_m=\varphi(x_{m-1})$ para $m\geq 2$. Usando que $\varphi$ es contracción y la fórmula para series geométricas se puede mostrar inductivamente que para $m>m’$ se tiene

$$\norm{x_m-x_m’}\leq\lambda ^{m’-1} \norm{x_2-x_1} \left(\frac{1}{1-\lambda}\right).$$

Como $\lambda<1$, el lado derecho se hace arbitrariamente pequeño conforme $m’$ se hace grande, así que ésta es una sucesión de Cauchy. Por la compacidad de $X$ y completud de $\mathbb{R}^n$, tenemos que la sucesión converge a un punto $x_0$. Por continuidad, este punto satisface:

$$x_0=\lim_{m\to \infty} x_{m+1} = \lim_{m\to \infty} \varphi(x_m)=\varphi\left(\lim_{m\to \infty} x_m\right) = \varphi(x_0).$$

La unicidad no necesita la compacidad de $X$, sino únicamente que $\varphi$ sea contracción. En efecto, si hay otro punto fijo $x$ entonces

$$\norm{x-x_0}=\norm{\varphi(x)-\varphi(x_0)}\leq \lambda \norm{x-x_0},$$

de donde $\norm{x-x_0}=0$, pues si no se tendría una contradicción. Así, $x=x_0$.

Desigualdades para la norma de Frobenius. Para $x\in \mathbb{R}^n$ y $A,B$ matrices reales de $n\times n$ tenemos que
a) $\norm{Ax}\leq \norm{A} \norm{x}$ y
b) $\norm{AB}\leq \norm{A} \norm{B}$.

La desigualdad (a) se prueba usando la desigualdad de Cauchy-Schwarz. En efecto, si $A_1,\ldots, A_n$ son los renglones de la matriz $A$, tenemos que $$Ax=(A_1\cdot x, A_2\cdot x, \ldots, A_n\cdot x),$$

entrada a entrada tenemos por Cauchy-Schwarz que

$$(A_i\cdot x)^2\leq \norm{A_i}^2\norm{x}^2,$$

de modo que sumando para $i=1,\ldots, n$ tenemos que

$$\norm{Ax}^2\leq \left(\sum_{i=1}^n \norm{A_i}^2\right)\norm{x}^2=\norm{A}^2\norm{x}^2,$$

lo cual prueba la desigualdad (a). La desigualdad (b) se prueba de manera similar, tomando fila por fila a la matriz $A$ y columna por columna a la matriz $B$.

Desigualdad del valor medio. Sea $U\subset \mathbb{R}^n$ un abierto convexo y $F:U\to \mathbb{R}^n$ una función de clase $\mathcal{C}^1$. Sean $x,y$ puntos en $U$ para los cuales la cual la norma de Frobenius del Jacobiano $\norm{DF}$ está acotada sobre el segmento $xy$ por una constante $C$. Entonces:

$$\norm{F(x)-F(y)}\leq C \norm{x-y}.$$

La desigualdad del valor medio requiere de algunos pasos intermedios. Definamos $h=y-x$. La clave es probar las siguientes tres afirmaciones:

\begin{align*}
F(x)-F(y)&=\int_0^1 DF(x+th) h \,dt\\
\norm{\int_0^1 DF(x+th) h \, dt } &\leq \int_0^1 \norm{DF(x+th)}\norm{h}\, dt\\
\int_0^1 \norm{DF(x+th)}\norm{h}\, dt &\leq C \norm{h}.
\end{align*}

La primera es una «generalización» del teorema del valor medio de una variable. Se prueba coordenada a coordenada usando el Teorema Fundamental del Cálculo, la regla de la cadena y un intercambio de integral con suma (usando la continuidad de las derivadas parciales).

La segunda se prueba usando desigualdad del triángulo para integrales y la desigualdad (a) que probamos arriba para la norma de Frobenius.

La tercera se sigue de manera inmediata de la cota hipótesis para la matriz Jacobiana, pues $x+th=x+t(y-x)$ recorre el segmento $xy$ conforme $t$ recorre el intervalo $[0,1]$.

Combinando las tres afirmaciones concluimos

$$\norm{F(x)-F(y)}\leq C\norm{h}=C\norm{y-x},$$

que es justo lo que queríamos probar.

Con esto terminamos los pre-requisitos para probar el TFI. Aquí ya se ve algo interesante sucediendo. En el TFI queremos mostrar que cierta restricción es biyectiva, osea que cierto sistema de ecuaciones tiene una y sólo una solución. Esto se asemeja al teorema del punto fijo de Banach, donde, bajo ciertas condiciones de contracción, hay uno y sólo un punto fijo. El teorema de la desigualdad media puede ayudar a mostrar que una función contrae. Todo esto no es casualidad. A continuación veremos cómo combinar estos ingredientes.

Demostración del TFI

Estamos listos para dar la demostración del teorema de la función inversa. Por comodidad, aquí lo enunciamos de nuevo:

Teorema de la función inversa. Sea $F:\mathbb{R}^n\to \mathbb{R}^n$ una función de clase $\mathcal{C}^1$ con matriz Jacobiana $DF$. Supongamos que $F(a)=b$ y que $DF(a)$ es invertible. Entonces existen vecindades abiertas $U$ y $V$ de $a$ y $b$ respectivamente para las cuales:

a) $F:U\to V$ es una biyección,
b) su inversa $F^{-1}:V\to U$ es de clase $\mathcal{C}^1$ y
c) $DF^{-1}(b)=DF(a)^{-1}$.

Para el teorema necesitamos definir quién es el abierto $U$. Lo tomaremos como $U:=B(a,\epsilon)$, una bola abierta y centrada en $a$ de radio $\epsilon$. La idea es tomar $\epsilon$ tan pequeño como para que para $x\in U$ tengamos que $DF(x)$ sea invertible y

$$\norm{DF(a)-DF(x)}\leq \frac{1}{2\norm{DF(a)^{-1}}}.$$

Ambas cosas las podemos hacer pues la asignación $x \mapsto DF(x)$ es continua ya que $F$ es de clase $\mathcal{C}^1$. En el transcurso de la prueba discutiremos la motivación de esta elección. A $V$ lo tomaremos como $F(U)$.

Lo primero que haremos es reformular parte (a) en términos de puntos fijos. Queremos que la restricción $F:U\to V$ que estamos buscando sea biyectiva. En otras palabras, para $y\in V$ queremos que la ecuación $y=F(x)$ tenga una y sólo una solución $x$ en $U$. Como por hipótesis la matriz $DF(a)$ es invertible, esto sucede si y sólo si

$$x+DF(a)^{-1}(y-F(x))=x,$$

es decir, si y sólo si $x$ es un punto fijo de la función $\varphi_y(x)=x+DF(a)^{-1}(y-F(x))$. Parece un poco artificial haber introducido a $DF(a)^{-1}$, pero como veremos a continuación tiene sentido pues nos ayudará para que $\varphi_y$ sea contracción.

Teniendo en mente que queremos usar la desigualdad del valor medio, calculamos y acotamos la norma de la derivada de $\varphi_y$ como sigue

\begin{align*}
\norm{D\varphi_y (x)} &= \norm{I – DF(a)^{-1} DF(x)} \\
&= \norm{DF(a)^{-1}(DF(a) – DF(x))}\\
&\leq \norm{DF(a)^{-1}}\norm{DF(a)-DF(x)}
\end{align*}

Aquí es donde usamos (y se motiva parte de) nuestra elección de $U$: nos permite acotar $\norm{DF(a)-DF(x)}$ superiormente con $\frac{1}{2\norm{DF(a)^{-1}}} $ y por lo tanto podemos concluir la desigualdad anterior como

\begin{align}\norm{D\varphi_y (x)} \leq \frac{1}{2}.\end{align}

Por la desigualdad del valor medio, concluimos la siguiente observación clave.

Observacion. Para $y$ en $V$ tenemos que $\varphi_y$ es contracción en $U$ con factor $\lambda=\frac{1}{2}$. En otras palabras, para $x,w$ en $U$, tenemos $$\norm{\varphi_y(x)-\varphi_y(w)}\leq \frac{\norm{x-x’}}{2}.$$

La prueba a partir de ahora se divide en los siguientes pasos:

  1. Mostrar que $F:U\to V$ es biyectiva.
  2. Mostrar que $V$ es abierto
  3. Mostrar que $F^{-1}:V\to U$ es diferenciable y y $DF^{-1}(b)=DF(a)^{-1}$
  4. Mostrar que las derivadas parciales son continuas

$F:U\to V$ es biyectiva.

La suprayectividad la tenemos gratis, pues por definición $V=F(U)$.

Para la inyectividad, tomamos $y\in V$ y supongamos que existen $x$ y $w$ en $U$ tales que $F(x)=y=F(w)$. Esto quiere decir que $x$ y $w$ son puntos fijos de la contracción $\varphi_y$. Como vimos en la prueba del teorema del punto fijo de Banach, esto implica que $x=w$. Así, $x=w$, de modo que $F:U\to V$ es inyectiva y por lo tanto es biyectiva.

Nota: Aquí no estamos usamos el teorema del punto fijo de Banach pues $U$ no es compacto. Sólo estamos usando que las contracciones son inyectivas.

$V$ es abierto

Tomemos $y’$ en $V$, es decir, para la cual existe $x’$ en $U$ con $F(x’)=y’$. Queremos ver que si «$y$ está muy cerquita de $y’$» , entonces hay una solución para $F(x)=y$ con $x$ en $U$.

Como $U$ es abierto, existe $r$ tal que la bola $B(x’,2r)$ abierta de centro $x’$ y radio $2r$ se queda contenida en $U$. Tomemos $y$ en la bola $B\left(y’,\frac{r}{2\norm{DF(a)^{-1}}}\right)$. Vamos a ver que $F(x)=y$ tiene solución en $U$. Consideremos la función $\varphi_y$, pero restringida a la bola cerrada $X:=\overline{B}(x’,r)\subset U$. Mostraremos que la imagen de $\varphi_y$ se queda contenida en $\overline{B}(x’,r)$. En efecto:

\begin{align*}
\norm{\varphi_y(x)-x’}&=\norm{\varphi_y(x)-\varphi_y(x’)+DF(a)^{-1}(y-y’)}\\
&\leq \norm{\varphi_y(x)-\varphi_y(x’)}+\norm{DF(a)^{-1}}\norm{y-y’}\\
&\leq \frac{\norm{x-x’}}{2}+\frac{r}{2}\leq r.
\end{align*}

De este modo, $\varphi_y$ es una contracción del compacto $X$ a sí mismo. Por lo tanto, tiene un punto fijo en $X$, de modo que $F(x)=y$ para $x\in X\subset U$. Esto muestra que $V=F(U)$ es abierto.

$F^{-1}:V\to U$ es diferenciable y $DF^{-1}(b)=DF(a)^{-1}$

Vamos a demostrar que $F^{-1}:V\to U$ es diferenciable a partir de la definición de diferenciabilidad. Más aún, veremos que si $y=F(x)$ para $x$ en $U$, entonces $DF^{-1}(y)=DF(x)^{-1}$. Aquí es donde se termina de motivar nuestra elección en $U$, pues nos garantiza que a la derecha en efecto tenemos una matriz invertible.

Tomemos entonces $y=F(x)$. Nos interesa el límite cuando $\norm{h}\to 0$ de la siguiente expresión

$$\frac{\norm{F^{-1}(y+h)-F^{-1}(y)-DF(x)^{-1}h}}{\norm{h}},$$

Como $U$ es abierto, si $\norm{h}$ es pequeña entonces $y+h$ está en $U$. De este modo, existe $k$ tal que $x+k \in U$ y $F(x+k)=y+h$. Así, la expresión anterior la podemos reescribir como

\begin{align}\frac{\norm{DF(x)^{-1}(F(x+k)-F(x)-DF(x)k)}}{\norm{k}}\frac{\norm{k}}{\norm{h}}\end{align}

Antes de continuar, probemos una desigualdad auxiliar. Notemos que

\begin{align*}
\norm{k}-\norm{DF^{-1}(a)h} &\leq \norm{k-DF^{-1}(a)h}\\
&=\norm{\varphi_y(x+k)-\varphi_y(x)}\\
&\leq\frac{\norm{k}}{2},
\end{align*}

así,

\begin{align}\norm{k}\leq 2\norm{DF^{-1}(a)h} \leq 2\norm{DF^{-1}(a)}\norm{h}.\end{align}

Substituyendo el valor de $\norm{k}$ en (2), concluimos que la expresión es menor o igual a

\begin{align}2\norm{DF(x)^{-1}}\frac{\norm{F(x+k)-F(x)-DF(x)k}}{\norm{k}}\norm{DF^{-1}(a)}\end{align}

Estamos listos para terminar. La desigualdad (3) también garantiza que $\norm{k}\to 0$ cuando $\norm{h}\to 0$. Así, como $F$ es diferenciable, tenemos que la expresión (4) tiende a $0$. Esto muestra que $F^{-1}$ es diferenciable en $y$ con $DF^{-1}(y)=DF(x)^{-1}$, tal como queríamos.

Las derivadas parciales son continuas

Esta parte es sencilla a partir de la parte anterior. Tenemos que:

$$DF^{-1}(b)=DF(F^{-1}(b))^{-1}$$

Por la regla de Cramer la inversa de una matriz depende continuamente de las entradas de la matriz original. Además, la asignación $b \mapsto F^{-1}(b)$ es continua. Así, las entradas de $DF^{-1}(b)$ (las derivadas parciales de $F^{-1}$) dependen continuamente de las derivadas parciales de $F$, que dependen continuamente de $b$ por hipótesis.

Con esto termina la prueba.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

VIII Concurso Galois-Noether: Segunda Etapa

Por Leonardo Ignacio Martínez Sandoval

Ken 2 CC-BY - Editada2

En esta entrada se dan los resultados de la segunda etapa del VIII Concurso Universitario de Matemáticas Galois-Noether que se aplicó el día sábado 9 de junio de 2018. Hubo 27 participantes de habla hispana y 52 de habla portuguesa.

Problemas y soluciones

El examen consistió de seis problemas para resolver en cuatro horas y media. Al inicio del examen hubo media hora para aclarar los enunciados de los problemas. Puedes ver los problemas del examen, así como sus soluciones, en el siguiente archivo.

Cada problema se evaluó sobre 10 puntos, dando puntos parciales por avances hacia la solución.

A continuación se enuncia el tema de cada problema.

  • Problema 1: Desigualdades
  • Problema 2: Álgebra lineal
  • Problema 3: Cálculo
  • Problema 4: Teoría de números
  • Problema 5: Probabilidad
  • Problema 6: Teoría de grupos

De acuerdo a las estadísticas, los problemas 1, 2, 5 y 6 tuvieron aproximadamente la dificultad deseada. Los problemas 3 y 4 quedaron un poco más fáciles de lo que se esperaba, de modo que en las puntuaciones altas fue difícil marcar una distinción clara entre las habilidades de los concursantes. En años siguientes se buscará subir un poco la dificultad de estos problemas.

Sobre los concursantes

En total 79 personas presentaron el examen de segunda etapa. De entre los que presentaron el examen, el promedio redondeado a centésimas fue de 15.17. La calificación más alta fue 38 puntos y la más baja fue 2.

Ganadores del VIII Concurso Galois-Noether

A continuación se muestran los primeros tres lugares de la competencia. En caso de empate, el criterio de desempate fue la puntuación del examen de primera etapa.

  1. Thiago – Landim de Souza Leao – Universidade Federal de Penambuco – Brasil
  2. Thiago Ribeiro Tergolino – Instituto Militar de Engenharia – Brasil
  3. Wesley Rodrigues Machado – Instituto Militar de Engenharia – Brasil

¡Muchas felicidades a ellos tres! Para quedar en estos lugares se requiere de una gran cantidad de trabajo bien orientado.

Selección de la UNAM para la IX CIIM

De acuerdo a la convocatoria, el examen Galois-Noether sirve como selectivo para determinar a los cuatro estudiantes que representan al equipo de la UNAM en la Competencia Iberoamericana Interuniversitaria de Matemáticas. Los cuatro alumnos de la UNAM con la mejor puntuación del examen y que participarán en la CIIM fueron:

  • Víctor Hugo Almendra Hernández
  • Leonardo Ariel García Morán
  • Siddhartha Emmanuel Guzmán Morales
  • Zeús Caballero Pérez

¡Muchas felicidades!

El Líder del Equipo de la UNAM para la IX CIIM fue el Mat. Luis Eduardo García Hernández, quien ha colaborado en la organización de la competencia y otras actividades de resolución de problemas a nivel universitario.

¡Les deseamos mucho éxito a todos ellos en la IX CIIM!

Constancias y dudas

Todos los concursantes que hayan participado en la segunda etapa pueden solicitar una constancia. Cualquier estudiante puede consultar su calificación personal desglosada por problema. Para realizar cualquiera de estas dos cosas, favor de escribir a leomtz@im.unam.mx.

Seis preguntas y respuestas acerca de los postdocs

Por Leonardo Ignacio Martínez Sandoval

Hice el doctorado mediante un programa conjunto entre la UNAM y la Université de Montpellier en Francia. Al terminar, la principal recomendación de mis contactos académicos fue seguir con estancias postdoctorales, de preferencia en el extranjero.

Al inicio tomar una decisión de este estilo y cambiar de etapa de vida se ve como algo complicado. Escribo esta entrada para contar acerca de mi experiencia, de cosas que he entendido y de cosas que me han ayudado en la posición de postdoc que estuve en Israel y en la posición actual que tengo en París. Personalmente soy matemático, pero he platicado con postdocs de varias áreas y en esta entrada intento ser lo más general posible para que sea de ayuda a todas las áreas.

He decidido seguir un formato de preguntas y respuestas que, si bien no necesariamente me han preguntado, espero que ayude a encontrar respuestas a quien lo busque en el futuro.

¿Un postdoc es estudio o trabajo?

Esta es la pregunta que más frecuentemente harán los amigos y familiares. Yo mismo me la he hecho varias veces. E incluso los gobiernos tienen opiniones divididas. Por ejemplo, para el postdoc en Israel necesité una visa de estudiante. Para el de Francia una de empleado.

La palabra «postdoc» es engañosa: da la apariencia de que un postdoc es un grado, como la maestría o el doctorado. Simplemente suena a un grado después del doctorado. Y si bien en un postdoc hay que aprender muchas cosas (usualmente por cuenta propia), en realidad no es un grado. Al final del no es necesario entregar una tesis, ni hay exámenes. En muchos sentidos prácticos, un postdoc es trabajo: te pagan, tienes un jefe, hay una cierta expectativa de que tengas publicaciones científicas, tomas café.

Mi manera favorita de pensarlo es así. El postdoc es un trabajo temporal , entre el estudio y una plaza, que da un periodo de gracia con pago, para desarrollar el círculo académico y pulir las habilidades de investigación.

¿Por qué un postdoc en el extranjero?

Esta es de las primeras preguntas que me hice a mi mismo. Las respuestas usuales es «por que es bueno variar», «por que lo necesitas para tu curriculum si quieres una plaza» o «por que es una gran experiencia». Estas respuestas son parcialmente correctas, pero me gustaría decir cosas concretas en las que estar afuera me ha ayudado.

Para empezar, hacer un postdoc afuera amplía la red de colegas. Pensando a mediano y largo plazo, los colegas en ciencia son tan importantes como en otras áreas. Trabajar en equipo es una forma de diversificar el riesgo que se toma al trabajar en proyectos personales. En mi opinión debe haber un balance en ambos. Además de minimizar el riesgo, tener colegas también es importante para habilidades transversales que tiene un investigador: saber quiénes en la comunidad conocen qué temas, que te ubiquen para arbitrar artículos, que tengas más personas a quien pedir una opinión, etc.

Tener una red de colegas más grande también amplía las oportunidades de conseguir un trabajo o beca. Y no es un asunto de influyentismo, sino simplemente de flujo de información: mientras más centros y personas conoces, más estás relacionado con sus listas de distribución y con los proyectos que se ofrecen.

Los párrafos de arriba están relacionados con los beneficios académicos. Pero el hacer un postdoc en el extranjero también tiene los beneficios tradicionales de viajar: conocer nuevas culturas, nuevos idiomas, comida de otros lugares. Haciendo un postdoc en Europa hay amplias oportunidades de viajar a otros países en días de descanso.

¿En que trabaja un postdoc?

Desde mi punto de vista, los postdocs se dividen en dos tipos totalmente distintos de acuerdo a la forma en que se trabaja. Las convocatorias son usualmente claras con respecto a cuál de las siguientes categorías es la correspondiente

  • Llegar a un equipo de trabajo: En este caso, el candidato llega a un proyecto ya armado, usualmente dirigido por un jefe de investigación. Los temas ya están delineados por un plan de trabajo con ciertos temas específicos. La idea es que el candidato llega para compartir su experiencia y colaborar en los temas del proyecto desde sus habilidades.
  • Traer un plan de trabajo: Cuando es así, se le pide al candidato un plan de investigación propuesto por él mismo. El candidato en vez de llegar a un laboratorio o equipo específico, simplemente llega al departamento. La idea es que el candidato proponga un proyecto afín a los temas que se tratan en el departamento y que colabore con sus colegas.

Por supuesto, estas son categorías con fronteras grises. A veces en una posición se puede hacer un poco de ambos. Además de la parte de investigación, varias posiciones de postdoc tienen responsabilidades como docente.

En mi caso, en ambos postdocs llegué a un equipo de trabajo con temas bien definidos. En la Universidad de Ben Gurión estuve trabajando en transversales geométricas y en Sorbonne Université estoy trabajando en politopos. Mis anfitriones (los jefes de proyecto) propusieron posibles temas para investigar y de ahí fuimos construyendo sobre eso.

¿Quién le paga un postdoc?

Aquí hay varias posibilidades:

  • El postdoc consigue los fondos: El postdoc consigue los fondos para su estancia mediante alguna convocatoria de algún gobierno o agencia de investigación. Al hacer la solicitud indica su proyecto de investigación y algunas opciones de en dónde lo quiere hacer. Si obtiene le beca «se la lleva» a la universidad de su preferencia. Como ejemplo están los postdocs Marie Slodowska-Curie.
  • Un jefe de investigación consigue los fondos: En este caso, un investigador tiene un proyecto grande ya aprobado que contempla muchos gastos, entre ellos contratar postdocs. Por ejemplo, el investigador puede tener una Starting Grant del Consejo de Investigación Europea (ERC) o un proyecto aprobado por la agencia de ciencia nacional. En estos postdocs el candidato usualmente trabajará en los temas delineados en el proyecto del anfitrión.
  • Una universidad o instituto abre plazas de postdoc: Finalmente, en este caso el dinero lo pone la universidad. La universidad puede poner condiciones de áreas o grupos de trabajo. También puede hacer simplemente una convocatoria abierta y decidir dependiendo de las aplicaciones que reciba. Como ejemplo, están las posiciones en IST Austria

En mi caso, ambos postdocs que obtuve fueron de la segunda categoría.

¿Dónde busco un postdoc?

Esto depende fuertemente de la procedencia de los fondos.

  • El postdoc consigue los fondos: Los lugares para buscar uno de estos postdocs son las agencias nacionales e internacionales de investigación. Son usualmente posiciones muy competidas, por su amplio alcance. Intenta empezar con tu agencia nacional primero (en México sería el Conacyt) y luego con la agencias relacionadas con el país al que quieres ir.
  • Un jefe de investigación consigue los fondos: Estos postdocs se transmiten casi siempre de voz a voz. La mejor forma de encontrarlos es empezando con tu asesor de doctorado. La siguiente mejor forma de encontrarlos es en conferencias de tu área. En ambos casos al aplicar tendrás una referencia de cómo te enteraste de la posición y esto facilita la interacción. Finalmente, también puedes unirte a listas de distribución o buscar postdocs concretos en Google. Esto es un poco impersonal y poco práctico, pero a veces vale la pena intentarlo.
  • Una universidad o instituto abre plazas de postdoc: Para estas posiciones hay que estar al pendiente de las secciones de convocatorias de las universidades. Así mismo, estas posiciones también se transmiten de voz a voz. Intenta unirte a grupos en redes sociales que compartan esta información. Los matemáticos tenemos por ejemplo Matemáticos Mexicanos en el Mundo en Facebook. A veces también hay posiciones que se anuncian en Becarios Conacyt.

Además de las búsquedas individuales que puedes hacer, también hay varios portales dedicados a publicar plazas de postdoc.

  • Un portal relativamente nuevo, pero con muchas posiciones en todas las áreas es Academic Positions.
  • Para matemáticos, la mayoría de universidades de Estados Unidos y Canadá publican sus plazas postdoctorales en el portal MathJobs.
  • Para matemáticos, también hay un portal similar de la Sociedad Matemática Europea.

¿Cómo mejoro la posibilidad de obtener un postdoc?

La búsqueda de postdoc es, en sentido práctico, parecida a la búsqueda de un empleo formal. Para empezar, hay que cambiar el chip de que «vas a que te preparen». Esto ya no es así y las estrategias alrededor de esta filosofía muy probablemente fallen.

El postdoc más que una relación de mentoría es una relación de colaboración. Se espera que el candidato ya tenga buenas habilidades de investigación, de auto-aprendizaje y de exploración de la literatura. La idea es llevar las habilidades y aspectos técnicos que aprendiste durante el doctorado para contribuir, con colegas, en la resolución de distintos problemas.

Otra cosa importante es que no sólo el candidato tiene que mostrar que tiene potencial. También la institución o grupo de trabajo debe ser atractiva para el candidato y por eso es importante que como parte del proceso también hagas preguntas.

Con esto en mente, ahora sí paso a consejos más concretos.

  • Prepara un curriculum profesional y enfocado a la posición que vas a aplicar. Asegúrate de hacer énfasis en tus publicaciones más relevantes y de preferencia aquellas en las que muestres más independencia como investigador.
  • De ser posible, asegúrate de tener una página profesional en donde se puedan consultar más detalles de tu historia profesional. La página que tengo yo es esta: http://www.nekomath.com. Si te interesa tener una página así, ponte en contacto conmigo.
  • Asegúrate de avisar con tiempo a quienes pedirás tus cartas de recomendación. De preferencia, platica con ellos para que escriban acerca de tus habilidades de investigación y de tu capacidad de trabajar independientemente y con colegas.
  • Si se requiere un proyecto de investigación, asegúrate de explicar el estado del arte, los problemas concretos que quieres estudiar y un esbozo del camino que quieres tomar. Tiene que quedar la impresión de que sabes por dónde ir y que lo único que te falta para poder hacerlo son el tiempo, dinero y colaboración que te puede ofrecer el postdoc.
  • Si se requiere una entrevista, se profesional. Familiarízate con las ideas principales de los artículos de quienes te entrevistarán. Prepara también preguntas que tú quieres hacer acerca del grupo o lugar de trabajo: ¿tendrás un escritorio?, ¿hay otras prestaciones?, etc. Prepara una entrevista a distancia (tipo Skype) tan bien o mejor que como prepararías una entrevista en vivo.

Espero que estos tips sean de ayuda. Si tienes alguna otra duda, puedes preguntar con confianza.

Primera nevada de mi vida

Por Leonardo Ignacio Martínez Sandoval

Estoy super feliz.

Hoy, 22 de enero de 2019, vi por primera vez en mi vida nevar.

Lo más cercano qué había visto antes era aguanieve (en Guanajuato), y nieve ligera (en Nueva York). También había visto nieve sucia acumulada en el piso (en Bucharest).

Pero todas esas experiencias se quedan cortas. En esta, es como si cayera algodón microhexagonal, pintando el suelo de un precioso blanco teñido de azul por su reflejo del cielo. Los copos caen con suavidad, pero con firmeza. Con asertividad.

Me han dicho que disfrute este evento pues después cuando la nieve es cotidiana se puede volver molesta e indeseable. Tal vez suceda, pero hoy la veré con los ojos de un niño que descubre el mar.

Algunas imágenes: