Archivo de la categoría: Sin clasificar

La bola abierta en un espacio métrico

Por Lizbeth Fernández Villegas

$ \textit{ MATERIAL EN REVISIÓN}$

Introducción

Probablemente recuerdes que en los cursos de Cálculo Diferencial e Integral se habló de bolas de radio $\varepsilon>0$ con centro en un punto $x$. Había otros conjuntos, como los conjuntos abiertos y cerrados, de los que habrás visto representaciones gráficas, (puedes consultar la entrada $\mathbb{R}^n$ como espacio Topológico para tener presente los conceptos en la métrica usual). Estas ideas pueden generalizarse a otros espacios con métrica distinta a la euclidiana. En la sección que aquí se presenta visualizaremos algunos ejemplos y comprobarás que conjuntos como la bola abierta, quedan representados por figuras diferentes a las ya conocidas (no siempre se trata de círculos o esferas). Observarás los cambios que las métricas pueden generar, incluso cuando también se trata de distancias en el conjunto $\mathbb {R}^n$.
Comencemos por identificar puntos que estén “cerca” entre sí, aquellos cuya distancia no exceda cierta cantidad. Para eso tenemos la siguiente:

Definición. Bola abierta. Sea $(X,d)$ un espacio métrico. Considera un punto $x \in X$ y $\varepsilon \in \mathbb {R}$ tal que $\varepsilon>0$. La bola abierta con centro en $x$ y radio $\varepsilon$ se define como el conjunto de puntos en $X$ tales que el valor de su distancia al punto $x$ es menor que $\varepsilon$. Se denota como:

$$B(x,\varepsilon) := \{y \in X | d(x,y) < \varepsilon\}$$

Representación de bola abierta con centro en $x.$ Los puntos en verde tienen distancia a $x$ menor que $\varepsilon,$ contrario a los puntos rojos.

Nota que si $x$ es el centro, entonces siempre está en la bola abierta sin importar el valor de $\varepsilon > 0$, pues precisamente, $d(x,x)=0<\varepsilon$

Ejemplos de bolas abiertas en espacios métricos

La bola abierta en la métrica discreta

Recordemos que en la métrica discreta, la distancia entre dos puntos diferentes siempre es $1$. Entonces, si $0<\varepsilon<1$ la bola abierta solo tendrá como elemento al centro.

Representación de $B(x, \varepsilon ),$ con $0 < \varepsilon<1 $ en la métrica discreta.

Por el contrario, si $\varepsilon>1$ la bola abierta tendrá como elementos a todos los elementos del espacio métrico.

Representación de $B(x, \varepsilon ),$ con $\varepsilon > 1 $ en la métrica discreta.

La bola abierta en $\mathbb{R}$ con la métrica euclidiana

Considera el conjunto $\mathbb{R}$ con la métrica usual.
\[
d(x,y) := |x-y| := \left\{ \begin{array}{lcc}
x-y & si & x \geq y \\
\\ y-x & si & x < y
\end{array}
\right.
\]
Para $x,y \in \mathbb{R}$

Entonces para un punto $x_{0} \in \mathbb{R}$ y $\varepsilon>0$, la bola abierta $B(x_0,\varepsilon)$ está dada por el intervalo abierto $(x_{0}-\varepsilon,x_{0}+\varepsilon)$.

Representación de $B(x_0,\varepsilon) = (x_{0}-\varepsilon,x_{0}+\varepsilon).$
Representación de $B(0,3) = (-3,3).$

Más específicamente, la bola abierta con centro en $0$ y radio $3$ es el intervalo $(-3,3)$.

Mientras que la bola abierta con centro en $2$ y radio $3$ es el intervalo $(-1,5)$.

Representación de $B(2,3) = (-1,5).$

La bola abierta en $\mathbb{R}^2$ con la métrica euclidiana

Considera ahora $\mathbb{R}^2$ y la métrica euclidiana definida por:
$$d(x,y) := \sqrt{(x_{1}-y_{1})^2+(x_{2}-y_{2})^2}$$
con $x=(x_{1},x_{2})$ y $y=(y_{1},y_{2}) \in \mathbb{R}^2$.

Entonces para un punto $x_{0}=(x_{0_1},x_{0_2}) \in \mathbb{R}^2$ y $\varepsilon>0$, la bola abierta $B(x_0,\varepsilon)$ está dada por el conjunto de puntos que están «dentro de la circunferencia» con centro en $x_0$ y radio $\varepsilon$.

Representación de $B(x_0, \varepsilon)$ en $\mathbb{R}^2$ con la métrica usual.
Representación de $B((2,3),4)$ en $\mathbb{R}^2$ con la métrica usual.

Por ejemplo, si $x_0=(2,3)$ y $\varepsilon=4$ la bola abierta $B((2,3),4)$ está formada por los puntos dentro de la circunferencia con centro en $(2,3)$ y radio $4$.

La bola abierta en $\mathbb{R}^3$ con la métrica euclidiana

Si pensamos en $\mathbb{R}^3$ y la métrica euclidiana definida por:
$$d(x,y) := \sqrt{(x_{1}-y_{1})^2+(x_{2}-y_{2})^2+(x_{3}-y_{3})^2}$$
con $x=(x_{1},x_{2},x_{3})$ y $y=(y_{1},y_{2},y_{3}) \in \mathbb{R}^3$.


Entonces para un punto $x_0=(x_{0_1},x_{0_2},x_{0_3}) \in \mathbb{R}^3$ y $\varepsilon>0$, la bola abierta $B(x_0,\varepsilon)$ está dada por el conjunto de puntos que están «dentro de la esfera» con centro en $x_0$ y radio $\varepsilon$.

Representación de $B(x_0, \varepsilon)$ en $\mathbb{R}^3$ con la métrica usual.
Representación de $B((3,2,1),3)$ en $\mathbb{R}^3$ con la métrica usual.

Por ejemplo, si $x_0=(3,2,1)$ y $\varepsilon=3$, la bola abierta $B((3,2,1),3)$ está formada por los puntos “dentro de la esfera” con centro en $(3,2,1)$ y radio $3$.

La bola abierta en la métrica del taxista
En la sección Otros ejemplos de espacios métricos definimos esta métrica en el conjunto $\mathbb{R}^2$ como:
$$d(x,y) :=|y_1-x_1|+|y_2-x_2| $$
para $x=(x_{1},x_{2})$ y $y=(y_{1},y_{2}) \in \mathbb{R}^2$.
Entonces para un punto $x_{0}=(x_{0_1},x_{0_2}) \in \mathbb{R}^2$ y $\varepsilon >0$, la bola abierta $B(x_{0},\varepsilon )$ está dado por el conjunto de puntos $y=(y_{1},y_{2}) \in \mathbb{R}^2$ que satisfacen:
\begin{align*}
d(x_{0},y)=|y_1-x_{0_1}|+|y_2-x_{0_2}|&< \varepsilon \\
\Leftrightarrow |y_2-x_{0_2}|&< \varepsilon -|y_1-x_{0_1}| \\
\Leftrightarrow – \varepsilon +|y_1-x_{0_1}|< y_2-x_{0_2}&< \varepsilon -|y_1-x_{0_1}|
\end{align*}
Esto quiere decir que el conjunto buscado está delimitado por las rectas:
\begin{align}
y_{2}-x_{0_2}&= \varepsilon -(y_1-x_{0_1})\\
y_{2}-x_{0_2}&= \varepsilon +(y_1-x_{0_1})\\
y_{2}-x_{0_2}&= – \varepsilon -(y_1-x_{0_1})\\
y_{2}-x_{0_2}&= – \varepsilon +(y_1-x_{0_1})
\end{align}
Que son representadas a continuación:

Como la desigualdad es estricta concluimos que la bola abierta será un «rombo abierto» cuyas diagonales tienen longitud $2\varepsilon$ con centro en el punto $x_{0}=(x_{0_1},x_{0_2})$.

Representación de $B(x_0, \varepsilon)$ en $\mathbb{R}^2$ con la métrica del taxista.

Como ejemplo considera la bola abierta con centro en $(-3,2)$ y de radio $2$. El conjunto $B((-3,2),2)$ se muestra en la siguiente imagen.

Representación de $B((-3,2),2)$ en $\mathbb{R}^2$ con la métrica del taxista.

La bola abierta en la métrica del ascensor

Recordemos que el desplazamiento entre dos pisos de edificios iguales o diferentes motiva una métrica en $\mathbb{R}^2$. (Ver Otros ejemplos de espacios métricos). Si estamos en el piso marcado con el punto $x_{0}=(x_{0_1},x_{0_2}) \in \mathbb{R}^2$ y tenemos $\varepsilon>0$ como límite de distancia, procedamos a identificar los puntos a los que podemos llegar:

Estando en el mismo edificio, el ascensor puede llevarnos hasta una distancia menor que $\varepsilon$ hacia arriba, o bien, una distancia menor que $\varepsilon$ hacia abajo.

Representación de $B((x_{0_1},x_{0_2}), \varepsilon)$ en $\mathbb{R}^2$ con la métrica del ascensor cuando $|x_{0_2}|> \varepsilon$.

Como la planta baja está a distancia $\varepsilon_1:=|x_{0_2}|$ entonces si $\varepsilon_1> \varepsilon$, nuestro ascensor no llega hasta ahí.

En contraparte, si $\varepsilon_1 \leq \varepsilon$, entonces sí podemos llegar a la planta baja y, quizá también, a otros niveles del «sótano».

En este caso, aún nos podemos desplazar hasta una distancia $\varepsilon-\varepsilon_1$, primero sobre el eje $x$ y luego sobre el eje $y$ a modo de la métrica del taxista. En consecuencia, la bola abierta está conformado por una linea vertical de longitud $2\varepsilon$, sin los extremos, que tiene centro en el punto $x_{0}=(x_{0_1},x_{0_2})$. Si $\varepsilon_1 < \varepsilon$, se agrega también a la bola abierta, un «rombo abierto» con centro en el punto $(x_{0_1},0)$ cuyas diagonales miden $2(\varepsilon-\varepsilon_1)$. Esto se representa en la siguiente imagen:

Representación de $B((x_{0_1},x_{0_2}), \varepsilon)$ en $\mathbb{R}^2$ con la métrica del ascensor cuando $|x_{0_2}|\leq \varepsilon$.

Como ejemplo, la bola con centro en $(-2,1)$ y radio $3$ tendrá la siguiente representación:

Representación de $B((-2,1), 3)$ en $\mathbb{R}^2$ con la métrica del ascensor.

La bola abierta en el tablero de ajedrez.
Hemos visto que en un conjunto dado por las casillas del tablero de ajedrez se pueden definir métricas de acuerdo al movimiento de cada pieza. Como ejemplo, considera el movimiento permitido para la reina. Sea $x_0$ la casilla donde se encuentra. En cada turno, esta pieza se puede mover en cualquier dirección y cualquier cantidad de casillas. Como la distancia entre dos casillas se define como el mínimo de movimientos necesarios para que la pieza llegue de una casilla a la otra, entonces tenemos las siguientes bolas abiertas para distintos valores de $\varepsilon$:

Si $0<\varepsilon \leq 1$ entonces la distancia entre dos casillas debe ser menor que $1$. En consecuencia buscamos señalar las casillas a las que se puede desplazar la reina en $0$ movimientos que es, únicamente, la casilla en la que está posicionada.

Representación de $B(x_0, \varepsilon)$ con $0<\varepsilon \leq 1$ en el tablero de ajedrez con la métrica de la reina.

Si $1<\varepsilon \leq 2$ entonces se permite hacer a lo más un movimiento. Las casillas a las que se puede desplazar la reina están señaladas en tonos amarillos, pues puede elegir cualquier dirección y elegir también, detenerse en cualquiera de ellas.

Representación de $B(x_0, \varepsilon)$ con $1<\varepsilon \leq 2$ en el tablero de ajedrez con la métrica de la reina.

Si $2<\varepsilon$ entonces ya se permiten hacer 2 movimientos. En la figura anterior podemos visualizar casillas no sombreadas en amarillo. No obstante a cualquiera de ellas se puede llegar desde alguna de las casillas iluminadas. En consecuencia, con dos movimientos es posible que la reina llegue a cualquier casilla del tablero.

Representación de $B(x_0, \varepsilon)$ con $2<\varepsilon$ en el tablero de ajedrez con la métrica de la reina.


En contraparte el rey, que también se puede mover en cualquier dirección, no puede avanzar más que una casilla por turno. Esto origina las siguientes representaciones de bolas abiertas:

Para $\varepsilon \leq 1$ el rey no puede hacer ningún movimento y permanece en la casilla donde esté ubicado.

Representación de $B(x_0, \varepsilon)$ con $0 < \varepsilon \leq 1$ en el tablero de ajedrez con la métrica del rey.

Para $1 <\varepsilon \leq 2$ el rey puede hacer un movimiento y acceder así, a las casillas adyacentes a su posición.

Representación de $B(x_0, \varepsilon)$ con $1 <\varepsilon \leq 2$ en el tablero de ajedrez con la métrica del rey.

Para $2 <\varepsilon \leq 3$ el rey puede avanzar hasta dos casillas, lo que se representa iluminando las casillas vecinas con respecto a la imagen anterior.

Representación de $B(x_0, \varepsilon)$ con $2 <\varepsilon \leq 3$ en el tablero de ajedrez con la métrica del rey.

Para $3 <\varepsilon \leq 4$ una nueva familia de casillas vecinas se agrega a la bola abierta. ¿Puedes decir entonces, cuál es la distancia más grande entre dos casillas con la métrica del rey? ¿Y con la de la reina?

Representación de $B(x_0, \varepsilon)$ con $3 <\varepsilon \leq 4$ en el tablero de ajedrez con la métrica del rey.

Más adelante

Retomaremos los conceptos de interior, cerradura o frontera de un conjunto, así como de conjunto abierto y cerrado vistos en los cursos de Cálculo pero ahora generalizados en cualquier espacio métrico.

Tarea moral

  1. Representa las bolas abiertas en la métrica del ajedrez con otras piezas.
  2. Muestra un ejemplo de bola abierta en la métrica del ascensor en el que el centro esté fuera del rombo, uno donde esté dentro y uno más donde el centro esté sobre el vértice.
  3. Da un ejemplo de espacio métrico y dos bolas $B(x,\varepsilon_1)$ y $B(y,\varepsilon_2)$ tales que $\varepsilon_1>\varepsilon_2$ pero $B(x,\varepsilon_1) \subset B(y,\varepsilon_2)$.

Bibliografía

Enlaces

Entrada 1. Sistemas numéricos. Naturales y enteros.

Por Julio César Soria Ramírez

Introducción

Como las capas de una cebolla, los sistemas numéricos se contienen unos a otros, ya en la prehistoria tuvimos la necesidad de contar, de llevar un registro de los días transcurridos, o del número de lunas llenas. Hubo pronto la necesidad de partir esos números, y tomarse la mitad, la tercera parte de una cierta medida, por ejemplo del mes lunar; esto dio origen a los números fraccionarios. Nuestro sistema numérico es posicional y de base $10$, es decir tenemos $10$ símbolos, que son los números $1,2,3,4,5,6,7,8,9,0$, que colocamos en las distintas posiciones: unidades, decenas, centenas, unidades de millar, etc.

Con el desarrollo de nuestra civilización también se ampliaron los sistemas numéricos, y posiblemente derivado del manejo de la finanzas se concibieron los números negativos, esos números que tienen signo y que localizamos a la izquierda del cero en la recta numérica.

Todos estos números, los naturales, los enteros, las fracciones, los números decimales, se encuentran en la recta numérica, y juntos todos se dice que son los números reales.

Los números naturales.

Los primeros números concebidos por la humanidad son los números naturales, y con ellos las $4$ operaciones fundamentales:

  • $\textcolor{Red}{Sumar}$, que significa agregar a una cantidad otra.

    $\huge{7+5=12}$
  • $\textcolor{Red}{Restar}$, que significa quitar a una cantidad otra.

    $\huge{7-5=2}$
  • $\textcolor{Red}{Multiplicar}$, que se significa amplificar una cantidad por otra.

    $\huge{7\cdot5=5}$
  • $\textcolor{Red}{Dividir}$, que significa repartir una cantidad entre otra, o compararla.

    $\huge{8\div 4=2}$

Estas operaciones nos permiten resolver gran cantidad de problemas de la vida cotidiana, identifica con que operación se resolverían las siguientes situaciones en el huerto:

  1. Las donaciones al huerto este mes fueron de $1500$ pesos de Andrés, $400$ de Pedro y $350$ de Ana. ¿Cuánto lograron juntar?.
  2. De lo juntado en el huerto ese mes, se decidió invertir $300$ pesos para comprar semillas de lechuga, ¿Cuánto quedo?.
  3. Si cada sobre de semillas de lechuga cuesta $20$ pesos, ¿Cuántos compraron?.
  4. Se decide cultivar una parcela con $500$ lechugas, esperando vender cada pieza en promedio en $10$ pesos, ¿Cuánto se obtendría?.

En el siguiente recurso de geogebra mueve el deslizador para cambiar la posición del punto, los números naturales avanzan de uno en uno en un proceso sin fin.

Los números enteros.

Vamos a considerar la siguiente situación: Juan decide comprar un nuevo teléfono, tiene $3500$ pesos y el teléfono que le gusta cuesta $2800$ pesos, efectúa la compra, ¿Cuánto le quedó?. $\textit{Es claro que tenemos que restar a 3500 los 2800.}$

$\huge{3500-2800=700}$

Pero y si la situación fuese al revés, si Juan solo tuviera $2800$ pesos y se compra un teléfono que vale $3500$, la pregunta es: ¿Cómo le hizo?. Si uno se detiene a pensar está situación, la única manera de que Juan comprara su teléfono, $\textbf{¡es pidiendo prestado!}.$

Vamos a interpretar de ahora en adelante, la resta de $2800$ menos $3500$, con la deuda que se tuvo que adquirir, es decir $700$, añadiremos el signo negativo al resultado y escribiremos:

$\huge{2800-3500=-700}$

Estos números con signo negativo los vamos a situar a la izquierda del número cero, y avanzaran en saltos a la izquierda de uno en uno, creando el conjunto de los números negativos.

En el siguiente recurso de geogebra mueve el deslizador para cambiar la posición del punto. Observa que los números negativos se encuentran a la izquierda del cero.

Juntos, el conjunto de los números negativos y el conjunto de los números naturales, forman el conjunto de los números enteros.

Efectúa las siguientes restas:

$\huge{7-4=?}$

$\huge{4-7=?}$

$\huge{25-5=?}$

$\huge{5-25=?}$

$\huge{25-100=?}$

Reflexiona:
¿En que otras situaciones se usan los números enteros además de la deuda?

Así como se hizo con los números naturales, aprenderemos las operaciones fundamentales con enteros, suma, resta, multiplicación y división.

La suma se traga a la resta


Sumar es añadir, cuando sumamos dos números enteros positivos, a la primera cantidad le agregamos la segunda. En la recta numérica nos situamos en el entero correspondiente a la primera cantidad y avanzamos a la derecha saltos de tamaño uno tantas veces como lo indique la segunda cantidad, para obtener el resultado.

$\huge {5+7=12}$

Pero ahora tenemos estos nuevos números negativos, puedo ahora a un número positivo sumarle un número negativo, y lo voy a interpretar en la recta numérica de la siguiente manera:

Me situó en la primera cantidad (la positiva), y como el número que le voy a sumar es negativo, avanzamos a la izquierda saltos de tamaño uno tantas veces como lo indique la segunda cantidad, para obtener el resultado.

$\huge {5+(-7)=-2}$

Nota que el resultado es lo mismo que la resta de 5 menos 7:

$\huge {5-7=-2}$

Observa que: las restas de números positivos se pueden ver como la suma de un positivo con un número negativo, y viceversa también, las sumas de un positivo con un negativo se pueden ver como la resta de dos positivos.

Transforma las siguientes sumas en restas:

$\huge {9+(-3)}$
$\huge {7+(-8)}$
$\huge {8+(-12)}$

Transforma las siguientes restas en sumas:

$\huge {9-13}$
$\huge {17-8}$
$\huge {8-12}$

Inversos aditivos


Para cada número entero, existe otro de tal forma que al sumarse entre si el resultado es cero:
$\huge{\begin{align*} 7&+(-7)=0\\ 17&+(-17)=0 \\ 177&+(-177)=0 \end{align*}}$

Observa que a cada número se le suma su inverso, es decir el mismo número pero con signo negativo.

Reflexiona lo siguiente:

¿Cuál es el inverso aditivo de $5$?

Después de meditarlo te das cuenta que es el mismo número pero precedido del signo $\huge{\textcolor{red}{-}}$, es decir $\huge{\textcolor{red}{-}5}$, así:

$\huge {5+(\textcolor{red}{-}5)=0}$

Piensa ahora en lo siguiente: ¿Cuál es el inverso aditivo del número negativo $-10$?, recuerda que es un número que sumado con $-10$ te de como resultado cero.

¿Qué número se tiene que poner en el espacio faltante para que el resultado sea cero?
$\huge{-10+\phantom{10}=0}$

Después de pensarlo un momento uno se da cuenta que ese número es el $10$, pero por otra parte como es el inverso de $-10$, es el mismo número $-10$ pero precedido del signo $\huge{\textcolor{red}{-}}$, es decir $\huge{\textcolor{red}{-}(-10)}.$

Por lo que acabamos de obtener que:

$\huge{-10+10=-10+\textcolor{red}{-}(-10)=0}$

De está forma acabamos de ver que $10=\textcolor{red}{-}(-10)$, es decir el inverso del inverso de $10$, es el número positivo $10$.

Como todas las restas se pueden ver como sumas y gracias a los inversos aditivos, ahora tendrá sentido restar números negativos.

Si tenemos la resta de un número positivo con uno negativo:

$\huge {9-(-3)}$

Primero la transformaremos en una suma, sumándole el inverso aditivo del segundo número:

$\huge {9-(-3)=9+(\textcolor{red}{-}(-3))}$

Pero como el inverso aditivo de un negativo es un positivo concluimos que:

$\huge {9-(-3)=9+(\textcolor{red}{-}(-3))}=9+3$

Efectúa las siguientes restas:

$\huge{\begin{align*} 7&-(-17)=\\ 11&-(-10)= \\ 177&-(-1)= \end{align*}}$

Más adelante

El hecho de que toda resta se puede ver como suma, y que el inverso aditivo de un número negativo es un número positivo será el motivo de las llamadas leyes de los signos, que daremos en la siguiente nota.

Nota 33. Matrices.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Una matriz es un objeto matemático que se compone de una colección ordenada de números, llamados elementos, dispuestos en filas y columnas. Las matrices se utilizan en numerosas áreas de las matemáticas, la física, la informática, la ingeniería y otras disciplinas para manipular y analizar datos, realizar cálculos y resolver problemas. Bajo las condiciones adecuadas las matrices se pueden sumar, multiplicar, transformar mediante operaciones matriciales, etc. para obtener información relevante. Las matrices también se utilizan en la representación de sistemas lineales de ecuaciones.

Ve el siguiente video:

Definición

Sean $n$ y $m$ naturales positivos y $K$ un conjunto. Una matriz $A$ con entradas en $K$ de $m$ renglones y $n$ columnas es una función:

$A:\set{1,2,\dotsc,m}\times \set{1,2,\dotsc,n}\to K.$

Decimos en este caso que $A$ es una matriz de tamaño $m\times n$ o simplemente una matriz $m\times n$.

Al elemento de $K$ $A(i,j)$ se le llama la entrada $i\,j$ de $A$.

Decimos que $A$ es una matriz cuadrada si $m=n$, que es una matriz renglón si $m=1$ y que es una matriz columna si $n=1.$

Notación

$A(i,j)$ se denotará por $A_{ij}$ o por $a_{ij}$

$A$ se describirá mediante una tabla con $m$ renglones y $n$ columnas o de forma abreviada como $(a_{ij})$:

$A=\begin{equation*} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & \ddots & \vdots\\a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \end{equation*}=(a_{ij})$

Nota: Usualmente consideraremos $K=\mathbb R$ o de modo más general $K$ un campo.

Ejemplos

$1.$ Considera la siguiente matriz de tamaño $3\times 2$:

$A=\begin{equation*} \left(\begin{array}{rr} 0 & \frac{1}{2}\\ 4 & \pi \\ -7 & 0 \\ \end{array} \right) \end{equation*}$.

$A_{11}=0,\,A_{12}=\frac{1}{2},\,A_{21}=4,\,A_{22}=\pi,\,A_{31}=-7,\,A_{32}=0.$

$2.$ Considera la siguiente matriz cuadrada de tamaño $2\times 2$:

$B=\begin{equation*} \left(\begin{array}{rr} 1 & 5\\ 5 & -2 \\ \end{array} \right)\end{equation*}$.

$B_{11}=1,\,B_{12}=5,\,B_{21}=5,\,B_{22}=-2.$

$3.$ Considera la siguiente matriz columna de tamaño $3\times 1$:

$C=\begin{equation*} \left(\begin{array}{r} 3 \\ 9 \\ -5\\ \end{array} \right)\end{equation*}$.

$C_{11}=3,\,C_{21}=9,\,C_{31}=-5.$

$4.$ Considera la siguiente matriz renglón de tamaño $1\times 4$:

$D=\begin{equation*} \left(\begin{array}{rrrr} 1 & 2 & -3 & 4\\ \end{array} \right) \end{equation*}$.

$D_{11}=1,\,D_{12}=2,\,D_{13}=-3,\,D_{14}=4.$

Definición

Sean $n,m,r$ y $s$ naturales positivos y $K$ un conjunto. Sea $A$ una matriz $m\times n$ con entradas en $K$ y $B$ una matriz $r\times s$ con entradas en $K$.

Decimos que $A$ es igual a $B$ si:

$m=r,\,n=s$ y $A_{ij}=B_{ij}\,\,\, \forall i\in \set{1,\dotsc, n},\,\,\,\forall j\in \set{1,\dotsc, n}.$

Es decir dos matrices son iguales si tienen la misma cantidad de renglones, la misma cantidad de columnas, y coinciden entrada a entrada.

Definición

Sean $n$ y $m$ naturales positivos, $A$ y $B$ matrices $m\times n$ con entradas en $\mathbb R$. La suma de $A$ y $B$ es la matriz $A+B$ de $m\times n$ tal que $(A+B)_{ij}=A_{ij}+B_{ij}.$

Dado $\lambda\in \mathbb R$ el producto escalar de $\lambda$ por $A$ es la matriz $\lambda A$ de $m\times n$ tal que $(\lambda A)_{ij}=\lambda A_{ij}.$

Notación.

Dados $n$ y $m$ naturales positivos $\mathscr M_{m\times n}(\mathbb R)=\set{A\mid A\,\,es\,\,una\,\,matriz\,\,m\times n\,\,con\,\,entradas\,\,reales}.$

Ejemplos

$1.$ $A=\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 0 & 4\\ 3 & \frac{1}{2} & 1 & -5 \end{array} \right) \end{equation*}$, $ B=\begin{equation*} \left(\begin{array}{rrrr} 2 & 0 & -3 & -5\\ 7 & 1 & \frac{1}{4} & 2 \end{array} \right) \end{equation*}$.

$A+B=\begin{equation*} \left(\begin{array}{rrrr} 3 & -2 & -3 & -1\\ 10 & \frac{3}{2} & \frac{5}{4} & -3 \end{array} \right) \end{equation*}.$

Si $\lambda =2$

$\lambda A=2 A=\begin{equation*} \left(\begin{array}{rrrr} 2 & -4 & 0 & 8\\ 6 & 1 & 2 & -10 \end{array} \right) \end{equation*}.$

$2.$ $C=\begin{equation*}\left(\begin{array}{rr} 1 & \frac{1}{2}\\ 0 & \frac{1}{3} \end{array} \right) \end{equation*}$, $ D=\begin{equation*} \left(\begin{array}{rr} 2 & 0\\ 4 & 8 \end{array} \right) \end{equation*}.$

$C+D=\begin{equation*} \left(\begin{array}{rr} 3 & \frac{1}{2}\\ 4 & \frac{25}{3} \\ \end{array} \right) \end{equation*}.$

Si $\lambda =\frac{1}{4}$

$\lambda D=\frac{1}{4} D=\begin{equation*} \left(\begin{array}{rr} \frac{1}{2} & 0\\ 1 & 2 \end{array} \right) \end{equation*}.$

Proposición

Sean $n$ y $m$ naturales positivos, $A,B,C\in \mathscr M_{m\times n}(\mathbb R),\,\,\lambda,\mu \in \mathbb R .$

Se cumplen las siguientes propiedades:

$1.$ $(A+B)+C=A+(B+C)$

$2.$ $A+B=B+A$

$3.$ Existe $\theta \in \mathscr M_{m\times n}(\mathbb R)$ tal que:

$A+\theta=\theta+A=A\,\,\,\forall A\in \mathscr M_{m\times n}(\mathbb R)$.

$4.$ Para cada $A\in \mathscr M_{m\times n}(\mathbb R)$ existe $\tilde{A}\in \mathscr M_{m\times n}(\mathbb R)$ tal que:

$A+\tilde{A}=\tilde{A}+A=\theta$

$5.$ $1A=A\,\,\forall A\in \mathscr M_{m\times n}(\mathbb R)$

$6.$ $\lambda(\mu A)=(\lambda\mu)A$

$7.$ $(\lambda+\mu)A=\lambda A+\mu A$

$8.$ $\lambda(A+B)=\lambda A+\lambda B$

Demostración

Vamos a probar las propiedades $1,3$ y $7$. Las demás se dejan al lector. Recuerda no confundir las operaciones entre matrices, con las operaciones en los números reales.

Sean $n$ y $m$ naturales positivos, $A,B,C\in \mathscr M_{m\times n}(\mathbb R),\,\,\lambda,\mu \in \mathbb R .$

Demostración de la propiedad $1$

Por demostrar que $(A+B)+C=A+(B+C).$

Como $A+B\in \mathscr M_{m\times n}(\mathbb R)$ y $C\in \mathscr M_{m\times n}(\mathbb R)$ entonces $(A+B)+C\in \mathscr M_{m\times n}(\mathbb R)$.

Como $A\in \mathscr M_{m\times n}(\mathbb R)$ y $B+C\in \mathscr M_{m\times n}(\mathbb R)$ entonces $A+(B+C)\in \mathscr M_{m\times n}(\mathbb R).$

Considera a $i \in \set{1,\dotsc,m},\,\, j \in \set{1,\dotsc,n}$

Explicación de las igualdades
$(A+(B+C))_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $A+(B+C).$
$=A_{ij}+(B+C)_{ij}$Por definición de suma de matrices.
$=A_{ij}+(B_{ij}+C_{ij})$Por definición de suma de matrices.
$=(A_{ij}+B_{ij})+C_{ij}$Por asociatividad en $\mathbb R.$
$=(A+B)_{ij}+C_{ij}$Por definición de suma de matrices.
$=((A+B)+C)_{ij}$Por definición de suma de matrices.

Por lo tanto $A+(B+C)$ y $(A+B)+C$ son matrices del mismo tamaño y para toda $i$ y para toda $j$ tenemos que $(A+(B+C))_{ij}=((A+B)+C)_{ij}$. Así, $A+(B+C)=(A+B)+C.$

Demostración de la propiedad $3$

Sea $\theta\in \mathscr M_{m\times n}(\mathbb R)$ tal que $\theta_{ij}=0\,\,\forall i,j$. Sea $A\in \mathscr M_{m\times n}(\mathbb R).$

Por demostrar que $A+\theta=\theta +A=A.$

Sabemos que $A+\theta\in \mathscr M_{m\times n}(\mathbb R)$. Sean $i \in \set{1,\dotsc,m},\,\, j \in \set{1,\dotsc,n}.$

Explicación de las igualdades
$(A+\theta)_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $A+\theta .$
$=A_{ij}+\theta_{ij}$Por definición de suma de matrices.
$=A_{ij}+0$Por definición de $\theta$: $\theta_{ij}=0,\,\,\,\forall i,j.$
$=A_{ij}$$0$ es el neutro en $\mathbb R .$

Por lo tanto $A+\theta$ y $A$ son matrices del mismo tamaño y para toda $i$ y para toda $j$ tenemos que $(A+\theta)_{ij}=A_{ij}$. Así, $A+\theta=A$. Análogamente $\theta +A=A.$

Demostración de la propiedad $7$

Por demostrar que $(\lambda+\mu)A=\lambda A+\mu A.$

Sabemos que $(\lambda+\mu)A\in \mathscr M_{m\times n}(\mathbb R)$. También $\lambda A\in \mathscr M_{m\times n}(\mathbb R)$ y $\mu A\in \mathscr M_{m\times n}(\mathbb R)$ por lo que $\lambda A+\mu A\in \mathscr M_{m\times n}(\mathbb R)$. Sean $i \in \set{1,\dotsc,m},\,\, j \in \set{1,\dotsc,n}.$

Explicación de las igualdades
$((\lambda+\mu)A)_{ij}=$Partimos un elemento arbitrario $ij$
de la matriz $(\lambda+\mu)A.$
$=(\lambda+\mu)A_{ij}$Por definición del producto por escalar de matrices.
$=\lambda A_{ij}+\mu A_{ij}$Por la distributividad en $\mathbb R.$
$=(\lambda A)_{ij}+(\mu A)_{ij}$Por definición del producto por escalar de matrices.
$=(\lambda A+\mu A)_{ij}$Por definición de suma de matrices.

Por lo tanto $(\lambda+\mu)A$ y $\lambda A+\mu A$ son matrices del mismo tamaño y para toda $i$ y para toda $j$ tenemos que $((\lambda+\mu)A)_{ij}=(\lambda A+\mu A)_{ij}$. Así, $(\lambda+\mu)A=\lambda A+\mu A.$

$\square$

Observa que $\mathscr M_{m\times n}(\mathbb R)$ cumple entonces propiedades análogas a las que cumple $\mathbb R^n$ con las operaciones de suma y producto por escalar. Debido a ello se le llama también un $\mathbb R$-espacio vectorial.

Se cumplen diversas propiedades que se desprenden de las anteriores, cuya pruebas son análogas a las que se realizaron en la unidad anterior para $\mathbb R^n$, como por ejemplo:

El neutro aditivo $\theta$ es único y es la matriz de ceros. La prueba de la unicidad se deja de tarea moral.

El inverso aditivo de $A$ es único y es $(-1)A$, se denota por $-A$. Esta prueba se deja de tarea moral.

Tarea Moral

$1.$ Considera la matriz:

$A=\begin{equation*} \left(\begin{array}{rrrr} \frac{4}{3} & -9 & 7 & -1 \\ -\frac{2}{3} & -3 & 4 & 0 \\ 1 & 22 & -11 & \pi \\ \end{array} \right)\end{equation*}$

$i)$ Encuentra el tamaño de $A.$

$ii)$ Determina cuál es la entrada $A_{24}.$

$iii)$ Expresa al primer renglón de $A$ como una matriz renglón y a la tercera columna de $A$ como una matriz columna, indicando en cada caso el tamaño de ambas matrices.

$2.$ Considera las siguientes matrices:

$A=\begin{equation*}\left(\begin{array}{rrr} -3 & 5 & 2 \\ 7 & -4 & 11 \\ \end{array} \right) \end{equation*}$ y $B=\begin{equation*} \left(\begin{array}{rrr} 6 & -\frac{3}{4} & 0 \\ 4 & 1 & -5 \\ \end{array} \right) \end{equation*}$

Obtén $-7A+B$ y encuentra la matriz $X$ tal que $\frac{1}{5}B+4X=-A.$

$3.$ Compara las propiedades de suma y producto por escalar de matrices con las de $\mathbb R^n.$

$4.$ Sean $n$ y $m$ naturales positivos. Prueba que el neutro aditivo de $\mathscr M_{m\times n}(\mathbb R)$ es único.

$5.$ Sean $n$ y $m$ naturales positivos. Prueba que cada $A\in \mathscr M_{m\times n}(\mathbb R)$ tiene un único inverso aditivo.

$6.$ Sean $n$ y $m$ naturales positivos,. Sean $A,B,C \in \mathscr M_{m\times n}(\mathbb R)$ y $\lambda\in \mathbb R$. Prueba o da un contraejemplo para las siguientes afirmaciones.

$i)$ Si $A+C=B+C$, entonces $A=B.$

$ii)$ Si $\lambda A$ es la matriz nula, entonces $\lambda=0.$

$iii)$ Si $\lambda A=A$, entonces $\lambda=1.$

$iv)$ $(-1)A$ es el inverso aditivo de $A.$

$7.$ Sean $n$ y $m$ naturales positivos y $A \in \mathscr M_{m\times n}(\mathbb R)$. Sea $t\in \mathbb N$. ¿Podremos sumar $A$ $t$ veces, sin importar qué tan grande sea $t$?, ¿podremos sumar $A$ una infinidad de veces?

Más adelante

En la siguiente nota definiremos la multiplicación de matrices, así como la matriz identidad, las matrices inversas y las transpuestas.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 32. Dimensión de un $\mathbb R-$espacio vectorial

Enlace a la nota siguiente. Nota 34. Multiplicación de matrices, identidad, inversas y transpuesta.

Nota 32. Dimensión de un $\mathbb R-$espacio vectorial

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la presente entrada entenderemos lo que es la dimensión de un espacio vectorial. Ésta será la cardinalidad de cualquiera de sus bases y estará bien definida ya que como hemos visto todas las bases tienen la misma cantidad de elementos. Así como podemos completar un conjunto linealmente independiente de $V$ agregando vectores hasta obtener una base de $V$, también podemos, a partir de un conjunto generador $\gamma$ de $V$, obtener una base de $V$ quitando vectores.

Definición

Sea $V$ un subespacio de $\mathbb R^n$. La dimensión de $V$ es la cardinalidad de cualquiera de sus bases.

Notación: $dim_{\mathbb R}V$ o simplemente $dim\,\,V$.

Ejemplos

1. $dim\,\,\mathbb R^n=n$ ya que $\set{e_1,\dotsc,e_n}$ es una base de $\mathbb R^n$.

2. Considera el subespacio de $\mathbb R^2$ dado por $V =\set{(x,y)\in \mathbb R^2\mid x+3y=0}.$ Notemos que

$\begin{align*} V &=\set{(x,y)\in \mathbb R^2\mid x+3y=0}\\ \, &=\set{(x,y)\in \mathbb R^2\mid x=-3y}\\ \, &=\set{(-3y,y)\in \mathbb R^2\mid y\in \mathbb R}\\ \, &=\set{y(-3,1)\in \mathbb R^2\mid y\in \mathbb R}\\ \, &=\langle (-3,1) \rangle .\\ \end{align*}$

Así, $\set{(-3,1)}$ genera a $V$. Se deja al lector verificar que además $\set{(-3,1)}$ es $l.i$, entonces es una base de $V$. Por lo tanto $dim\,\,V=1.$

3. Considera el subespacio de $\mathbb R^4$ dado por $W =\set{(x,y,z,w)\in \mathbb R^4\mid 3x+2y-z+4w=0}.$ Observemos que

$\begin{align*} W &=\set{(x,y,z,w)\in \mathbb R^4\mid 3x+2y-z+4w=0}\\ \, &=\set{(x,y,z,w)\in \mathbb R^4\mid x= -\frac{2}{3}y+\frac{1}{3}z-\frac{4}{3}w }\\ \, &=\bigg\{ \left( -\frac{2}{3}y+\frac{1}{3}z-\frac{4}{3}w ,y,z,w\right) \in \mathbb R^4\mid y,z,w\in \mathbb R\bigg\} \\ &=\bigg\{ y \left(-\frac{2}{3},1,0,0\right)+z \left(\frac{1}{3},0,1,0\right)+w \left(-\frac{4}{3},0,0,1\right)\in \mathbb R^4\mid y,z,w\in \mathbb R\bigg\}\\ \, &=\bigg\langle \left(-\frac{2}{3},1,0,0\right), \left(\frac{1}{3},0,1,0\right), \left(-\frac{4}{3},0,0,1\right) \bigg\rangle .\\ \end{align*}$

Así, $\big\{ \left(-\frac{2}{3},1,0,0\right), \left(\frac{1}{3},0,1,0\right), \left(-\frac{4}{3},0,0,1\right) \big\}$ genera a $W$. Se deja al lector verificar que además $\big\{ \left(-\frac{2}{3},1,0,0\right), \left(\frac{1}{3},0,1,0\right), \left(-\frac{4}{3},0,0,1\right) \big\}$ es $l.i$, entonces es una base de $W$ y por lo tanto $dim\,\,W=3.$

Lema

Sea $V$ un subespacio de $\mathbb R^n$, $m$ un natural positivo y $v_1,\dotsc,v_m\in V$ vectores distintos tales que $\set{v_1,\dotsc,v_m}$ es $l.d.$ Entonces existe $v_j\in \set{v_1,\dotsc,v_m}$ tal que $\langle v_1,\dotsc,v_j,\dotsc, v_m \rangle=\langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle.$

Demostración

Sean $V\leq \mathbb R^n$, $m$ un natural positivo y $v_1,\dotsc,v_m\in V$ distintos tales que $\set{v_1,\dotsc,v_m}$ es $l.d.$ Existen entonces $\lambda_1,\dotsc,\lambda_m\in \mathbb R$ no todos nulos tales que:

$\lambda_1 v_1+\cdots+\lambda_m v_m=\bar{0}.$

Como $\lambda_1,\dotsc,\lambda_m$ no son todos nulos, podemos considerar $j\in\{1,2,\dots, m\}$ tal que $\lambda_j\neq 0$. Así:

$\begin{align} v_j &=-\frac{\lambda_1}{\lambda_j}v_1-\cdots- \frac{\lambda_{j-1}}{\lambda_j}v_{j-1}-\frac{\lambda_{j+1}}{\lambda_j}v_{j+1}-\cdots-\frac{\lambda_{m}}{\lambda_j}v_{m} \\ \label{ec1} \, &=\sum_{i\in\{1,\dots ,m\}, i\neq j} -\frac{\lambda_i}{\lambda_j}v_i . \\ \end{align}$

Sabemos que $ \langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle \subseteq \langle v_1,\dotsc,v_j,\dotsc, v_m \rangle.$

Ahora si $w\in \langle v_1,\dotsc,v_j,\dotsc, v_m \rangle$ existen $\mu_1,\dotsc,\mu_m \in \mathbb R$ tales que:

$\begin{align*} w &=\mu_1v_1 + \cdots + \mu_j v_j+\cdots+\mu_m v_m \\ \end{align*}$

y sustituyendo $v_j$ de acuerdo a su expresión en \ref{ec1}

$\begin{align*} w &= \mu_1v_1 + \cdots + \mu_j \left(\sum_{i\in\{1,\dots ,m\}, i\neq j} -\frac{\lambda_i}{\lambda_j}v_i\right) +\cdots+\mu_m v_m . \\ \end{align*}$

Entonces $w$ es una combinación lineal del conjunto $\set{v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m}$ y por lo tanto $w\in \langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle$, probando con ello que $ \langle v_1,\dotsc,v_j,\dotsc, v_m \rangle \subseteq \langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle .$ Así, tenemos la igualdad buscada:

$\langle v_1,\dotsc,v_j,\dotsc, v_m \rangle=\langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle.$

$\square$

Teorema

Sea $V$ un subespacio de $\mathbb R^n$. Todo conjunto generador finito de $V$ se puede reducir a una base de $V$, es decir, si $S$ es un conjunto generador finito de $V$, existe $\beta\subseteq S$ tal que $\beta$ es una base de $V$.

Demostración

Sea $V\leq \mathbb R^n$, $m$ un natural positivo y $v_1,\dotsc,v_m\in V$ distintos tales que $S=\set{v_1,\dotsc,v_m}$ genera a $V$.

Si $S$ es $l.i.$, entonces es una base de $V$.

Si $S$ es $l.d.$, por el lema existe $v_j\in S$ tal que $\langle v_1,\dotsc,v_j,\dotsc, v_m \rangle=\langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle=V.$

Si $\{ v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \}$ es $l.i.$, entonces es una base de $V$.

Si $\{ v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \}$ es $l.d.$ continuamos con este procedimiento (usando el lema) hasta obtener un subconjunto $\beta$ de $\set{v_1,\dotsc,v_m}$ $l.i.$ y tal que $\langle \beta \rangle=V$. $\beta$ será entonces una base de $V$ contenida en $S$.

$\square$

Corolario

Sean $m\in \mathbb N$ y $V$ un subespacio de $\mathbb R^n$ de dimensión $m$. Tenemos que:

$a)$ Cualquier conjunto generador de $V$ con $m$ elementos es una base de $V$.

$b)$ Cualquier conjunto linealmente independiente en $V$ con $m$ elementos es una base de $V$.

Demostración

La demostración se deja como tarea moral.

Teorema

Sean $V$ y $W$ subespacios de $\mathbb R^n$ con $W\subseteq V$.

$a)$ Toda base de $W$ se puede completar a una base de $V.$

$b)$ $dim\, W\leq dim\, V.$

$c)$ Si $dim\, W=dim\,V$, entonces $W=V.$

Demostración

Demostración de $a)$

Se deja al lector realizar la demostración adaptando el procedimiento mediante el que se probó que todo subespacio de $\mathbb R^n$ tiene una base en la nota anterior.

Demostración de $b)$

Sean $\gamma$ una base de $W$ y $\beta$ una base de $V$. Como $\gamma$ es $l.i.$ en $V$ y $\beta$ es un generador de $V$ por la una nota en la entrada anterior se tiene que $dim\,W=\#\gamma\leq \#\beta=dim\,V.$

Demostración de $c)$

Supongamos que $dim\, W=dim\,V=m.$

Sea $\gamma$ una base de $W$. Sabemos que $\gamma$ es $l.i.$ en $V$ con $dim\,W=m$. Por el corolario anterior $\gamma$ es una base de $V$ y entonces $W=\langle \gamma \rangle=V$.

$\square$

Tarea Moral

$1.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales y al subespacio:

$W=\langle (1,-7,-5), (2,10,2),(-3,-11,-1),(1,5,1) \rangle .$

Encuentra una base de $W$ reduciendo el conjunto generador dado.

$2.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales y los subespacios de $\mathbb R^3$ dados por:

i) $W=\set{(x,y,z)\in \mathbb R^3\mid y=-2x,z=-3x}$

ii) $V=\set{(x,y,z)\in \mathbb R^3\mid x+2y=z}.$

En cada inciso encuentra una base para cada subespacio y determina la dimensión del subespacio..

$3.$ Demuestra el corolario de la presente nota.

Más adelante

Con esta nota terminamos la unidad 3, en la siguiente y última unidad haremos un estudio de las matrices y sus determinantes.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 31. Bases de $\mathbb R^n$.

Enlace a la nota siguiente. Nota 33. Matrices.

Nota 31. Bases de $\mathbb R^n$

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la presente nota veremos el concepto de base de un subespacio vectorial, es decir un conjunto de vectores linealmente independiente, cuyo generado nos da el subespacio vectorial. Este concepto es muy importante pues nos permite describir a los elementos de un subespacio a partir de algunos vectores en el subespacio de forma única.

Definición

Sean $V$ un subespacio de $\mathbb R^n$ y $\beta$ un subconjunto de $V$. Decimos que $\beta$ es una base de $V$ si genera a $V$ y es linealmente independiente. Decimos que $V$ es de dimensión finita si tiene una base finita.

Ejemplos

$1.$ En este ejemplo obtendremos una base para el espacio vectorial $\mathbb R^n$. Considera el vector cuyas entradas son todas cero excepto la $i$-ésima que es uno:

$e_i=(0,\dotsc,1,\dotsc,0).$

Veamos que $\mathscr C=\set{e_1,\dotsc,e_n}$ es $l.i.$ Sean $\lambda_1,\dotsc,\lambda_n\in \mathbb R^n$ tales que:

$\lambda_1 e_1+\dotsc +\lambda_n e_n =\bar{0}.$

Entonces tenemos

$\lambda_1 (1,0,\dotsc, 0) + \lambda_2 (0,1,\dotsc, 0)+ \cdots + \lambda_n (0,0,\dotsc,0,1)= (0,0,\dotsc, 0).$

Desarrollando resulta que

$(\lambda_1,\lambda_2,\dotsc,\lambda_n)=(0,0,\dotsc, 0)$

y comparando coordenada a coordenada concluimos que

$\lambda_1=\lambda_2=\cdots=\lambda_n=0.$

Por lo tanto $\mathscr C=\set{e_1,\dotsc,e_n}$ es $l.i.$

Veamos que $\mathscr C=\set{e_1,\dotsc,e_n}$ genera a $\mathbb R^n$. Sabemos que $\langle \mathscr C \rangle \subseteq \mathbb R^n$ ya que $e_1,\dotsc,e_n\in \mathbb R^n$, y por lo tanto toda combinación lineal de ellos es un vector en $\mathbb R^n $.

Ahora si $ (x_1,x_2,\dotsc, x_n)\in \mathbb R^n$

$(x_1,x_2,\dotsc,x_n)=x_1(1,0,\dotsc,0)+x_2(0,1,\dotsc,0)+\dotsc+x_n(0,0,\dotsc,1).$

Observa que $x_1(1,0,\dotsc,0)+x_2(0,1,\dotsc,0)+\dotsc+x_n(0,0,\dotsc,1)$ es una combinación lineal de los elementos de $\mathscr C=\set{e_1,\dotsc,e_n}$, es decir $x_1(1,0,\dotsc,0)+x_2(0,1,\dotsc,0)+\dotsc+x_n(0,0,\dotsc,1)\in \langle \mathscr C \rangle$. Así, cualquier vector en $\mathbb R^n$ es un elemento en $ \langle \mathscr C \rangle$, es decir $\mathbb R^n \subseteq \langle \mathscr C \rangle$.

Concluimos que $\mathbb R^n = \langle \mathscr C \rangle$.

Como el conjunto $\mathscr C=\set{e_1,\dotsc,e_n}$ es linealmente independiente y genera a $\mathbb R^n$, es una base de $\mathbb R^n$, se le llama la base canónica de $\mathbb R^n$.

$2.$ Consideremos el subespacio de $\mathbb R^3$ dado por $W=\set{(x,y,z)\in \mathbb R^3\mid x-y+2z=0}$. Busquemos una base de $W$.

Notemos que si $(x,y,z)\in W$, entonces $ x-y+2z=0$, o bien $x=y-2z.$ Así,

$(x,y,z)=(y-2z,y,z)=y(1,1,0)+z(-2,0,1).$

Entonces

$W=\set{y(1,1,0)+z(-2,0,1)\mid y,z\in \mathbb R}=\langle (1,1,0), (-2,0,1) \rangle .$

Con ello hemos probado que el conjunto $S=\{(1,1,0),(-2,0,1)\}$ genera a $W$, así que sólo falta ver que es un conjunto linealmente independiente para verificar que es una base de $W$.

Para ver que $S$ es linealmente independiente veamos que la única manera de obtener al vector cero como combinación lineal de $(1,1,0),(-2,0,1)\in W$, es la trivial. Pero esto es cierto pues si $\lambda,\mu \in \mathbb R$ son tales que

$\lambda(1,1,0)+\mu(-2,0,1)=(0,0,0)$,

desarrollando tenemos que:

$(\lambda-2\mu,\lambda,\mu)=(0,0,0)$

y comparando coordenada a coordenada obtenemos que

$\begin{align} \lambda-2\mu &=0\\ \lambda &=0\\ \mu &=0.\\ \end{align}$

Por lo tanto $\lambda=\mu=0$.

Así, $S=\set{(1,1,0),(-2,0,1)}$ es $l.i.$

Concluimos que $S$ es un conjunto de vectores $l.i$ y $\langle S \rangle=W$, entonces $S$ es una base de $W$. Así, $S=\set{(1,1,0),(-2,0,1)}$ es una base de $W$.

Entendamos un poco más quién es $W$. Observamos que de hecho $W$ es un plano que pasa por el origen, y tanto $(1,1,0)$ como $(-2,0,1)$ son vectores en dicho plano. $W$ es entonces el plano definido por estos dos vectores. Notemos que cualquier combinación lineal de $(1,1,0)$ y $(-2,0,1)$ será también un vector en el plano $W$ y todo vector en $W$ se puede obtener como una combinación lineal de dichos vectores. Además, como $(1,1,0)$ y $(-2,0,1)$ no son colineales, por el lema de la nota previa forman un conjunto linealmente independiente.

Observa en el siguiente recurso que elaboré en Geogebra cómo cualquier combinación lineal de los vectores $(1,1,0),(-2,0,1)$, es un elemento del plano que pasa por el origen y la punta de los vectores $(1,1,0)$ y $(-2,0,1)$, que son los vectores en color rosa. Este plano está en color azul, mientras que el plano en color gris es el plano $xy$.

Puedes también mover los puntos $A$ y $B$ para cambiar el par de vectores con los que se construye el plano y ver cómo es el generado de esos vectores. Mueve $A$ y $B$ de manera que sean colineales y constata que el generado en ese caso se limita a una recta.

El siguiente resultado se puede probar usando sistemas de ecuaciones. El lector interesado puede escribir la demostración siguiendo las ideas del Teorema 7 en la página 181del libro de Anton que aparece en la bibliografía del curso.

Nota

Sean $V$ un subespacio de $\mathbb R^n$ y $m$ un natural positivo. Si $\set{v_1,\dotsc,v_m}$ es un conjunto con $m$ vectores que genera a $V$, todo conjunto $l.i$ de $V$ tiene a lo más $m$ elementos. En consecuencia todo conjunto $l.i$ de $\mathbb R^n$ tiene a lo más $n$ elementos.

Lema

Sean $m$ un natural positivo y $\set{v_1,\dotsc,v_m}$ un conjunto $l.i$ con $m$ vectores en $\mathbb R^n$. Si $w\in \mathbb R^n$ es tal que $w\notin \langle v_1,\dotsc,v_m \rangle$ entonces $\set{v_1,\dotsc,v_m,w}$ es $l.i.$

Demostración

Sean $m$ un natural positivo y $\set{v_1,\dotsc,v_m}\subseteq \mathbb R^n$ un conjunto $l.i$con $m$ vectores y $w\in \mathbb R^n$ con $w\notin \langle v_1,\dotsc,v_m \rangle$.

Sean $\lambda_1,\dotsc, \lambda_{m+1}\in \mathbb R$ tales que

$\lambda_1 v_1+\cdots+\lambda_m v_m+\lambda_{m+1} w=\bar{0}.$

Si $\lambda_{m+1}\neq 0$ tendríamos que

$w=-\frac{\lambda_1}{\lambda_{m+1}}v_1-\cdots-\frac{\lambda_m}{\lambda_{m+1}}v_m,$

entonces $w$ sería una combinación lineal de los elementos del conjunto $\set{v_1,\dotsc,v_m}$, y por lo tanto $w\in \langle v_1,\dotsc,v_m \rangle$. Pero esto es una contradicción a nuestra hipótesis, así $\lambda_{m+1}=0$, de donde $\lambda_1 v_1+\cdots+\lambda_m v_m=\bar{0}$ y como $\set{v_1,\dotsc,v_m}$ es $l.i.$ tenemos que $\lambda_1=\lambda_1=\cdots=\lambda_m=0$. Concluimos que $\lambda_1=\lambda_1=\cdots=\lambda_m= \lambda_{m+1}=0$ y por lo tanto $\set{v_1,\dotsc,v_m,w}$ es $l.i.$

$\square$

Teorema

Sea $V$ un subespacio de $\mathbb R^n$. Existe $\beta$ una base de $V$.

Demostración

Sea $V\leq \mathbb R^n$. Si $V=\set{\bar{0}}$, $\emptyset $ es $l.i$ y $\langle \emptyset \rangle =\set{\bar{0}}=V$.

Si $V\neq \set{\bar{0}}$ existe $v_1\in V$ tal que $v_1\neq \bar{0}.$

Puede suceder que $\langle v_1 \rangle=V$ en cuyo caso $\set{v_1}$ es una base de $V$.

Si $\langle v_1 \rangle\subsetneq V$, sea $v_2\in V\setminus \langle v_1 \rangle$. Por el lema antes probado $\set{v_1,v_2}$ es $l.i.$

Si $\set{v_1,v_2}$ genera a $V$, $\set{v_1,v_2}$ es una base de $V$.

Si $\langle v_1,v_2 \rangle\subsetneq V$, sea $v_3\in V\setminus \langle v_1,v_2 \rangle$. Por el lema antes probado $\set{v_1,v_2,v_3}$ es $l.i.$

Continuando de este modo obtenemos conjuntos de la forma $\set{v_1,\dotsc,v_t}$, $ l.i. $ en cada paso. Por la nota anterior, en cada paso $t\leq n$ así que el proceso es finito y en algún momento (a lo mucho después de $n$ pasos), obtenemos un conjunto $\beta=\set{v_1,\dotsc,v_m}\subseteq V$, con $m\leq n$, un conjunto $l.i$ que genera a $V$ y sería entonces una base de $V$.

Por lo tanto $V$ tiene una base.

$\square$

Corolario

Sea $V$ un subespacio de $\mathbb R^n$. Todo conjunto $l.i$ de $V$ se puede completar a una base de $V$, es decir, si $\beta$ es un conjunto $l.i$ de $V$, existe $\gamma$ con $\beta\subseteq \gamma$ tal que $\gamma$ es una base de $V$.

Demostración

Esta demostración queda como tarea moral.

Teorema

Sea $V$ un subespacio de $\mathbb R^n$. Todas las bases de $V$ son finitas y tienen el mismo número de elementos.

Demostración

Sea $V$ un subespacio de $\mathbb R^n$ y sean $\beta,\beta’ $ bases de $V$.

Por la nota que aparece en esta entrada $\beta$ y $\beta’ $ son finitas y además como:

$\beta $ es $l.i$ y $\beta’$ genera a $V$, entonces $\#\beta \leq \#\beta’$.

$\beta’ $ es $l.i$ y $\beta$ genera a $V$, entonces $\#\beta’ \leq \#\beta$.

Por lo tanto $\#\beta =\#\beta’$.

$\square$

Tarea Moral

$1.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales y el subconjunto de $\mathbb R^3$ indicado en cada inciso. Encuentra una base de $\mathbb R^3$ que contenga a $S$:

$i)$ $S=\set{(1,0,1)}.$

$ii)$ $S=\set{(-2,1,5),(3,0,2)}.$

$2.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales. Encuentra al menos tres bases para el subespacio $W=\set{(x,y,z)\in \mathbb R^3\mid x-3y+4z=0}$. ¿Cuántos elementos tienen estas bases?

$3.$ Encuentra bases para los siguientes subespacios del correspondiente $\mathbb R^n$ visto como espacio vectorial sobre los reales:

$i)$ $\set{(x,y,z)\in \mathbb R^3\mid 3x-2y+5z=0}$

$ii)$ $\set{(x,y,z,w)\in \mathbb R^4\mid x=y+w}$

Más adelante

En la siguiente nota veremos el concepto de dimensión de un espacio vectorial.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 30. Dependencia e independencia lineal

Enlace a la nota siguiente. Nota 32. Dimensión de un $\mathbb R-$ espacio vectorial