Archivo de la categoría: Sin clasificar

Probabilidad I-Videos: Introducción al curso, espacio muestral y eventos

Por Aurora Martínez Rivas

Introducción

Esta es la primer entrada correspondiente a los videos por tema de la materia de Probabilidad I. En conjunto, esta y las entradas siguientes, abarcaran todos los temas correspondientes al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Se utilizará la bibliografía básica propuesta en dicho plan para la realización de las mismas.

El curso tiene como objetivo dar una presentación de los fundamentos de la teoría de la probabilidad; una disciplina matemática que trata de las regularidades de los fenómenos aleatorios. En esta primera parte introduciremos los conceptos más elementales de la teoría de la probabilidad. Comenzando con el espacio muestral y eventos.

Espacio muestral y eventos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Prueba las siguientes relaciones:

  • $\left(\displaystyle\bigcup_{i=1}^{n}{A_i}\right)^c=\displaystyle\bigcap_{i=1}^{n}{A_i}^c$ y $\left(\displaystyle\bigcap_{i=1}^{n}{A_i}\right)^c=\displaystyle\bigcup_{i=1}^{n}{A_i}^c$.
  • $\left(\displaystyle\bigcup_{i=1}^{\infty}{A_i}\right)B=\displaystyle\bigcup_{i=1}^{\infty}{A_iB}$ y $\left(\displaystyle\bigcap_{i=1}^{\infty}{A_i}\right)\displaystyle\bigcup B=\displaystyle\bigcap_{i=1}^{\infty}\left(\ A_i\bigcup B\right)$.
  • $AB\subset A\subset A\cup B$.
  • Si $A\subset B,\ entonces\ B^c\subset A^c$.
  • $A=AB\cup BA^c$ y $A\cup B=A\cup A^cB$.

Más adelante

Ahora que conoces los conceptos de evento y espacio muestral, junto a algunas de sus propiedades, en la siguiente entrada veremos como la probabilidad matemática está motivada por nuestras ideas intuitivas sobre la probabilidad como proporción.

Entradas relacionadas

Año Nuevo 2020

Por Leonardo Ignacio Martínez Sandoval

Se nos acaba el año, y con él los años 10’s. Cada década ha traído muchas cosas buenas y malas.

Las cosas malas están en los medios y ya las tenemos presentes. Tenemos que seguir trabajando para que cada vez sean menos. Me enorgullece mucho la fuente lucha que están haciendo mis amigos y conocidos contemporáneos en causas importantes como el feminismo, la ecología, la normalización/atención a problemas psicológicos/psiquiátricos y el desarrollo científico/tecnológico.

Las cosas buenas también han sido bastantes, y qué mejor momento para recordarlas y agradecerlas, que cuando cambia el dígito de las decenas del año actual.

De los 80’s no recuerdo prácticamente nada, pero agradezco enormemente los cuidados de mis padres en mi primer año de vida.

De los 90’s agradezco y recuerdo mi infancia, los videojuegos, la educación primaria y las experiencias de vivir en cuatro estados.

De los 00’s agradezco y recuerdo el boom de internet, el campamento de mate en Stanford, mi primer amor y encontrar a través de la Olimpiada mi rumbo profesional.

De los 10’s agradezco y recuerdo mi vida independiente, mi maduración profesional, mi vida como extranjero y superar con éxito una delicada situación de salud.

Los 20’s me dan una enorme curiosidad, una pizca de miedo, pero sobre todo un gran entusiasmo.

Espero que pasen este último día de diciembre en grata compañía de sus seres queridos. Si tienen chance, entre sidra, calzones rojos y campanadas, los invito a acordarse y agradecer un ratito lo que les ha pasado en cada década.

¡Feliz año nuevo!
¡Felices años 20’s!

Un problema de probabilidad y escuchar música

Por Leonardo Ignacio Martínez Sandoval

El problema

Les comparto un problema que se me ocurrió en las (muchas) horas que he pasado en el carro escuchando música, cuando vivía en la Ciudad de México. El estéreo del carro ordena las canciones alfabéticamente. Tiene un botón que permite «avanzar una canción». Pero a veces tarda mucho: si estoy escuchando «Adele – Hello», hay que apretar el botón muchas veces para llegar a «Shakira – Dónde están los ladrones».

En esas épocas descubrí una estrategia «intuitiva» para llegar más rápido a la canción. La idea es la siguiente: pasar temporalmente al modo de «canción aleatoria», apretar el botón unas cuantas veces para acercarme a la canción que quiero (en el ejemplo anterior, digamos que después de dos o tres veces el botón me lleva a «Paquita la del Barrio – Rata de dos Patas»), y de ahí quitar el aleatorio y avanzar normal. Eso, intuitivamente, siempre me ahorró muchos pasos. El problema consiste en encontrar la estrategia óptima, en donde se permiten mezclar pasos normales y aleatorios.

Para eso, voy a plantear un problema muy concreto. De aquí en adelante supondré que el lector sabe un poco de probabilidad. Pensemos que hay $2n$ canciones, numeradas de $1$ a $2n$. Estoy en la canción $n$ y quiero llegar a la canción $2n$. Pensemos que el estéreo tiene exactamente dos botones, el $A$ que avanza $1$ (y de $2n$ lleva a $1$), y el $B$ que lleva a una canción aleatoria (cualquiera de las canciones, incluida la actual, tiene probabilidad $1/2n$ de ser elegida). En cada paso se permite ver en qué canción estoy, y de ahí decidir apretar $A$ o $B$. ¿Cuál es la estrategia que en valor esperado tiene menos pasos? ¿Cuál es ese valor esperado?

En la imagen de aquí abajo se muestra un ejemplo de una forma de apretar los botones para $n=5$, con $2n=10$ canciones. Las flechas rojas corresponden a avanzar $1$ apretando el botón $A$. Las flechas azules corresponden a ir a un lugar aleatorio apretando el botón $B$. Se apretaron los botones en el orden $ABBAA$, de modo que se hicieron $5$ pasos.

Ejemplo de estrategia ABBAA
Un ejemplo en el que se usa la estrategia ABBAA. La canción 1 es de ABBA. Es Dancing Queen. «Feel the beat form the tambourine… Oh yeah…».

Ese es el enunciado del problema. De aquí en adelante empiezo a hablar de ideas para resolverlo, así que si quieres intentarlo, este es el momento correcto.

Primeras ideas

Notemos que la estrategia «siempre $A$, hasta llegar a $2n$» toma exactamente $n$ pasos siempre. La estrategia «siempre $B$» es para intentar atinarle, y en cada paso tiene probabilidad de éxito $1/2n$. Entonces, en esta segunda estrategia la cantidad de pasos requeridos es una variable aleatoria con distribución geométrica de parámetro $p=1/2n$, de modo que el número esperado de pasos es $1/p=2n$.

Sin embargo, suena a que la estrategia esbozada al inicio de esta entrada es intuitivamente mejor: usar el $B$ para acercarse y luego el $A$ para llegar.

La solución

Vamos a mostrar que la mejor estrategia en valor esperado es la siguiente: «apretar el botón $B$ hasta llegar aproximadamente al intervalo $[n-2\sqrt{n}, n]$, y de ahí apretar el botón $A$» hasta llegar a $n$.

El primer argumento es que en cada paso, lo que hace la estrategia sólo depende de en qué canción estamos. En efecto, el paso $A$ es determinista y el $B$ es una variable uniforme independiente de todo lo demás.

El segundo argumento es que, si en algún momento de la estrategia usamos el botón $A$, entonces después de ello nunca nos conviene usar el botón $B$. Lo probamos por contradicción: supongamos que por cualquier razón en la estrategia óptima tenemos que hacer un $AB$. El paso $A$ es determinista, y sabíamos exactamente a qué canción nos iba a llevar (a la siguiente). Pero hacer el paso $B$ en cualquier lugar que estemos es simétrico, pues nos lleva a una canción aleatoria. Si a priori sabíamos que íbamos a hacer un paso $B$, lo mejor es hacerlo lo antes posible. Así, la estrategia que substituye esos pasos $AB$ por $B$ se ahorra un paso, y no es óptima. Contradicción.

Ahora, afirmo lo siguiente. Si la estrategia óptima es apretar $A$ cuando estamos en la canción $j$, entonces también va a ser apretar $A$ cuando estemos en cualquier canción $k$ con $j\leq k < 2n$. Esto es debido al argumento anterior: al apretar $A$ llegamos a $j+1$, que por el párrafo de arriba, no le puede tocar $B$. Entonces le toca $A$. De ahí llegamos a $j+2$, que de nuevo no le puede tocar $B$. Y así sucesivamente (inductivamente), hasta llegar a $2n-1$.

Lo que acabamos de probar es que la estrategia óptima se ve de la siguiente manera para algún entero $k$: «Apretar $B$ hasta que lleguemos a alguno de los últimos $k$ elementos. De ahí, apretar $A$ hasta llegar a $2n$.» Nos falta determinar cuál es la mejor $k$ que podemos usar.

A estas alturas ya podemos calcular explícitamente el valor esperado de pasos en esta estrategia. El evento «llegar a alguno de los últimos $k$ elementos» tiene probabilidad $k/2n$ de ocurrir cada que se aprieta el botón $B$, así que la cantidad de veces que hay que apretar $B$ para ello es una variable aleatoria geométrica de valor esperado $2n/k$. Una vez que llegamos a los últimos $k$ elementos, caemos a cualquier elemento del intervalo $\{2n-k+1, 2n-k+2,\ldots,2n\}$ con la misma probabilidad, y respectivamente nos tomará $\{k-1, k-2,\ldots, 0\}$ pasos en llegar a $2n$, es decir, la cantidad de pasos que hacemos es una variable aleatoria uniforme discreta de media $(k-1)/2$.

Así, en total usamos $(2n/k) + (k-1)/2$ pasos para llegar. Queremos lograr que esta expresión sea lo más pequeña posible. Usando la desigualdad entre la media geométrica y la aritmética, notamos que $$\frac{2n}{k}+\frac{k-1}{2}=\frac{2n}{k}+\frac{k}{2}-\frac{1}{2} \geq 2\sqrt{n} – \frac{1}{2},$$ y que la igualdad se da si y sólo si $\frac{2n}{k}=\frac{k}{2}$, es decir, si y sólo si $k=2\sqrt{n}$. En este caso, la cantidad media de pasos que usamos es $2\sqrt{n}-\frac{1}{2}$.

Aquí arriba hicimos un poquito de trampa. En realidad $k=2\sqrt{n}$ tiene sentido para la estrategia sólo cuando $\sqrt{n}$ es un número entero. Sin embargo, por la convexidad de la función $
\frac{2n}{k}+\frac{k}{2}$ tenemos la garantía de que o bien $\lfloor
2\sqrt{n} \rfloor$ o bien $\lceil 2\sqrt{n} \rceil$ dan el máximo.

Conclusión y otros problemas

Está cool que hayamos bajado la cantidad de pasos que se necesitan de valor esperado de algo que era $n$ a algo que es del tamaño $2\sqrt{n}$. Para hacerse una idea de los pasos que se pueden ahorrar, toma una colección de $800$ canciones. Originalmente se necesitaban $400$ pasos $+1$ para ir de la mitad al final. Con la nueva estrategia se requieren como $40$.

Hacer esta estrategia en la vida real es un poco complicado pues los estéreos no muestran el número exacto de la canción en la que se está, además de que es difícil memorizar a qué canción le toca qué número. Pero a veces sí muestran el nombre de la canción y más o menos «se le puede aproximar».

Hay un par de variantes interesantes. Una es ¿qué sucede si además de tener botón $+1$ y aleatorio, también tenemos botón $-1$?. En esta variante la solución no cambia mucho, pero es bueno intentarla para repasar las ideas de la prueba.

La otra variante es la siguiente. La estrategia óptima, como está descrita arriba, tiene un problema: es posible que nunca termine, o que tome muchísimos pasos en terminar (esto será muy improbable y por eso el valor medio se compensa). Así, imaginemos que queremos la restricción adicional de que la estrategia que usemos nunca use más de, digamos, 4n pasos. En esta variante: ¿cuál es la estrategia óptima? ¿cuántos pasos toma?

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

VIII Concurso Galois-Noether: Segunda Etapa

Por Leonardo Ignacio Martínez Sandoval

Ken 2 CC-BY - Editada2

En esta entrada se dan los resultados de la segunda etapa del VIII Concurso Universitario de Matemáticas Galois-Noether que se aplicó el día sábado 9 de junio de 2018. Hubo 27 participantes de habla hispana y 52 de habla portuguesa.

Problemas y soluciones

El examen consistió de seis problemas para resolver en cuatro horas y media. Al inicio del examen hubo media hora para aclarar los enunciados de los problemas. Puedes ver los problemas del examen, así como sus soluciones, en el siguiente archivo.

Cada problema se evaluó sobre 10 puntos, dando puntos parciales por avances hacia la solución.

A continuación se enuncia el tema de cada problema.

  • Problema 1: Desigualdades
  • Problema 2: Álgebra lineal
  • Problema 3: Cálculo
  • Problema 4: Teoría de números
  • Problema 5: Probabilidad
  • Problema 6: Teoría de grupos

De acuerdo a las estadísticas, los problemas 1, 2, 5 y 6 tuvieron aproximadamente la dificultad deseada. Los problemas 3 y 4 quedaron un poco más fáciles de lo que se esperaba, de modo que en las puntuaciones altas fue difícil marcar una distinción clara entre las habilidades de los concursantes. En años siguientes se buscará subir un poco la dificultad de estos problemas.

Sobre los concursantes

En total 79 personas presentaron el examen de segunda etapa. De entre los que presentaron el examen, el promedio redondeado a centésimas fue de 15.17. La calificación más alta fue 38 puntos y la más baja fue 2.

Ganadores del VIII Concurso Galois-Noether

A continuación se muestran los primeros tres lugares de la competencia. En caso de empate, el criterio de desempate fue la puntuación del examen de primera etapa.

  1. Thiago – Landim de Souza Leao – Universidade Federal de Penambuco – Brasil
  2. Thiago Ribeiro Tergolino – Instituto Militar de Engenharia – Brasil
  3. Wesley Rodrigues Machado – Instituto Militar de Engenharia – Brasil

¡Muchas felicidades a ellos tres! Para quedar en estos lugares se requiere de una gran cantidad de trabajo bien orientado.

Selección de la UNAM para la IX CIIM

De acuerdo a la convocatoria, el examen Galois-Noether sirve como selectivo para determinar a los cuatro estudiantes que representan al equipo de la UNAM en la Competencia Iberoamericana Interuniversitaria de Matemáticas. Los cuatro alumnos de la UNAM con la mejor puntuación del examen y que participarán en la CIIM fueron:

  • Víctor Hugo Almendra Hernández
  • Leonardo Ariel García Morán
  • Siddhartha Emmanuel Guzmán Morales
  • Zeús Caballero Pérez

¡Muchas felicidades!

El Líder del Equipo de la UNAM para la IX CIIM fue el Mat. Luis Eduardo García Hernández, quien ha colaborado en la organización de la competencia y otras actividades de resolución de problemas a nivel universitario.

¡Les deseamos mucho éxito a todos ellos en la IX CIIM!

Constancias y dudas

Todos los concursantes que hayan participado en la segunda etapa pueden solicitar una constancia. Cualquier estudiante puede consultar su calificación personal desglosada por problema. Para realizar cualquiera de estas dos cosas, favor de escribir a leomtz@im.unam.mx.

Taller SEME de interacción matemáticas-industria

Por Leonardo Ignacio Martínez Sandoval

Esta semana participaré en la Semana de Estudios Matemáticas-Empresa en el Instituto de Matemáticas de Orsay. La idea es cool: varias organizaciones francesas vienen, presentan problemas frente a un montón de doctorantes y postdocs, y ellos proponen modelos para atenderlos. Creo que en México el CIMAT hace algo parecido.

Instituto de Matemáticas de Orsay

Esta vez viene Aeropuertos de París, el SNFC (encargada de trenes y metro) y algunas empresas. A mi me tocó Aeropuertos de París y trabajaremos en la detección de ruido aéreo. Mi plan es ver cómo se trabaja en esto para después intentar implementarlo en otros lados.

Las empresas traen algunas ideas de como resolverlos. Proponen desde cosas estándar aplicadas como series de tiempo, análisis estadísticos, optimización combinatoria, hasta cosas «de moda» como machine learning y algoritmos de IoT. Se ve que estará divertido.

Los detalles del taller se pueden encontrar en el siguiente enlace: https://www.math.u-psud.fr/seme2019/programme.php