Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Cálculo Diferencial e Integral II: Forma exponencial de las series de Fourier

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series de Fourier para las funciones pares e impares, en esta sección veremos la forma exponencial de las series de Fourier por la fórmula reducida del matemático Jonhard Euler, aunque esta fórmula está dada en un plano complejo, se puede entender a este nivel utilizando unas cuantas propiedades sencillas de los números complejos.

Forma exponencial de las series de Fourier

La fórmula de Euler o relación de Euler esta dada como:

$$e^{ix}=\cos(x)+i\sin(x)$$

Donde $i$ es un número complejo o imaginario, aunque esta identidad se deducirá en el curso de variable compleja. De esta fórmula se puede deducir fácilmente las siguientes relaciones:

$$\cos(x)=\frac{e^{ix}+e^{-ix}}{2}$$

$$\sin(x)=\frac{e^{ix}-e^{-ix}}{2i} \tag{1}$$

De los coeficientes de Fourier, observamos los términos de las funciones trigonométricas seno y coseno y sustituimos en las fórmulas anteriores como sigue:

$$\cos(\frac{2\pi n}{T}x)=\frac{e^{\frac{2\pi n}{T}ix}+e^{-\frac{2\pi n}{T}ix}}{2}$$

$$y$$

$$\sin(\frac{2\pi n}{T}x)=\frac{e^{\frac{2\pi n}{T}ix}-e^{-\frac{2\pi n}{T}ix}}{2i}$$

Así tenemos que:

$$a_{n}\cos(\frac{2\pi n}{T}x)+b_{n}\sin(\frac{2\pi n}{T}x)=a_{n} \left [ \frac{e^{\frac{2\pi n}{T}ix}+e^{-\frac{2\pi n}{T}ix}}{2}\right ]+b_{n} \left [\frac{e^{\frac{2\pi n}{T}ix}-e^{-\frac{2\pi n}{T}ix}}{2i} \right ]$$

Existe una propiedad en los números complejos que nos dice que:

$$i=-\frac{1}{i}$$

Aunque esta demostración se verá en el curso de variable compleja, utilizaremos solo esta propiedad de los números complejos, aplicando lo anterior en el segundo término como sigue:

$$=a_{n} \left [ \frac{e^{\frac{2\pi n}{T}ix}+e^{-\frac{2\pi n}{T}ix}}{2}\right ]-ib_{n} \left [\frac{e^{\frac{2\pi n}{T}ix}-e^{-\frac{2\pi n}{T}ix}}{2} \right ]$$

$$=\frac{a_{n} \space e^{\frac{2\pi n}{T}ix}+a_{n} \space e^{-\frac{2\pi n}{T}ix}}{2}+\frac{-ib_{n} \space e^{\frac{2\pi n}{T}ix}+ib_{n}\space e^{-\frac{2\pi n}{T}ix}}{2}$$

$$=\frac{1}{2}\left [a_{n} \space e^{\frac{2\pi n}{T}ix}-ib_{n} \space e^{\frac{2\pi n}{T}ix}+a_{n} \space e^{-\frac{2\pi n}{T}ix}+ib_{n}\space e^{-\frac{2\pi n}{T}ix} \right ]$$

$$=\frac{1}{2}\left [ (a_{n}-ib_{n})e^{\frac{2\pi n}{T}ix}+(a_{n}+b_{n})e^{-\frac{2\pi n}{T}ix} \right ]$$

Sea $c_{n}=\frac{1}{2}(a_{n}-ib_{n})$

Su respectivo complejo conjugado $\bar{c}_{n}$ es aquel que intercambia el signo del número complejo, es decir: $\bar{c}_{n}=\frac{1}{2}(a_{n}+ib_{n})$

Entonces la serie de Fourier en la forma exponencial de $f(x)$ está dada como:

$$f(x)=C_{0}+\sum_{n=1}^{\infty}\left (c_{n}e^{\frac{2\pi n}{T}ix}-\bar{c}_{n}e^{-\frac{2\pi n}{T}ix} \right )$$

Cuyo coeficientes complejos están dados como

$$c_{n}=\frac{1}{T}\int_{0}^{T}f(x)e^{-\frac{2\pi n }{T}ix}dx$$

$$y$$

$$ \bar{c}_{n} = \frac{1}{T}\int_{0}^{T}f(x)e^{\frac{2\pi n }{T}ix}dx $$

Con $n \space \epsilon \space \mathbb{Z}$

Veamos un ejemplo.

Ejemplo

Aproxime la siguiente función con una serie de Fourier en su forma exponencial.

  • $f(x)=\sin(x)$ en el intervalo $[-\pi, \pi]$

Vemos que el periodo está dado como $T=2 \pi$, ya que se repite en un intervalo de $-\pi$ a $\pi$ Calculemos los coeficientes complejos como sigue:

$$c_{0}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{0}dx=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)dx=0$$

$$\therefore \space c_{0}=0$$

$$c_{n}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{-\frac{2\pi n }{2\pi}ix}dx=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{-nix}dx$$

Resolvemos esta integral con el método de integración por partes el cual ya habíamos visto, tomamos como cambio de variable a $u=-inx$, por lo que:

$$=\frac{1}{2\pi}\left ( \frac{e^{-inx}(\cos(x)+in\sin(x)}{n^{2}-1} \right )\bigg{|}_{-\pi}^{\pi}=\frac{1}{2\pi}\left ( \frac{e^{-in(\pi)}(\cos(\pi)+in\sin(\pi))}{n^{2}-1}-\frac{e^{-in(-\pi)}(\cos(-\pi)+in\sin(-\pi))}{n^{2}-1} \right )$$

$$= \frac{1}{2\pi}\left ( \frac{e^{-in \pi}(-1)}{n^{2}-1}-\frac{e^{in \pi}(-1)}{n^{2}-1} \right )=\frac{1}{2\pi}\frac{1}{n^{2}-1}\left ( -e^{-in \pi}+e^{in \pi} \right ) $$

Podemos usar la relación $(1)$ para reescribir el resultado anterior como:

$$c_{n}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{-nix}dx=\frac{1}{2\pi}\left ( \frac{-e^{-in\pi}+e^{in\pi}}{n^{2}-1} \right )=\frac{1}{\pi}\left ( \frac{i\sin(\pi n)}{n^{2}-1} \right )$$

Ahora para los coeficientes $\bar{c}_{n} $, se tiene que:

$$\bar{c}_{n}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{nix}dx$$

Por lo que solo cambia en el signo de la exponencial, lo cual se obtiene que la integral es:

$$ \frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{nix}dx = =\frac{1}{2\pi}\left ( \frac{e^{inx}(\cos(x)-in\sin(x)}{n^{2}-1} \right )\bigg{|}_{-\pi}^{\pi} $$

Como $\sin(\pm\pi)=0$, por lo que el resultado de la integral solo cambia en el signo:

$$\bar{c}_{n}=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sin(x)e^{nix}dx= \frac{1}{\pi}\left ( \frac{i\sin(\pi n)}{1-n^{2}} \right ) $$

Por tanto, la serie de Fourier en términos exponenciales es:

$$f(x)=\sum_{n=1}^{\infty}\left [\frac{1}{\pi}\left ( \frac{i\sin(\pi n)}{n^{2}-1} \right )e^{inx}-\frac{1}{\pi}\left ( \frac{i\sin(\pi n)}{1-n^{2}} \right ) e^{-inx} \right ]$$

$$=\frac{1}{\pi}\sum_{n=1}^{\infty} \frac{2i\sin(\pi n)}{n^{2}-1}\left ( e^{inx}+ e^{-inx}\right )=\frac{1}{\pi}\sum_{n=1}^{\infty} \frac{2isen(\pi n)}{n^{2}-1}2\cos(nx)=
\frac{4}{\pi}\sum_{n=1}^{\infty} \frac{i\sin(\pi n)}{n^{2}-1}\cos(nx)$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifique utilizando la relación de Euler las siguientes relaciones:

$$\cos(x)=\frac{e^{ix}+e^{-ix}}{2}$$

$$\sin(x)=\frac{e^{ix}-e^{-ix}}{2i}$$

  • Aproxime las siguientes funciones con serie de Fourier utilizando la forma exponencial.
  1. $f(x)=x$ en el intervalo $[-\pi, \pi]$
  2. $f(x)=\left\lbrace\begin{array}{c} 2 \space \space \space si \space \space \space 0 \leq x < 1 \\ -2 \space \space \space si \space \space \space 1 \leq x \leq 2 \end{array}\right.$
  3. $f(x)=\left\lbrace\begin{array}{c} -1 \space \space \space si \space \space \space -\pi \leq x < 0 \\ 1 \space \space \space si \space \space \space 0 \leq x \leq \pi \end{array}\right.$

Más adelante…

En esta sección vimos la forma exponencial de las series de Fourier y aunque se vio un poco de variable compleja, realmente se vio las propiedades más básicas de los números complejos, por lo que no se tuvo que recurrir a un curso de variable compleja, en la siguiente sección veremos las curvas paramétricas así como ejemplo de estos.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series de Fourier de funciones pares e impares

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos las series y los coeficientes de Fourier para aproximar una función $f(x)$, en esta sección veremos las series de Fourier para las funciones para e impares, para esto veremos la proposición siguiente.

Series de Fourier de funciones pares e impares

Proposición. Si $f:[-a, a]\rightarrow\mathbb{R}$ es integrable, se puede asegurar que:

a) Si $f$ es par entonces:

$$\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx \tag{1}$$

b) Si $f$ es impar entonces:

$$\int_{-a}^{a}f(x)dx=0 \tag{2}$$

Demostración:

a) Recordemos que las funciones pares se tiene la propiedad que: $f(x)=f(-x)$, así tenemos que:

$$\int_{-a}^{a}f(x)dx=\int_{-a}^{0}f(x)dx+\int_{0}^{a}f(x)dx$$

Si hacemos el cambio de variable $-t=x \Rightarrow -dt=dx$ en la penúltima integral entonces:

$$\int_{-a}^{0}-f(-t)dt+\int_{0}^{a}f(x)dx=\int_{0}^{a}f(t)dt+\int_{0}^{a}f(x)dx=2\int_{0}^{a}f(x)dx$$

$\square$

b) Recordemos que las funciones impares se tiene la propiedad que $-f(x)=f(-x)$, se tiene que:

$$\int_{-a}^{a}f(x)dx=\int_{-a}^{0}f(x)dx+\int_{0}^{a}f(x)dx$$

Análogamente, hacemos el cambio de variable $t=-x \Rightarrow dt=-dx$, tenemos que:

$$\int_{a}^{0}-f(-t)dt+\int_{0}^{a}f(x)dx=-\int_{0}^{a}f(t)dt+\int_{0}^{a}f(x)dx=0$$

$\square$

Recordando que la serie de Fourier de una función $f(x)$ esta dada como:

$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left [a_{n}\cos\left ( \frac{2n\pi }{T}x \right )+b_{n}\sin\left ( \frac{2n\pi }{T}x \right ) \right ]$$

Donde:

$a_{0}$, $a_{n}$ y $b_{n}$ se denomina coeficientes de Fourier que se definen como:

$$a_{0}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)dx$$

$$a_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\cos\left ( \frac{2n\pi }{T}x \right )dx $$

$$b_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\sin\left ( \frac{2n\pi }{T}x \right )dx $$

Por tanto cuando $f$ es par, al calcular los coeficientes de $a_{n}$, las funciones a integrar son funciones pares, ya que tanto $f$ como las funciones coseno lo son y el producto de dos funciones pares es una función par, sin embargo, al calcular los coeficientes de $b_{n}$ las funciones a integrar es impar, porque $f$ es par y las funciones seno son impares, puesto que el producto de una función par con una función impar da como resultado una función impar por lo que utilizando las relaciones $(1)$ y $(2)$, resulta que:

$$a_{n}=\frac{4}{T}\int_{0}^{\frac{T}{2}}f(x)\cos\left ( \frac{2\pi nx}{T} \right )dx$$

$$y$$

$$b_{n}=0 $$

Por lo tanto, la serie de Fourier de una función $f(x)$ par, es una serie cosenoidal:

$$f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}a_{n}\cos\left ( \frac{2\pi nx}{T} \right )$$

Ahora, si $f$ es impar, al calcular los coeficientes $a_{n}$ las funciones a integrar son funciones impares, ya que $f$ es impar y las funciones coseno son pares; sin embargo, al calcular $b_{n}$ las funciones a integrar son pares, ya que el producto de una función impar con otra función impar da como resultado una función par, por lo que:

$$a_{n}=0 \space \space \space \space n=0 ,1, 2, 3, …..$$

$$y$$

$$b_{n}=\frac{4}{T}\int_{0}^{\frac{T}{2}}f(x)\sin\left ( \frac{2\pi nx}{T} \right )dx$$

Y la serie de Fourier de una función $f(x)$ impar es una serie senoidal:

$$f(x)=\sum_{n=1}^{\infty}b_{n}\sin\left ( \frac{2\pi nx}{T} \right )$$

Ejemplo

Encuentre la serie de Fourier de la siguiente función:

$$f(x)=\left\lbrace\begin{array}{c} -3 \space \space \space si \space \space \space -\pi \leq x < 0 \\ 3 \space \space \space si \space \space \space 0 \leq x < \pi \end{array}\right.$$

Figura 1: Gráfica de la función $f(x)$.

De la gráfica (figura $(1)$), vemos que la función es periódica con $T=2\pi$ y que la función es impar, por tanto, por lo visto anteriormente, tenemos que:

$$a_{n}=0$$

$$y$$

$$a_{0}=0$$

Por lo que solo calculamos los coeficientes $b_{n}$ como sigue:

$$b_{n}=\frac{4}{T}\int_{0}^{\frac{T}{2}}f(x)\sin\left ( \frac{2\pi nx}{T} \right )dx=\frac{4}{2\pi}\int_{0}^{\frac{2\pi}{2}}f(x)\sin\left ( \frac{2\pi nx}{2\pi} \right )dx=\frac{2}{\pi}\int_{0}^{\pi}f(x)\sin\left ( nx \right )dx$$

$$=\frac{2}{\pi}\int_{0}^{\pi}3\sin\left ( nx \right )dx=-\frac{6}{\pi}\left ( \frac{\cos(nx)}{n} \right )\bigg|_{0}^{\pi}=-\frac{6}{n\pi}\left ( \cos(n \pi)-1 \right )$$

Vemos que para $n$ par, $\cos(n\pi)=0$, por lo que:

$$b_{n}=0$$

Para $n$ impar, $\cos(n\pi)=-1$, por lo que:

$$b_{n}=\frac{12}{n\pi}$$

$$\therefore \space \space f(x)=\sum_{n=1}^{\infty}\frac{12}{n\pi}\sin\left ( \frac{2\pi nx}{T} \right )$$

Para $n$ impar.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invito a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Aproxime las siguientes funciones con serie de Fourier.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $f(x)=x^{2}$ en el intervalo $[-2,2]$.
  2. $f(x)=x^{3}$ en el intervalo $[-1,1]$.
  3. $f(x)=e^{|x|}$ en el intervalo $[-\pi,\pi]$.
  4. $f(x)=x\cos(x)$ en el intervalo $[-2,2]$.
  5. $f(x)=\left\lbrace\begin{array}{c} x+5 \space \space \space si \space \space \space -2\leq x < 0 \\ x-5 \space \space \space si \space \space \space 0 \leq x \leq 2 \end{array}\right.$

Más adelante…

En esta sección vimos las series de Fourier con funciones pares e impares en los cuales se obtienen series cosenoidales y senoidales respectivamente como resultado de las propiedades de las funciones pares e impares, en la siguiente sección veremos la forma exponencial de las series de Fourier.

Entradas relacionadas

Cálculo Diferencial e Integral II: Series de Fourier

Por Miguel Ángel Rodríguez García

Introducción

En esta última unidad del curso veremos algunos temas que nos serán útiles en otros cursos, comenzando estudiando las series de Fourier, por lo que empezaremos a ver la definición de las series de Fourier.

Series de Fourier

Habíamos visto que las series de Taylor se pueden utilizar para aproximar a una función $f(x)$ por medio de polinomios, en caso contrario, las series de Fourier utilizan una combinación lineal de funciones $\sin(x)$ y $\cos(x)$ para aproximar una función $f(x)$ como se muestra en la figura $(1)$, por lo que estas series son muy útiles al analizar funciones periódicas como son señales de radio, corrientes alternas, etc., veamos la siguiente definición.

Figura 1: Aproximación a la función $f(x)$ mediante series de Fourier para valores de $n$ distintas (https://es.wikipedia.org/wiki/Serie_de_Fourier).

Definición. Sea una función $f(x)$ integrable en el intervalo $[x_{0}-\frac{T}{2}, x_{0}+\frac{T}{2}]$, donde $T$ es el periodo de la función, entonces se puede aproximar en series de Fourier a $f(x)$ como:

$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left [a_{n}\cos\left ( \frac{2n\pi }{T}x \right )+b_{n}\sin\left ( \frac{2n\pi }{T}x \right ) \right ]$$

Donde $n$ toma valores $n=1, 2, 3, …..$.

$a_{0}$, $a_{n}$ y $b_{n}$ se denominan los coeficientes de Fourier que se definen como sigue:

$$a_{0}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)dx$$

$$a_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\cos\left ( \frac{2n\pi }{T}x \right )dx $$

$$b_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\sin\left ( \frac{2n\pi }{T}x \right )dx $$

Como recordatorio, una función periódica es una función $f(x)$ que tiene un patrón que se repite en un dado intervalo $[a, b]$, como por ejemplo, las funciones $\sin(x)$ y $\cos(x)$ que tienen el mismo periodo $T=2\pi$.

Veamos unos ejemplos de como calcular la serie de Fourier de una función.

Ejemplos

Calcule las series de Fourier de las siguientes funciones en el intervalo dado.

  • $f(x)=x$ para $-\pi < x <\pi$ repitiéndose con periodo $T=2\pi$

En este caso, primero calculamos los coeficientes de Fourier, de la definición tenemos que:

$$a_{0}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)dx=\frac{1}{\pi}\int_{-\pi}^{\pi}xdx=0$$

$$a_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\cos\left ( \frac{2n\pi }{T}x \right )dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\cos\left ( \frac{2n\pi }{2\pi}x \right )dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\cos\left (n x \right )dx$$

Utilizando la integración por partes, el resultado de la integral se tiene que:

$$ \frac{1}{\pi}\int _{-\pi}^{\pi} x\cos\left (n x \right )dx=\frac{1}{\pi} \left( \frac{n \pi \sin(n \pi)+\cos(n \pi)}{n^{2}}-\frac{n (-\pi)\sin(n (-\pi))+\cos(n (-\pi))}{n^{2}} \right )$$

$$=\frac{1}{\pi} \left ( \frac{n \pi \sin(n \pi)+\cos(n \pi)-n \pi \sin(n \pi)-\cos(n \pi)}{n^{2}} \right )=0 $$

$$\therefore a_{n}=0$$

$$b_{n}=\frac{2}{T}\int_{\frac{-T}{2}}^{\frac{T}{2}}f(x)\sin\left ( \frac{2n\pi }{T}x \right )dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\sin\left ( \frac{2n\pi }{2\pi}x \right )dx=\frac{1}{\pi}\int_{-\pi}^{\pi}x\sin\left (n x \right )dx$$

Utilizando nuevamente la integración por partes, se tiene que:

$$ \frac{1}{\pi}\int_{-\pi}^{\pi}x\sin\left (n x \right )dx =\frac{1}{\pi} \left( \frac{\sin(n \pi)-n\pi \cos(n \pi)}{n^{2}}-\frac{\sin(n (-\pi))-n (-\pi) \cos(n (-\pi))}{n^{2}} \right )$$

$$=\frac{1}{\pi} \left ( \frac{\sin(n \pi)-n\pi \cos(n \pi)+\sin(n \pi)-n \pi \cos(n \pi)}{n^{2}} \right )=\frac{1}{\pi}\left ( \frac{2\sin(n \pi)-2n\pi \cos(n \pi)}{n^{2}} \right )$$

Como $n \space \epsilon \space \mathbb{Z} \Rightarrow \sin(n \pi)=0$

$$b_{n}= \frac{1}{\pi}\left ( \frac{0-2n\pi \cos(n \pi)}{n^{2}} \right )=\frac{-2}{n}\cos(n \pi)$$

Por lo que la serie de Fourier de $f(x)$ está dado como:

$$f(x)=-2\sum_{n=1}^{\infty}\frac{\cos(n \pi)}{n}\sin(nx)$$

Para $x-\pi \notin 2\pi\mathbb{Z}$.

Una aplicación de las series de Fourier en física es el análisis vibratorio de las ondas en el área de la acústica o de la óptica, también es útil en el procesamiento de señales digitales, facilitando las series de Fourier, el manejo de señales expresando una señal como una combinación lineal de varias ondas. Un ejemplo es una onda cuadrada dada por la siguiente función.

  • $$f(x)=\left\lbrace\begin{array}{c} 1 \space \space \space si \space \space \space 0 \leq x \leq \pi \\ 2 \space \space \space si \space \space \space \pi < x \leq 2\pi \end{array}\right.$$

Calculamos los coeficientes de Fourier como sigue:

$$a_{0}=\frac{1}{2\pi}\int_{0}^{2\pi}f(x)dx=\frac{1}{\pi}\left ( \int_{0}^{\pi}1dx+\int_{\pi}^{2\pi}2dx \right )=\frac{3}{2}$$

$$a_{n}=\frac{1}{\pi}\left ( \int_{0}^{\pi}\cos(nx)dx+\int_{\pi}^{2\pi}2\cos(nx)dx \right )=\frac{1}{\pi}\left ( \left [ \frac{\sin(nx)}{n} \right ]\bigg|_{0}^{\pi}+ \left [ \frac{2\sin(nx)}{n} \right ]\bigg|_{\pi}^{2\pi}\right )$$

$$=\frac{1}{\pi} \left ( \frac{\sin(n \pi)}{n}-\frac{\sin(0)}{n}+\frac{2\sin(2n\pi)}{n}-\frac{2\sin(n \pi)}{n} \right )=0$$

$$\therefore a_{n}=0$$

$$b_{n}=\frac{1}{\pi}\left ( \int_{0}^{\pi}\sin(nx)dx+\int_{\pi}^{2\pi}2\sin(nx)dx \right )=\frac{1}{\pi}\left ( \left [ -\frac{\cos(nx)}{n} \right ]\bigg|_{0}^{\pi}+ \left [ \frac{2\cos(nx)}{n} \right ]\bigg|_{\pi}^{2\pi}\right )$$

$$=\frac{1}{\pi} \left ( \frac{-\cos(n \pi)}{n}+\frac{\cos(0)}{n}+\frac{2\cos(2n\pi)}{n}-\frac{2\cos(n \pi)}{n} \right )=\frac{\cos(n\pi-1)}{n\pi}$$

Vemos en este caso que:

$$b_{1}=-\frac{2}{\pi}$$

$$b_{2}=0$$

$$b_{3}=-\frac{2}{3\pi}$$

$$b_{4}=0$$

$$b_{5}=-\frac{2}{5\pi}$$

Por tanto, la serie de Fourier de la función escalonada es:

$$\frac{3}{4}-\frac{2}{\pi}\sum_{n=1}^{\infty} \left ( \sin(x)+\frac{\sin(3x)}{3}-+\frac{\sin(5x)}{5}+…. \right )$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Aproxime las siguientes funciones con la definición de serie de Fourier.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$f(x)=1 \space \space \space si \space \space \space 0\leq x \leq 2\pi$$
  2. $$f(x)=\left\lbrace\begin{array}{c} 1 \space \space \space si \space \space \space 0 \leq x \leq \pi \\ 2 \space \space \space si \space \space \space \pi < x \leq 2\pi \end{array}\right.$$
  3. $$f(x)=\left\lbrace\begin{array}{c} x \space \space \space si \space \space \space 0 \leq x \leq \pi \\ x-2\pi \space \space \space si \space \space \space \pi < x \leq 2\pi \end{array}\right.$$
  4. $$f(x)=\left\lbrace\begin{array}{c} x^{2} \space \space \space si \space \space \space 0 \leq x \leq \pi \\ 0 \space \space \space si \space \space \space \pi < x \leq 2\pi \end{array}\right.$$
  5. $$f(x)=e^{x}\space \space \space si \space \space \space 0\leq x \leq 2\pi$$

Más adelante…

En esta sección vimos las series de Fourier y los coeficientes de Fourier que aproximan a una función $f$ en series de combinación lineal de funciones trigonométricas $\sin(x)$ y $cos(x)$, en la siguiente sección veremos las series de Fourier de funciones pares e impares.

Entradas relacionadas

Ecuaciones Diferenciales I: Valores y vectores propios para resolver sistemas lineales

Por Omar González Franco

En la vida real, te lo aseguro, no hay algo como el álgebra.
– Fran Lebowitz

Introducción

Ya hemos dado inicio con el desarrollo de métodos de resolución de sistemas lineales de primer orden. En la entrada anterior desarrollamos el método de eliminación de variables que, a pesar de ser muy limitado, es un método sencillo y práctico para resolver sistemas con dos ecuaciones diferenciales lineales de primer orden.

Debido a que un sistema lineal puede ser visto como una ecuación matricial los resultados de álgebra lineal sobre valores y vectores propios de matrices pueden ser aplicados aquí. En esta entrada daremos un breve repaso sobre estos conceptos y veremos cómo es que estos resultados nos pueden ayudar a determinar la solución general de algunos sistemas de ecuaciones diferenciales.

La teoría que desarrollaremos a continuación es aplicable a sistemas lineales homogéneos con coeficientes constantes.

Sistemas lineales homogéneos

Un sistema lineal homogéneo con coeficientes constantes es de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

En la segunda entrada de esta unidad vimos que la solución general del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}e^{0t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0
\end{pmatrix}e^{2t} + c_{3} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}e^{3t}$$

Y en la entrada anterior vimos que la solución del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Aunque para el primer caso aún no sabemos cómo obtener esa solución lo que sabemos es que efectivamente corresponde a la solución general del sistema homogéneo. Notemos que cada vector solución es de la forma

$$\mathbf{Y}_{i} = \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix}e^{\lambda_{i}t}, \hspace{1cm} i = 1, 2 ,3$$

donde $k_{i}$ y $\lambda_{i}$, $i = 1, 2, 3$, son constantes. Lo mismo para el segundo caso, con $k_{i}$, $\lambda_{i}$, $i = 1, 2$, constantes. Esta particularidad nos hace preguntarnos si siempre es posible hallar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{4} \tag{4}$$

como solución general del sistema lineal (\ref{3}).

La respuesta es que sí, pero antes de continuar con nuestro desarrollo nos parece pertinente repasar brevemente algunos conceptos de Álgebra Lineal, en particular el de valores y vectores propios.

Valores y vectores propios

Sea $T: V \rightarrow W$ una transformación lineal, en álgebra lineal muchas veces resulta útil encontrar un vector $v$ en el espacio vectorial $V$ tal que $T\mathbf{v}$ y $\mathbf{v}$ sean paralelos, es decir, se busca un vector $\mathbf{v}$ y un escalar $\lambda$, tal que

$$T\mathbf{v} = \lambda \mathbf{v} \label{5} \tag{5}$$

Recordemos que si $\mathbf{v} \neq \mathbf{0}$ y $\lambda$ satisfacen la ecuación (\ref{5}), entonces $\lambda$ se denomina un valor característico o valor propio de $T$ y $\mathbf{v}$ un vector característico o vector propio de $T$ correspondiente al valor propio $\lambda$.

También recordemos que si $V$ tiene dimensión finita, entonces la transformación $T$ se puede representar por una matriz $\mathbf{A}_{T}$, de manera que se pueden definir los valores y vectores propios de esta matriz.

Denotaremos con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Como nota interesante, los valores y vectores propios también son conocidos como valores y vectores característicos o eigenvalores y eigenvectores, donde el término eigen es un término alemán que significa propio. En este curso los llamaremos valores y vectores propios.

Recordemos nuevamente el concepto de matriz inversa.

Para el caso especial $\mathbf{A} = \mathbf{I}$, con $\mathbf{I}$ la matriz identidad, se tiene que para cualquier vector $\mathbf{v} \in V$

$$\mathbf{Av} = \mathbf{Iv} = \mathbf{v} \label{8} \tag{8}$$

Así, el único valor propio de $\mathbf{A}$ es $1$ y todo $\mathbf{v} \neq \mathbf{0} \in V$ es un vector propio de $\mathbf{I}$.

Otra observación interesante es que cualquier múltiplo de un vector propio de $\mathbf{A}$ es también un vector propio de $\mathbf{A}$, con el mismo valor propio.

$$\mathbf{A}(c \mathbf{v}) = c \mathbf{Av} = c \lambda \mathbf{v} = \lambda (c \mathbf{v}) \label{9} \tag{9}$$

Ecuación característica

Supongamos que $\lambda $ es un valor propio de $A$, entonces existe un vector diferente de cero

$$\mathbf{v} = \begin{pmatrix}
v_{1} \\ v_{2} \\ \vdots \\ v_{n}
\end{pmatrix} \neq \mathbf{0}$$

tal que

$$\mathbf{Av} = \lambda \mathbf{v} = \lambda \mathbf{Iv} \label{10} \tag{10}$$

Reescribiendo esto, se tiene

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{v} = \mathbf{0} \label{11} \tag{11}$$

Si $A$ es una matriz de $n \times n$, la ecuación anterior corresponde a un sistema homogéneo de $n$ ecuaciones con las incógnitas $v_{1}, v_{2}, \cdots, v_{n}$. Como se ha supuesto que $ \mathbf{v} \neq \mathbf{0}$, entonces el sistema no tiene solución trivial y por tanto el determinante de (\ref{11}) debe ser cero.

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{12} \tag{12}$$

De manera equivalente, si ocurre que $|\mathbf{A} -\lambda \mathbf{I}| \neq 0$, entonces la única solución a (\ref{11}) es la trivial $\mathbf{v} = \mathbf{0}$, lo que significa que $\lambda$ no es un valor propio de $A$.

Estos resultados quedan establecidos en el siguiente teorema.

La relación (\ref{13}) es muy importante, tanto que merece nombres particulares.

El polinomio $P(\lambda )$ es del mismo grado que el número de filas y columnas de la matriz $\mathbf{A}$. Si $\mathbf{A} \in M_{n \times n}$, entonces $P(\lambda)$ es un polinomio de grado $n$ en $\lambda$. Por ejemplo, si

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{14} \tag{14}$$

entonces,

$$\mathbf{A} -\lambda \mathbf{I} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} -\begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} = \begin{pmatrix}
a -\lambda & b \\ c & d -\lambda
\end{pmatrix} \label{15} \tag{15}$$

y

\begin{align*}
P(\lambda ) &= |\mathbf{A} -\lambda \mathbf{I}| \\
&= (a -\lambda)(d -\lambda) -bc \\
&= \lambda^{2} -(a + d) \lambda + (ad -bc) \label{16} \tag{16}
\end{align*}

La matriz es de $2 \times 2$ y el polinomio característico es un polinomio de grado $2$.

El teorema fundamental del álgebra nos dice que cualquier polinomio de grado $n$ con coeficientes reales o complejos tiene exactamente $n$ raíces contando multiplicidades y dado que cualquier valor propio de $\mathbf{A}$ es una raíz de la ecuación característica de $\mathbf{A}$, se concluye que, contando multiplicidades, toda matriz $\mathbf{A} \in M_{n \times n}$ tiene exactamente $n$ valores propios.

Realicemos dos ejemplos sencillos en donde determinemos los valores y vectores propios de una matriz. Uno en donde los valores propios sean distintos (con multiplicidad $1$) y uno en donde los valores propios sean números complejos.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
-81 & 16 \\ -420 & 83
\end{pmatrix}$$

Solución: De acuerdo a (\ref{13}), determinemos la ecuación característica.

$$\begin{vmatrix}
-81 -\lambda & 16 \\ -420 & 83 -\lambda
\end{vmatrix} = (-81 -\lambda)(83 -\lambda) -16(-420) = 0$$

Reordenando obtenemos que la ecuación característica es

$$\lambda^{2} -2 \lambda -3 = 0$$

y el polinomio característico es

$$P(\lambda) = \lambda^{2} -2 \lambda -3$$

Resolviendo para $\lambda$ se obtienen las raíces $\lambda_{1} = -1$ y $\lambda_{2} = 3$. Para obtener los vectores propios buscamos un vector $\mathbf{v} \neq 0$, tal que se cumpla (\ref{11}) para cada valor propio $\lambda$. Comencemos con $\lambda_{1}$.

Caso 1: $\lambda_{1} = -1$.

$$\begin{pmatrix}
-81 -(-1) & 16 \\ -420 & 83 -(-1)
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-80 & 16 \\ -420 & 84
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Este resultado lo podemos escribir como las siguientes dos ecuaciones.

\begin{align*}
-80 v_{1} + 16 v_{2} &= 0 \\
-420 v_{1} + 84 v_{2} &= 0
\end{align*}

Que en realidad corresponden a una sola.

\begin{align*}
-5v_{1} + v_{2} &= 0 \\
v_{2} &= 5v_{1}
\end{align*}

Si elegimos $v_{1} = 1$, entonces $v_{2} = 5$, así el primer vector propio es

$$\mathbf{v}_{1} = \begin{pmatrix}
1 \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
-81 -3 & 16 \\ -420 & 83-3
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-84 & 16 \\ -420 & 80
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
-21v_{1} + 4v_{2} &= 0 \\
v_{2} &= \dfrac{21}{4}v_{1}
\end{align*}

Por conveniencia elegimos $v_{1} = 4$, entonces $v_{2} = 21$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
4 \\ 21
\end{pmatrix}$$

En conclusión, los valores y vectores propios de la matriz $\mathbf{A}$ son $\lambda_{1} = -1$, $\lambda_{2} = 3$, $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ y $\mathbf{v}_{2} = \begin{pmatrix} 4 \\ 21 \end{pmatrix}$, respectivamente.

$\square$

Realicemos el segundo ejemplo.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
2 & -1 \\ 5 & -2
\end{pmatrix}$$

Solución: Determinemos la ecuación característica.

$$\begin{vmatrix}
2 -\lambda & -1 \\ 5 & -2 -\lambda
\end{vmatrix} = (2 -\lambda)(-2 -\lambda) + 5 = 0$$

La ecuación característica es

$$\lambda^{2} + 1 = 0$$

De donde $\lambda_{1} = i$ y $\lambda_{2} = -i$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = i$.

$$\begin{pmatrix}
2 -i & -1 \\ 5 & -2 -i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 -i)v_{1} -v_{2} &= 0 \\
5v_{1} -(2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 + i$ y $v_{2} = 5$, así

$$\mathbf{v}_{1} = \begin{pmatrix}
2 + i \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -i$

$$\begin{pmatrix}
2 + i & -1 \\ 5 & -2 + i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 + i) v_{1} -v_{2} &= 0 \\
5v_{1} + (-2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 -i$ y $v_{2} = 5$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
2 -i \\ 5
\end{pmatrix}$$

$\square$

En caso de requerir conocer más a fondo sobre el algoritmo que llevamos a cabo para obtener los valores y vectores propios de una matriz se recomienda revisar directamente en el curso de Álgebra Lineal I. Recordemos que aquí sólo estamos haciendo un breve repaso.

Para concluir con nuestro repaso, enunciemos un teorema de suma importancia que nos será de utilidad mas adelante. Haremos la demostración por inducción.

Demostración: Como el caso $m = 1$ se trata de un solo vector es evidente que se satisface el teorema, hagamos el caso $m = 2$, para ello consideremos la combinación lineal

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} = \mathbf{0} \label{17} \tag{17}$$

Multipliquemos ambos lados de la ecuación por la matriz $\mathbf{A}$.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} = \mathbf{0} \label{18} \tag{18}$$

Como $\mathbf{Av}_{i} = \lambda_{i}\mathbf{v}_{i}$, para $i = 1, 2$, entonces

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} = \mathbf{0} \label{19} \tag{19}$$

A la ecuación (\ref{17}) la multiplicamos por $\lambda_{1}$ y la restamos de la ecuación (\ref{19}).

$$(c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2}) -(c_{1} \lambda_{1} \mathbf{v}_{1} -c_{2} \lambda_{1} \mathbf{v}_{2}) = \mathbf{0}$$

que se reduce a

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} = \mathbf{0} \label{20} \tag{20}$$

Como $\mathbf{v}_{2} \neq \mathbf{0}$ por definición de vector característico y por hipótesis $\lambda_{1} \neq \lambda_{2}$, entonces se concluye que $c_{2} = 0$, sustituyendo en (\ref{17}) se ve que $c_{1} = 0$, por tanto se cumple el teorema para $m = 2$, es decir, $\mathbf{v}_{1}$ y $\mathbf{v}_{2}$ son linealmente independientes.

Ahora supongamos que el teorema es cierto para $m = n$, es decir, cualquier conjunto de $n$ vectores propios de $\mathbf{A}$ con valores propios diferentes es linealmente independiente. Hay que demostrar que cualquier conjunto de $n + 1$ vectores propios de $\mathbf{A}$ con valores propios diferentes es también linealmente independiente. La demostración sigue el mismo procedimiento que como lo hicimos para $m = 2$, consideremos la siguiente combinación lineal.

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{21} \tag{21}$$

Multipliquemos por $\mathbf{A}$ en ambos lados.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} + \cdots + c_{n + 1} \mathbf{Av}_{n + 1} = \mathbf{0} \label{22} \tag{22}$$

Aplicando $\mathbf{Av}_{i} = \lambda_{i} \mathbf{v}_{1}$ para $i = 1, 2, 3, \cdots, n + 1$, se tiene

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \lambda_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{23} \tag{23}$$

Si se multiplica ambos lados de la ecuación (\ref{21}) por $\lambda_{1}$ y se resta de (\ref{23}), se obtiene

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} + c_{3}(\lambda_{3} -\lambda_{1}) \mathbf{v}_{3} + \cdots + c_{n + 1}(\lambda_{n + 1} -\lambda_{1})\mathbf{v}_{n + 1} = \mathbf{0} \label{24} \tag{24}$$

Pero $\mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son vectores propios de $\mathbf{A}$ con valores propios distintos $\lambda_{2}, \lambda_{3}, \cdots, \lambda_{n + 1}$, respectivamente. Por hipótesis de inducción, los vectores son linealmente independientes, así que

$$c_{2}(\lambda_{2} -\lambda_{1}) = 0, \hspace{1cm} c_{3}(\lambda_{3} -\lambda_{1}) = 0, \hspace{1cm} \cdots, \hspace{1cm} c_{n + 1}(\lambda_{n + 1} -\lambda_{1}) = 0$$

Como los valores propios son distintos entre sí, entonces necesariamente

$$c_{2} = c_{3} = \cdots = c_{n + 1} = 0$$

Con este resultado la ecuación (\ref{21}) obliga a que $c_{1}$ sea cero. Por lo tanto, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son linealmente independientes. De esta manera queda demostrado el teorema.

$\square$

En conclusión, vectores propios correspondientes a valores propios distintos son linealmente independientes.

Con este breve repaso en mente regresemos a los sistemas de ecuaciones diferenciales.

Valores y vectores propios en sistemas de ecuaciones diferenciales

Ahora que hemos recordado las definiciones de valores y vectores propios y algunas propiedades veamos cómo es que estos conceptos son útiles para resolver sistemas lineales de primer orden homogéneos.

Al inicio de la entrada decíamos que es posible encontrar soluciones de la forma (\ref{4}).

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t}$$

Si derivamos este vector, se obtiene

$$\mathbf{Y}^{\prime} = \mathbf{K} \lambda e^{\lambda t} \label{25} \tag{25}$$

Sustituyamos en el sistema homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$.

$$\mathbf{K} \lambda e^{\lambda t} = \mathbf{AK}e^{\lambda t} \label{26} \tag{26}$$

Si dividimos entre $e^{\lambda t}$ y reordenamos, se tiene

$$\mathbf{AK} = \lambda \mathbf{K}$$

o bien,

$$\mathbf{AK} -\lambda \mathbf{K} = \mathbf{0}$$

Debido a que $\mathbf{K} = \mathbf{IK}$, con $\mathbf{I}$ la matriz identidad, la última expresión se puede escribir como

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0}\label{27} \tag{27}$$

Si $\mathbf{A}$ es la matriz dada en (\ref{2}), entonces la ecuación matricial (\ref{27}) es equivalente a las $n$ ecuaciones algebraicas simultáneas

\begin{align*}
(a_{11} -\lambda)k_{1} + \hspace{1.2cm} a_{12}k_{2} + \cdots + \hspace{1.2cm} a_{1n}k_{n} &= 0 \\
a_{21}k_{1} + (a_{22} -\lambda)k_{2} + \cdots + \hspace{1.2cm} a_{2n}k_{n} &= 0 \\
\vdots \\
a_{n1}k_{1} + \hspace{1.2cm} a_{n2}k_{2} + \cdots + (a_{nn} -\lambda)k_{n} &= 0 \label{28} \tag{28}
\end{align*}

Si queremos encontrar soluciones $\mathbf{Y}(t)$ como (\ref{4}), necesitamos primero encontrar una solución no trivial del sistema (\ref{28}), de lo visto en nuestro repaso de valores y vectores propios, si la solución debe ser la no trivial, entonces se requiere que el determinante sea igual a cero, esto es

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{29} \tag{29}$$

Esta ecuación polinomial corresponde a la ecuación característica de la matriz $\mathbf{A}$. Sus soluciones son los valores propios de $\mathbf{A}$. Una solución $\mathbf{K} \neq 0$ de (\ref{27}) correspondiente a un valor propio $\lambda$ es el vector propio de $\mathbf{A}$.

La ecuación (\ref{29}) al tratarse de una ecuación polinomial existen tres casos posibles, cuando los valores propios son reales y distintos, cuando son repetidos y cuando son complejos. Para cada caso existe una forma particular de la solución de (\ref{3}).

Para concluir con esta entrada demostremos un resultado que establece la forma de la solución general del sistema lineal (\ref{3}).

Demostración: Definamos las funciones

$$\mathbf{Y}_{1}(t) = e^{\lambda_{1}t}\mathbf{K}_{1}, \hspace{1cm} \mathbf{Y}_{2}(t) = e^{\lambda_{2}t}\mathbf{K}_{2}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n}(t) = e^{\lambda_{n}t} \mathbf{K}_{n}$$

Notemos que para la $i$-ésima función $\mathbf{Y}_{i}(t) = e^{\lambda_{i}t} \mathbf{K}_{i}$ se cumple lo siguiente.

$$\mathbf{Y}^{\prime}_{i} = e^{\lambda_{i}t} (\lambda_{i} \mathbf{K}_{i}) = e^{\lambda_{i}t} (\mathbf{AK}_{i}) = \mathbf{AY}_{i} \label{32} \tag{32}$$

En donde se hecho uso de la relación (\ref{6}). Esto nos muestra que $\mathbf{Y}_{i}(t)$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ para cada $i = 1, 2, \cdots, n$. Basta mostrar que el Wronskiano es distinto de cero para probar que las funciones definidas forman un conjunto fundamental de soluciones. El Wronskiano está dado por

\begin{align*}
W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots,\mathbf{Y}_{n}) &= \begin{vmatrix} e^{\lambda_{1}t} \mathbf{K}_{1} & e^{\lambda_{2}t} \mathbf{K}_{2} & \cdots & e^{\lambda_{n}t} \mathbf{K}_{n} \end{vmatrix} \\
&= e^{(\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n})t} \begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \label{33} \tag{33}
\end{align*}

Como la exponencial nunca se hace cero y por hipótesis los vectores $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son linealmente independientes, es decir, el determinante nunca es cero

$$\begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \neq 0 \label{34} \tag{34}$$

entonces el Wronskiano es distinto de cero. Por el teorema de solución general de un sistema homogéneo concluimos que el conjunto

$$S = \{e^{\lambda_{1}t} \mathbf{K}_{1}, e^{\lambda_{2}t} \mathbf{K}_{2}, \cdots, e^{\lambda_{n}t} \mathbf{K}_{n}\}$$

es un conjunto fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ y la solución general es

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1}t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2}t} \mathbf{K}_{2} + \cdots + c_{n} e^{\lambda_{n}t} \mathbf{K}_{n}$$

con $c_{1}, c_{2}, \cdots, c_{n}$ constantes arbitrarias.

$\square$

En la siguiente entrada aplicaremos todo esto en el desarrollo de un nuevo método de resolución de sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener los valores y vectores propios de las siguientes matrices.
  • $\mathbf{A} = \begin{pmatrix}
    -62 & -20 \\ 192 & 62
    \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix}
    -2 & 5 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1
    \end{pmatrix}$
  1. Demostrar que para cualesquiera números reales $\alpha$ y $\beta$, la matriz $$\mathbf{A} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$ tiene valores propios $\alpha \pm i\beta$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar lo siguiente:
  • Demostrar que $\mathbf{A}^{-1}$ (la matriz inversa de $\mathbf{A}$) existe si y sólo si $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son todos distintos de cero.
  • Si $\mathbf{A}^{-1}$ existe, demostrar que los valores propios de $\mathbf{A}^{-1}$ son $\dfrac{1}{\lambda_{1}}, \dfrac{1}{\lambda_{2}}, \cdots, \dfrac{1}{\lambda_{n}}$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que la matriz $\mathbf{A} -\alpha \mathbf{I}$ tiene valores propios $\lambda_{1} -\alpha, \lambda_{2} -\alpha, \cdots, \lambda_{n} -\alpha$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que los valores propios de $\mathbf{A}^{m}$ son $\lambda^{m}_{1}, \lambda^{m}_{2}, \cdots, \lambda^{m}_{n}$ para $m = 1, 2, 3, \cdots$.

    Recuerda que para calcular la potencia de una matriz, debemos multiplicar la matriz por ella misma tantas veces como indique el exponente, por ejemplo
    $$\mathbf{A}^{5} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$$

Más adelante…

Un nuevo método para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas con coeficientes constantes es el que estamos por desarrollar. Dicho método involucra obtener los valores y vectores propios de la matriz que conforma al sistema lineal, es por ello que hemos dedicado esta entrada en hacer un breve repaso sobre estos conceptos y hemos visto cómo es que se ven involucrados en la resolución de estos sistemas.

Como vimos, los valores propios se obtienen de encontrar las raíces del polinomio característico lo que significa que se pueden tener raíces reales y distintas, raíces con multiplicidad mayor a uno, es decir, que se repiten o raíces complejas, para cada caso existe una forma distinta de obtener la solución de los sistemas lineales homogéneos $\mathbf{Y}^{\prime} = \mathbf{AY}$.

En las próximas tres entradas estudiaremos cada caso. Comenzaremos con el caso en el que los valores propios del sistema son todos reales y distintos entre sí.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Puntos de equilibrio y estabilidad para sistemas de dos ecuaciones de primer orden

Por Eduardo Vera Rosales

Introducción

En la entrada anterior comenzamos el estudio a la teoría cualitativa de sistemas de dos ecuaciones de primer orden, definiendo el plano fase del sistema que es el plano $x(t)-y(t)$ junto con todas las curvas que representan a las soluciones al sistema de ecuaciones, vistas como funciones de $\mathbb{R}$ a $\mathbb{R}^{2}$. Una vez que escribimos al sistema de ecuaciones en la forma $$\dot{\textbf{X}}=\textbf{F}(x,y)$$ notamos que la función $\textbf{F}(x,y)$ puede ser vista como una función de $\mathbb{R}^{2}$ a $\mathbb{R}^{2}$. Más aún, podemos ver que a cada punto $(x,y)$ podemos anclar el vector $\textbf{F}(x,y)$ en el plano $x(t)-y(t)$. Este es el campo vectorial asociado al sistema, el cual nos da la información de cómo se ven las curvas solución y su comportamiento.

Para poder dibujar el plano fase de la forma más fiel posible aún debemos estudiar los puntos donde el campo $\textbf{F}$ se anula. A estos puntos los llamaremos puntos de equilibrio. De ellos dependerá casi por completo el comportamiento de las soluciones en el plano fase, por lo que estudiaremos su estabilidad. Es decir, veremos el comportamiento de las soluciones cercanas a los puntos de equilibrio conforme cambia la variable independiente $t$. Finalizaremos estudiando el plano fase de diversos sistemas e interpretando la estabilidad de los puntos de equilibrio según se recorren las curvas solución.

Puntos de equilibrio de sistemas de ecuaciones de primer orden

Definimos los puntos de equilibrio de un sistema de ecuaciones de primer orden y analizamos varios ejemplos. Además, probamos que $$\textbf{X}(t)=\begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix}$$ es solución al sistema de ecuaciones lineal homogéneo con coeficientes constantes $$\dot{\textbf{X}}=\textbf{A}\textbf{X}$$ si $(x_{0},y_{0})$ es punto de equilibrio del sistema.

Estabilidad de puntos de equilibrio

Definimos los conceptos de puntos de equilibrio estables, asintóticamente estables e inestables. Mediante el plano fase estudiamos la estabilidad de puntos de equilibrio de diversos sistemas de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Los campos vectoriales de las imágenes fueron realizados en el siguiente enlace.

  • Considera el sistema lineal homogéneo con coeficientes constantes $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Muestra que si $\det{A} \neq 0$, entonces el único punto de equilibrio del sistema es $(0,0)$.
  • Considera nuevamente el sistema del ejercicio anterior $\dot{\textbf{X}}=\textbf{A}\textbf{X}$. Supongamos que $$\textbf{A}=\begin{pmatrix} a & b \\ c &d \end{pmatrix}$$ con $a\neq 0$ y $\det{A}=0$. ¿Qué puedes decir acerca de los puntos de equilibrio del sistema?
  • Encuentra un sistema de ecuaciones no lineales de primer orden sin puntos de equilibrio.
  • Calcula los puntos de equilibrio de los siguientes sistemas: $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 4 \\ -2 & 7 \end{pmatrix}+\begin{pmatrix} 2 \\ 2 \end{pmatrix}.$$ $$\dot{\textbf{X}}=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 0 \\ -\cos{x} \end{pmatrix}.$$ $$\dot{\textbf{X}}=\begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 0 \\ -\cos{x} \end{pmatrix}.$$
  • Determina la estabilidad de los puntos de equilibrio, según los campos vectoriales que aparecen a continuación:
estabildidad campo vectorial uno
Campo vectorial uno. Elaboración propia
estabilidad campo vectorial dos
Campo vectorial dos. Elaboración propia
estabiliddad campo vectorial tres
Campo vectorial tres. Elaboración propia

Más adelante

Una vez que conocemos los puntos de equilibrio de un sistema de ecuaciones de primer orden y definimos la estabilidad de estos, es momento para analizar el plano fase de los sistemas de dos ecuaciones con coeficientes constantes. Afortunadamente el plano fase y la estabilidad del (único) punto de equilibrio quedará determinado por la forma de los valores propios del sistema.

Comenzaremos en la siguiente entrada con el caso cuando el sistema tiene dos valores propios reales distintos y no nulos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»