Archivo de la categoría: Matemáticas

Posts de matemáticas, la ciencia más cercana a las artes.

Álgebra Superior II: Principio de inducción y teoremas de recursión

Por Roberto Manríquez Castillo

Introducción

Inducción y recursión son dos conceptos similares con los que seguramente te has topado en tu formación matemática, e incluso tal vez antes. Muchas veces se llegan a confundir ambos conceptos, ya que ambos tienen una fuerte relación con el 5° axioma de Peano.

Aunque lo detallaremos a lo largo de la entrada, el principio de Inducción es una propiedad de los números naturales, que nos sirve para demostrar que todos los naturales satisfacen una propiedad. Es decir, es una estrategia de demostración. En contraste, la recursión es un resultado que justifica el hecho de poder dar una definición para todos los naturales, basándonos en la definición de su antecesor. En otras palabras, es una estrategia de definición.

Al final de la entrada demostraremos el teorema de recursión débil, en cuya prueba, podremos apreciar cómo es que depende directamente del Principio de inducción.

Pruebas por inducción

Recordemos el 5° axioma de Peano, el cual probamos en la entrada pasada que se satisface en nuestro modelo:

Si $S\subset \mathbb{N}$ satisface que

  • $0\in S$ y
  • si $n\in S$, implica que $\sigma(s)\in S$,

entonces $S=\mathbb{N}$.

Como hemos mencionado en entradas anteriores, esta proposición es muy similar al principio de Inducción que probablemente hayas ocupado desde el curso de Álgebra Superior I. Más aún, en la entrada pasada, seguimos la misma estrategia que en otros cursos, a la hora de ocupar el 5° axioma. Efectivamente, la equivalencia entre ambos resultados es casi inmediata, y como ejemplo ilustrativo, probaremos el Principio de Inducción a partir del 5° axioma de Peano.

Proposición (Principio de Inducción): Sea $P(n)$ una propiedad, es decir, una proposición matemática que depende de un entero $n$. Si se tiene que:

  1. $P(0)$ es verdadera y
  2. cada vez que $P(n)$ es cierto, también lo es $P(n+1)$,

entonces P(n) es cierta para todos los números naturales.

Demostración. Sea $P(n)$ una propiedad que satisface 1. y 2. y consideremos el conjunto $S:=\{n\in\mathbb{N}: P(n)\text{es verdadera}\}$.

Como $P(0)$ es verdadera, entonces $0\in S$.

Tomemos $n\in S$, entonces $P(n)$ es verdadera, y por 2., tenemos que $P(n+1)$ es verdadera; es decir, $n+1\in S$. Por el 5° Axioma de Peano, se tiene que $S=\mathbb{N}$, por lo que por la definición de $S$, se tiene que $P(n)$ es cierta para cada $n\in \mathbb{N}$

$\square$

Definiciones por recursión

Una de nuestras primeras ideas para poder construir a $\mathbb{N}$, fue intentar construir a mano cada elemento. Para esto, dimos una definición de lo que significaba el $0$ y el sucesor de un número. Después empezamos a iterar una y otra vez la función sucesor para obtener el sucesor del último número encontrado. Discutimos por qué es que esta idea no sería el mejor camino (sólo nos permite llegar hasta una cantidad finita de naturales), por lo tuvimos que introducir el Axioma del Infinito para resolver el problema. Veamos la analogía entre esta idea y el siguiente ejemplo intuitivo.

Ejemplo: Definamos la función factorial de un número natural, como:

  • $0!=1$
  • $(n+1)!=(n!)(n+1)$

Entonces, $3!:=(2!)(3)=(1!)(2)(3)=(0!)(1)(2)(3)=(1)(1)(2)(3)=6$.

Recordemos que al definir a los naturales, necesitábamos conocer un número para poder definir su sucesor. Aquí sucede lo mismo: en la definición de factorial necesitamos conocer quién es el factorial de un número para poder definir el factorial de su sucesor. A este tipo de definiciones se les conoce como definiciones recursivas, ya que para definir algo para un número, necesitamos tener conocimiento del valor de la función en los números anteriores.

Queda una pregunta muy importante. Si a los naturales no los pudimos definir de manera recursiva, ¿por qué podemos afirmar que la función factorial sí existe? A continuación enunciaremos algunos teoremas que nos garantizarán que sí podemos hacer este tipo de definiciones recursivas en nuestro modelo. Daremos una versión fuerte y una versión débil. Demostraremos la versión débil, pues basta para mucho de lo que queremos definir en los naturales (sumas, productos, potencias).

Las siguientes secciones son un poquito técnicas. Si las puedes seguir por completo, es fantástico. Pero incluso si no es así, basta con que en el fondo te quedes con la idea importante detrás: sí se vale definir de manera recursiva. Más adelante podrás regresar a este tema y entenderlo por completo.

Los teoremas de la recursión

Antes de la demostración principal de esta entrada, enunciaremos los teoremas que nos importan y hablaremos de manera intuitiva de lo que dicen. Hay dos versiones que veremos: una fuerte y una débil. Aunque parece que dicen cosas diferentes, en realidad son equivalentes. Será muy claro que la versión fuerte «implica» a la débil. Pero luego, en los problemas de tarea moral, se esbozará cómo ver que la versión débil se puede utilizar para demostrar la fuerte.

Teorema (Recursión Fuerte): Sea $X$ un conjunto y $x_{0}\in X$. Supongamos que tenemos varias funciones (una por cada natural $i$)

$$\{f_i:X\to X\}_{i\in\mathbb{N}\setminus \{0\}}.$$

Entonces existe una única función $g:\mathbb{N}\to X$ tal que:

  • $g(0)=x_{0}$
  • $g(\sigma(n))=f_{\sigma(n)}(g(n))$.

¿Qué es lo que quiere decir este teorema? Para responder esta pregunta veamos el siguiente diagrama:

Nuestro diagrama empieza en $0$, el cual queremos que sea mandado a algún $x_{0}\in X$, para la definición de los demás números, ocupamos la segunda característica que esperamos que $g$ satisfaga. Por ejemplo $g(1)=g(\sigma(0))=f_{1}(g(0))=f_{1}(x_{0})$. Este análisis coincide con lo que nos presenta el primer cuadro de flechas del diagrama anterior, que nos presenta los dos caminos que debe satisfacer $g$, para que sea la función que queremos. Como da lo mismo si «primero aplicamos $\sigma$ y luego $g$», a que si «primero aplicamos $g$ y luego $f_1$», decimos que el primer cuadrado del diagrama conmuta.

Análogamente, ya que conocemos la definición de $g(1)$ podemos fijarnos en el segundo cuadro, para poder definir $g(2)$ (de nuevo, conmuta) y seguir «recursivamente» para cualquier número natural.

Ejemplo: ¿Qué conjunto, y qué funciones necesitamos para definir el factorial?

Consideremos $X=\mathbb{N}$, definiremos intuitivamente (ya que aún no lo hemos definido formalmente), $f_{i}:\mathbb{N}\longrightarrow \mathbb{N}$, como $f_{i}(n)=i\cdot n$, es decir, el producto por $i$.

El teorema de Recursión Fuerte, nos dice que existe una única función $g$ tal que

  • $g(0)=1$
  • $g(\sigma(n))=f_{\sigma(n)}(g(n))=\sigma(n)\cdot g(n)$

Denotemos $n!:=g(n)$. Entonces tenemos que $\sigma(n)!=n!\cdot \sigma(n)$, justo como queremos.

$\triangle$

El teorema de Recursión Débil y su demostración

El teorema de Recursión Débil tiene un enunciado parecido al teorema de recursión fuerte y puede ser visto como una consecuencia directa del teorema anterior pues se obtiene de la versión fuerte tomando $f_{1}=f_{2}=\ldots=f_{n}=\ldots$

Teorema (Recursión Débil): Sea $X$ un conjunto y $x_{0}\in X$. Supongamos que tenemos una función $f:X\to X$. Entonces existe una única función $g:\mathbb{N}\to X$ tal que:

  • $g(0)=x_{0}$
  • $g(\sigma(n))=f(g(n))$.

Para concluir con esta entrada, probaremos el teorema de Recursión Débil. Antes de hacer esto introducimos un concepto auxiliar y una propiedad de los naturales.

Recordemos que como conjunto, $m=\{0,1,…,m-1\}$, lo que sugiere la siguiente definición.

Definición: Si $n,m\in \mathbb{N}$, decimos que $n<m$ si $n\in m$.

Puede probarse que esta relación en $\mathbb{N}$ es un orden total, y que sastisface la siguiente propiedad.

Teorema (Principio el Buen Orden): Sea $S\subset\mathbb{N}$ un conjunto no vacío, es decir $S\neq \emptyset$. Entonces $S$ tiene un elemento mínimo. Es decir, existe $n\in S$ tal que $n<m$ para todo $m\in S\setminus\{n\}$.

La prueba del Principio del Buen Orden y más propiedades de $<$ serán estudiadas con mayor detalle en entradas posteriores. Con esto en mente demostramos el teorema de Recursión Débil.

Demostración. Recordemos que por definición, toda función con dominio $A$ y codominio $B$, es un subconjunto de $A\times B$, por lo que una buena idea es analizar el conjunto $\wp(\mathbb{N}\times X)$, definamos

\[\Re:=\{R\in\wp(\mathbb{N}\times X)\mid (0,x_{0})\in R \text{ y si }(n,x)\in R\text{, entonces }(\sigma(n),f(x))\in R\}\]

Esta definición se ve terriblemente complicada. Pero la intuición es clara: $\Re$ tiene a todas las posibles colecciones de parejas de $\mathbb{N}\times X$ que cumplen lo que queremos. El problema es que muchas de ellas no son funciones y tenemos que «arreglar esto».

Probablemente, notarás alguna similitud entre el conjunto $\Re$ y el conjunto de los subconjuntos inductivos (que se menciona en La construcción de los naturales). Siguiendo esta analogía, definiremos $g:=\bigcap \Re$ (podemos hacer esta intersección ya que $\Re$ no es vacío pues $\mathbb{N}\times X$ está en $\Re$).

  • Demostremos que $g\in \Re$:

Por las propiedades de la intersección, tenemos que $g\subset\mathbb{N}\times X$, por lo que $g\in \wp(\mathbb{N}\times X)$. Veamos que $(0,x_{0})\in g$. Sea $R\in\Re$ arbitrario, entonces $(0,x_{0})\in R$, por lo que $(0,x_{0})\in\bigcap \Re=g$. Por último, si $(n,x)\in g$, demostremos que $(\sigma(n),f(x))\in g$, para esto, sea $R\in \Re$ arbitrario, como $(n,x)\in g$, entonces $(n,x)\in R$, por lo que $(\sigma(n),f(x))\in R$. Es decir, $(\sigma(n), f(x))\in\bigcap \Re=g$. Por todo lo anterior, $g\in\Re$.

  • Veamos ahora que $Dom(g)=\mathbb{N}$:

Usemos el quinto axioma de Peano, como $(0,x_{0})\in g$, entonces $0\in Dom(g)$. Supongamos ahora que $n\in Dom(g)$ y demostremos que $\sigma(n)\in Dom(g)$, por la hipótesis de inducción, existe $x\in X$ tal que $(n,x)\in g$, y como $g\in\Re$, tenemos que $(\sigma(n),f(x))\in g$, pero esto quiere decir que $\sigma(n)\in Dom(g)$. Entonces $Dom(g)$ es inductivo, entonces $Dom(g)=\mathbb{N}$.

  • Demostremos ahora que $g$ sí es función. Para esto, tenemos ver que «cada natural se va a un sólo elemento», en símbolos, si $(n,x),(n,y)\in g$ entonces $n=m$.

Aquí es donde ocuparemos el Principio del Buen Orden. Consideremos $S:=\{n\in\mathbb{N}\mid (n,x),(n,y)\in g \text{ y } x\neq y \}$. Procedamos por contradicción, supongamos que $S\neq\emptyset$, entonces, $S$ tiene un elemento mínimo, denotémoslo por $n$.

Si $n=0$, entonces existe $x\in X$ tal que $(0,x)\in X$ y $x\neq x_{0}$. Entonces consideremos $g’=g\setminus\{(0,x)\}$. Notemos que $g’\in\Re$, ya que $(0,x_{0})\in g’$, ya que $(0,x_{0})\neq (0,x)$. Además si $(k,a)\in g’$, entonces $(k,a)\in g$, por lo que $(\sigma(k),f(a))\in g$, y como $0$ nunca es el sucesor de otro número, tenemos que $(\sigma(k),f(a))\neq(0,x)$, por lo tanto $(\sigma(k),f(a))\in g’$, es decir, $g’\in \Re$, lo que implica que $g=\bigcap \Re\subset g’=g\setminus\{(0,x)\}$ lo cual es absurdo, por lo que $n\neq 0$.

Como $n\neq 0$, debemos tener que existe $m$ tal que $\sigma(m)=n$ ¿Por qué?. Y como $n$ es el mínimo en $S$, tenemos que $m\not\in S$, es decir, existe un único $x\in X$ tal que $(m,x)\in g$, esto implica que $(\sigma(m),f(x))=(n,f(x))\in g$, y como $n\in S$, debe existir $y\in X$, $y\neq f(x)$ tal que $(n,y)\in g$. Análogamente a como lo hicimos antes, consideremos $g’=g\setminus (n,y)$ y veamos que $g’\in \Re$. Como $(n,y)\neq(0,x_{0})$, tenemos que $(0,x_{0})\in g’$. Más aún, si $(k,a)\in g’$, demostremos que $(\sigma(k),f(a))\in g’$, para esto supongamos que no.

Como $(k,a)\in g’$, tenemos que $(k,a)\in g$, por lo que $(\sigma(k),f(a))\in g$, esto implica que $(\sigma(k),f(a))=(n,y)$ ya que este es el único elemento de $g$ que no está en $g’$. Como $\sigma(k)=n=\sigma(m)$, concluimos, por la inyectividad de $\sigma$, que $k=m$. Esto quiere decir que $(k,a)=(m,a)\in g$, pero recordando que $x$ es el único elemento relacionado con $m$, concluimos que $x=a$, en síntesis, $(k,a)=(m,x)$, por lo que $(\sigma(k),f(a))=(\sigma(m),f(x))=(n,f(x))\neq(n,y)$. Esto implica que $(\sigma(k), f(a))\in g’$, contradiciendo nuestra suposición de que no lo estaba.

Entonces hemos probado que $(0,x_{0})\in g’$ y que cada vez que $(k,a)\in g’$, también lo está $(\sigma(k), f(a))$. Esto quiere decir que $g’\in\Re$, y como lo hicimos anteriormente, tendremos que $g=\bigcap \Re\subset g’=g\setminus\{(n,y)\}$, lo cual es una contradicción. Esto quiere decir, que suponer que $S$ tiene un elemento mínimo, es absurdo, por lo que $S=\emptyset$. Lo que traducido quiere decir que para todo $n\in\mathbb{N}$, existe un único $x\in X$ tal que $(n,x)\in g$. Es decir, que $g$ sí es una función.

  • Demostremos que $g$ satisface las dos propiedades del Teorema.

Ya vimos que $g\in \Re$, por lo que $g(0)=x_{0}$. Sea ahora $n\in \mathbb{N}$ y $x=g(n)$, de nuevo, como $g\in\Re$, tenemos que $g(\sigma(n))=f(x)=f(g(n))$.

  • Por último, demostremos la unicidad de $g$.

Si $h:\mathbb{N}\longrightarrow X$ es otra función que satisface las características del Teorema, consideremos $A=\{n\in\mathbb{N}\mid h(n)=g(n)\}$, como $h(0)=x_{0}=g(0)$. Tenemos que $0\in A$. Supongamos que $n\in A$. Tendríamos entonces que $h(\sigma(n))=f(h(n))=f(g(n))=g(\sigma(n))$, es decir que $\sigma(n)\in A$, por lo que $A$ es inductivo, y por consiguiente, $A=\mathbb{N}$. En resumen, $h$ y $g$, coinciden en dominio, codominio y regla de correspondencia, entonces $h=g$, como debíamos probar.

$\square$

La demostración del teorema de Recursión Fuerte requiere de algunos detalles adicionales, pero puede deducirse del teorema de Recursión Débil. Dejamos esto como uno de los problemas de la tarea moral.

Más adelante…

El teorema de Recursión será la mayor herramienta que tendremos para poder darle una forma más familiar a los números naturales, ya que las operaciones de suma y multiplicación, que veremos en la siguiente entrada, tendrán una definición recursiva.

Y así como el teorema de la Recursión nos permitirá definir, usaremos continuamente el principio de Inducción para poder demostrar las numerosas propiedades que estas operaciones tienen.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra el 5° Axioma de Peano a partir del Principio de Inducción.
  2. Demuestra que si $n\neq 0$ entonces existe $m$ tal que $\sigma(m)=n$.
  3. ¿Qué función $g$, satisface que $g(0)=1$ y $g(\sigma(n))=2\cdot g(n)$? ¿Qué función $f$ estamos ocupando?
  4. ¿Qué conjunto y que función nos permitiría definir la sucesión de Fibonacci $a_{n+2}=a_{n+1}+a_{n}$ usando el Teorema de Recursión?
  5. Demuestra el Teorema de Recursión Fuerte, usando el Débil. Sugerencia: Considera, $F(n,x):\mathbb{N}\times X\longrightarrow \mathbb{N}\times X$, como $F(n,x)=(\sigma(n),f_{\sigma(n)}(x))$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Analítica I: El espacio vectorial R²

Por Elsa Fernanda Torres Feria

Introducción

En la entrada anterior llegamos a una equivalencia entre un punto en el plano euclidiano y parejas de números $(x,y)$, donde $x, y \in \mathbb{R}$. Podemos imaginarnos entonces el conjunto de todas las parejas ordenadas de números reales como $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$, donde $\times$ hace referencia al producto cartesiano (en general para conjuntos $A$ y $B$, $A \times B := \{ (a,b) : a \in A, b \in B \}$).

Con esto en mente, es posible imaginaros a los postulados de Euclides ya no como afirmaciones incuestionables, sino como consecuencias de una geometría construida a partir de las parejas de números reales. Ahora nuestra base será la teoría de conjuntos, los números reales y las parejas ordenadas. Usaremos los axiomas y propiedades que tienen para construir nuestros objetos.

Para entender mejor cómo se trabajará en el espacio formado por todas las parejas $(x,y)$ de reales, comencemos esta entrada hablando de los números reales.

Los números reales

Como advertencia, esta sección tiene muchos símbolos. Es normal. Muy muy a grandes rasgos, lo que queremos recordar aquí es que los reales se pueden sumar, restar, multiplicar y dividir (excepto divisiones entre cero). Y que todas estas operaciones tienen propiedades bonitas.

A partir de este punto, pensaremos en los reales como algo que sabemos con seguridad puede ser construido, y tomaremos como ciertos todos los axiomas que éstos cumplen. Los axiomas se pueden resumir en la siguiente frase, que desglosaremos una vez enunciada:

«$\mathbb{R}$ es un campo ordenado y completo»

Que $\mathbb{R}$ sea un campo hace referencia a que como conjunto, tiene las operaciones de suma ($+$) y producto ($\cdot$) definidas tales que:

  • $\mathbb{R}$ con la suma, es un grupo conmutativo.
    • La suma es asociativa, es decir: $ \forall a,b,c \in \mathbb{R}$, se tiene que $(a+b)+c=a+(b+c)$ ($\forall$ se lee para todo).
    • Existe $ 0 \in \mathbb{R}$ tal que $\forall a \in \mathbb{R}$, $a+0=a=0+a$.
    • Existe $ b \in \mathbb{R}$ tal que $a+b=0=b+a$. ($b=-a$).
    • Es conmutativa, es decir, $\forall a,b \in \mathbb{R}$, se tiene que $a+b=b+a$.
  • $\mathbb{R} \setminus \{0\}$ (los reales sin el elemento cero) con el producto, es un grupo conmutativo; de manera análoga a la suma tenemos:
    • El producto es asociativo: $\forall a,b,c \in \mathbb{R}$, se tiene que $(ab)c=a(bc)$ (nota que estamos omitiendo el símbolo de multiplicación).
    • Existe $ 1 \in \mathbb{R}$ tal que $\forall a \in \mathbb{R}$, $a\cdot1=a=1\cdot a$.
    • Existe $ b \in \mathbb{R}$ tal que $ab=1=ba$. ($b=\frac{1}{a}$).
    • Es conmutativo, es decir, $\forall a,b \in \mathbb{R}$, se tiene que $ab=ba$.
  • La suma y el producto se distribuyen: $\forall a,b,c \in \mathbb{R}$, se tiene que $a(b+c)=ab+ac$.

Que sea ordenado nos indica que tenemos una relación que es un orden total y es compatible con la suma y el producto. $\forall a,b,c\in \mathbb{R}$:

  • Se cumple exactamente una de las siguientes relaciones: $a<b$, $b<a$, $a=b$.
  • Si $a \leq b$ y $b \leq c$, entonces $a \leq c$.
  • Si $a \leq b$, entonces $a+c \leq b+c$.
  • Si $a,b \geq 0$ , entonces $ab \geq 0$.

Por último, que sea completo es una noción formal en la cual no nos enfocaremos mucho, pero que a grandes rasgos quiere decir que en los números reales «no hay hoyos», lo cual es muy importante para cuando se quiere usar este sistema numérico para hacer cálculo diferencial e integral.

Por lo que vimos en la entrada anterior, podemos representar cualquier punto en el espacio euclidiano con una pareja de números reales. Ya que hemos dado un pequeño repaso formal de la estructura de $\mathbb{R}$ (todo esto lo cumple cada entrada de un punto $(a,b)$), demos el siguiente paso y exploremos el espacio vectorial $\mathbb{R}^2$.

Espacio vectorial $\mathbb{R}^2$

Comencemos definiendo formalmente un concepto que exploramos en la entrada anterior: el vector.

Definición. Un vector $v$ con dos entradas, es una pareja ordenada de números reales $v=(x,y)$.

Ejemplos. Algunos vectores en $\mathbb{R}^2$ son:

  • $(1,4)$
  • $(-3,2)$
  • $(\pi,1)$
  • $(2.3,-e)$

Utiliza el siguiente interactivo de GeoGebra: mueve el punto $C$ y explora cómo el vector cambia con esta acción.

Definición. El conjunto de todos los vectores con dos elementos (ambos reales) es $\mathbb{R}^2$. En símbolos tenemos que:

$\mathbb{R}^2=\{(x,y): x,y \in \mathbb{R} \}$

Si realizaste la tarea moral anterior, te habrás dado cuenta que podemos encontrar ciertas regiones geométricas al imponer condiciones sobre las entradas de un vector. En la tarea se hace referencia a áreas muy determinadas conocidas como cuadrantes, pero no son las únicas regiones existentes. Hagamos un ejercicio de esto.

Problema. Ubica dentro del plano de dos dimensiones las siguientes regiones geométricas definidas al imponer ciertas restricciones en las entradas de un vector:

  1. $\{ (x,y) \in \mathbb{R}^2 : x \leq 0, y \geq 1 \}$
  2. $\{ (x,y) \in \mathbb{R}^2 : x \geq \pi , y \leq \pi \}$
  3. $\{ (x,y) \in \mathbb{R}^2 : x \geq y \}$

Solución. Para encontrar estas áreas basta con ubicar la región en la que se vale cada condición por separado. La intersección de las regiones será la región que buscamos. Esto se vale para los dos primeros incisos.

Utiliza el siguiente interactivo de GeoGebra en el que ya están las condiciones para visualizar la primera región geométrica para localizar la región del segundo inciso.

¿Qué pasa con el inciso 3? Puede parecer más complicado porque ahora las coordenadas están conectadas en una sola restricción. Antes de introducir la condición en GeoGebra, imagina cuál es la región en la que la condición se cumple.

Ahora, utilicemos el siguiente interactivo para usar lo que ya sabemos y determinar intuitivamente cuál es el área que determina la condición $x \geq y$. Pensemos en el caso específico $x = 1$, $y$ puede ser a lo más $1$ ($y \leq 1$); al restringir nuestra $x$ podemos obtener dos condiciones a partir de las cuales ya sabemos cómo encontrar la región en las que se cumplen. Si ves el interactivo, notarás que la intersección de las regiones es únicamente la recta definida por $x=1$ pero no toda, sino que sólo a partir de cuando $y=1$ hacia abajo. ¿qué pasa si mueves los deslizadores para cambiar los valores de $x$ y $y$ ? Se obtienen segmentos de recta correspondientes a un valor de $x$ fijo que comienzan cuando $y$ es menor o igual a ese valor.

Resulta que estos segmentos de recta se obtienen para cualquier valor de $x$. ¿qué pasa ahora cuando unes todas estas líneas? En este punto es importante recordar que en $\mathbb{R}$ hay un real entre cada dos reales. Entonces, se puede construir el segmento de recta del que hemos hablado. Por lo que la únión de todas estas rectas define un área, ¿ya imaginas cuál es? Verifícalo al escribir la condición $y \leq x$ en el interactivo anterior.

$\triangle$

La suma en $\mathbb{R}^2$

Regresando a la teoría, el siguiente paso lógico después de definir ciertos objetos (en este caso vectores), es averiguar cómo operan. Definamos entonces la suma y el producto escalar de vectores haciendo uso del conocimiento que ya tenemos acerca de las operaciones en los reales.

Definición. Sean $v_1, v_2 \in \mathbb{R}^2$ dados por $v_1=(x_1,y_1)$ y $v_1=(y_1,y_2)$. Su suma está dada por el vector

$v_1+v_2 := (x_1+x_2,y_1+y_2)$

Esto es, que la suma de vectoes se hace entrada a entrada y esta bien definida pues al final lo que estamos sumando son números reales.

Ejemplos.

  • $(-3,4) + (2,2)=(-3+2,4+2)=(-1,6)$
  • $(7,4) + (2,1)=(7+2,4+1)=(9,5)$
  • $(-3.-7) + (1,2)=(-3+1,-7+2)=(-2,-5)$

En el siguiente interactivo podrás ver el primer ejemplo de manera gráfica en el plano, donde los vectores de colores son los que se suman y el vector negro es el resultante.

Además de poder obtener el vector suma de manera algebraica hay otra manera más de hacerlo: En el mismo interactivo hay una copia de cada vector de color, escoge uno de los dos vectores de la suma y transpórtalo por completo y paralelo a sí mismo para que su punto de inicio no sea el origen, si no el punto donde termina el otro vector. Por ejemplo, deja el vector azul en su lugar y transporta al verde para que su punto de partida sea la flecha del vector azul. Si lo hiciste correctamente, notarás que ahora ese vector transportado termina en donde el vector resultante de la suma (negro) termina. Resulta que si quieres sumar dos vectores, puedes avanzar desde el origen hasta las coordenadas de uno de ellos y ahora »tomando» como origen ese punto al que llegaste, avanzar las coordenadas del otro vector. Al final llegarás al punto del vector resultante de la suma. Este método es conocido como el método del paralelogramo.

El producto escalar en $\mathbb{R}^2$

Otra operación importante en $\mathbb{R}^2$ es el producto escalar, que intuitivamente combina a un real y a un vector y «reescala» al vector por el factor dado por el número real.

Definición. Para $r$ un número real y $v_1 \in \mathbb{R}^2$ dado por $v_1=(x,y)$, el producto escalar $rv$ está dado por:

$rv:=(rx,ry)$

Ejemplos.

  • $4(7,3.5)=(28,14)$
  • $2(5,3)=(10,6)$
  • $2.3(6,3)=(13.8,6.9)$

Utiliza el siguiente interactivo moviendo el deslizador del valor $a$ que multiplica al vector $(5,3)$ para interiorizar lo que implica multiplicar un vector por un escalar. Si lo notas, lo único que hace es reescalarlo, y si el escalar es negativo, entonces le cambia el sentido, pero no la dirección.

Una última cosa que es muy importante mencionar es que hasta ahora no hemos dicho cómo multiplicar dos (o más vectores). Sólo tenemos un producto que toma un escalar (un real) y lo multiplica con un vector, cuyo resultado acaba siendo un vector.

Más adelante…

En esta entrada dimos un breve repaso acerca de los números reales que nos sirvió para entender el espacio $\mathbb{R}^2$ y las operaciones dentro de este. El desarrollo aquí hecho servirá como herramienta para construir la representación algebraica de una recta.

Tarea moral

  • Sean $v=(8,9)$, $w=(3,-2)$, $u=(-5-4)$. Calcula y dibuja las siguientes operaciones de vectores:
    • $5v+3u$
    • $u-3w$
    • $2.5v+9w-u$
  • Demuestra en $\mathbb{R}$ que si $-1$ es el inverso aditivo de $1$, entonces $-a$ es el inverso aditivo de $a$.
  • Por los axiomas, sabemos que la conmutatividad se vale para la suma de reales, es decir, que si $a$ y $b$ son reales, entonces $a+b=b+a$. Pero en esta entrada definimos una nueva suma: la de vectores. De entrada, no sabemos qué propiedades cumple. A partir de las definiciones que dimos, y de los axiomas de los reales, demuestra que también se tiene $u+v=v+u$ para $u$ y $v$ vectores en $\mathbb{R}^2$.
  • Determina, si es posible, las regiones siguientes geométricas. Si dicha región es vacía, argumenta por qué.
    • $\{ (x,y) \in \mathbb{R}^2 : x \leq y, y \geq x \}$
    • $\{ (x,y) \in \mathbb{R}^2 : x \leq y, y > x \}$
    • $\{ (x,y) \in \mathbb{R}^2 : x \leq 3, y > \pi \}$
  • En el interactivo de producto escalar siempre sucede que la línea que pasa por el extremo del vector verde y el extremo del vector rojo siempre pasa por el origen. ¿Por qué sucede esto?

Álgebra Lineal II: Propiedades de eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En la entrada anterior platicamos acerca de eigenvectores, eigenvalores y eigenespacios de matrices y transformaciones lineales. Vimos algunos ejemplos básicos. En esta entrada profundizaremos en el estudio de estos objetos y exploraremos diversas de sus propiedades. Comenzaremos con algunas observaciones inmediatas. Después, veremos cómo encontrar de manera sencilla los eigenvalores de las matrices triangulares superiores. También veremos que «eigenvectores correspondientes a eigenvalores diferentes son linealmente independientes«. Finalmente, conectaremos estas nuevas ideas con un objeto que estudiamos previamente: el polinomio mínimo.

Primeras observaciones

A partir de la proposición de la entrada anterior que nos dice cómo calcular eigenvalores se desprenden algunas consecuencias sencillas pero útiles.

Por ejemplo, recuerda que el determinante de una matriz y su transpuesta es igual. En particular, si $A\in M_n(F)$ entonces

\begin{align*}
\det(\lambda I_n -\ ^{t}A)= \det(\ ^{t}(\lambda I_n- A))= \det(\lambda I_n-A).
\end{align*}

Luego $\det (\lambda I_n-A)=0$ si y sólo si $\det(\lambda I_n-\ ^{t}A)=0$. Recordando que las raíces de estos polinomios son precisamente los eigenvalores, se sigue que los eigenvalores de $A$ y $^{t}A$ son iguales.

Por otro lado, como los eigenvalores son las raíces de un polinomio de grado $n$, sabemos que hay a lo más $n$ soluciones. Entonces toda matriz tiene a lo más $n$ eigenvalores.

Esto también ocurre para transformaciones lineales en espacios de dimensión finita y lo podemos enunciar como sigue:

Corolario. Sea $V$ un espacio de dimensión finita sobre $F$ y $T:V\to V$ lineal. Entonces $T$ tiene a lo más $\dim V$ eigenvalores distintos.

Sin embargo, si el espacio no es de dimensión finita no podemos hacer tal afirmación. Si $V$ es el espacio de todas las funciones suaves (es decir con derivadas de todos los órdenes) de $\mathbb{R}$ en $\mathbb{R}$ y $T:V\to V$ es la función lineal que a cada función la manda en su derivada, entonces tenemos «muchos» eigenvalores. Haciendo esto más preciso, para cada real $r$ la función $e^{rx}$ es un eigenvector con eigenvalor $r$ puesto que

\begin{align*}
T(e^{rx})= \left(e^{rx}\right)’= re^{rx}.
\end{align*}

Así, tenemos al menos tantos eigenvalores como números reales. De hecho, estos son exactamente los eigenvalores de $T$, lo cual puede demostrarse mediante el teorema de existencia y unicidad de soluciones de ecuaciones diferenciales, que estudiarás en otro momento de tu formación matemática.

Matrices triangulares superiores

Parte del interés de «triangular» matrices (es decir, encontrar una matriz similar que sea triangular superior) está dada por la facilidad de calcular sus eigenvalores. Exploramos esto mediante los siguientes dos problemas.

Problema 1. Sea $A=[a_{ij}]$ una matriz triangular superior en $M_n(F)$. Demuestra que los eigenvalores de $A$ son precisamente los elementos en la diagonal.

Solución. Ya establecimos que encontrar los valores propios se reduce a encontrar las raíces del polinomio $\det(\lambda I_n-A)$. Notamos que si $A$ es triangular superior, entonces $\lambda I_n-A$ también es triangular superior. Más aún, las entradas de la diagonal son simplemente $\lambda-a_{ii}$. Pero sabemos que el determinante de una matriz triangular superior es el producto de sus entradas diagonales. Así

\begin{align*}
\det(\lambda I_n -A)= (\lambda-a_{11})(\lambda-a_{22})\cdots (\lambda -a_{nn})
\end{align*}

cuyas raíces son exactamente los elementos $a_{ii}$.

$\square$

Podemos combinar el resultado anterior con otras propiedades de matrices triangulares superiores para resolver a mano algunos problemas que de entrada parecen complicados.

Problema 2. Encuentra los eigenvalores de $A^{3}$ donde

\begin{align*}
A=\begin{pmatrix} 1 & 2 &3 &4 \\ 0 & 5 & 6 & 7\\ 0 & 0 & 8 & 9\\ 0 &0 &0 & 10\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. En realidad no hace falta hacer el producto de matrices para encontrar la matriz $A^3$. Sabemos que el producto de dos matrices triangulares superiores es triangular superior y que de hecho las entradas de la diagonal son solo el producto de las entradas correspondientes. Es decir, si $[a_{ij}]$ y $[b_{ij}]$ son dos matrices triangulares superiores, las entradas de la diagonal son $a_{ii}b_{ii}$. En nuestro caso, las entradas de la diagonal son $1^3, 5^3, 8^3$ y $10^3$, y por el problema anterior, estos son precisamente los eigenvalores de $A^3$.

$\triangle$

Relaciones con independencia lineal y combinaciones polinomiales

El resultado principal de esta entrada es el siguiente teorema, que en particular afirma que si dos eigenvalores son distintos, sus eigenvectores son linealmente independientes. En realidad, el resultado es un poco más general y lo enunciamos a continuación

Teorema. Sean $\lambda_1,\dots, \lambda_k$ eigenvalores distintos dos a dos de una transformación lineal $T:V\to V$. Entonces los $\lambda_i$-eigenespacios están en posición de suma directa.

Demostración. Por definición, tenemos que demostrar que si tenemos una colección $\{v_i\}$ de vectores con $T(v_i)=\lambda_i v_i$ y $v_1+\dots+v_k=0$ entonces $v_1=\dots=v_k=0$. Procedemos por inducción sobre $k$.

Nuestro caso base es una tautología, pues si $k=1$ entonces tenemos que mostrar que si $v_1=0$ entonces $v_1=0$.

Asumamos que el resultado se cumple para $k-1$ y verifiquemos que se cumple para $k$. Supongamos que $v_1+\dots+v_k=0$. Aplicando $T$ de ambos lados de esta igualdad llegamos a

\begin{align*}
T(v_1+\dots+v_k)&= T(v_1)+\dots+T(v_k)\\
&=\lambda_1 v_1+\dots +\lambda _k v_k=0.
\end{align*}

Por otro lado, si multiplicamos a la igualdad $v_1+\dots+v_k=0$ por $\lambda_k$ de ambos lados llegamos a

\begin{align*}
\lambda_k v_1+\dots +\lambda _k v_k=0.
\end{align*}

Sustrayendo y factorizando estas dos igualdades se sigue que

\begin{align*}
(\lambda_k -\lambda_1)v_1+\dots +(\lambda_k-\lambda_{k-1})v_{k-1}=0.
\end{align*}

Esto es una combinación lineal de los primeros $k-1$ vectores $v_i$ igualada a cero. Luego, la hipótesis inductiva nos dice que $(\lambda_k-\lambda_i)v_i=0$ para todo $i=1,\dots, k-1$. Como $\lambda_k\neq \lambda_i$ entonces $\lambda_k-\lambda_i\neq 0$ y entonces $v_i=0$. Sustituyendo en la igualdad original, esto implica que $v_k=0$ inmediatamente.

$\square$

Enseguida veremos que si formamos un polinomio $P(T)$, entonces $P(\lambda)$ es un eigenvalor de $P(T)$ para cualquier eigenvalor $\lambda$ de $T$. Esto lo veremos en el siguiente problema.

Problema. Sea $\lambda$ un eigenvalor de $T:V\to V$ y sea $P$ un polinomio en una variable con coeficientes en $F$. Demuestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

Solución. Como $\lambda$ es un eigenvalor de $T$, existe $v$ un vector no cero tal que $T(v)=\lambda v$. Inductivamente, se cumple que $T^{k}(v)=\lambda^{k} v$. En efecto

\begin{align*}
T^{k+1}(v)&=T(T^{k}(v))\\
&= T(\lambda^{k} v)\\
&= \lambda^{k}T(v)\\
&=\lambda^{k+1}v.
\end{align*}

Usando esto, si $P(X)=a_n X^{n}+\dots+a_1 X+a_0$ se tiene que

\begin{align*}
P(T)(v)&= a_nT^{n}(v)+\dots +a_1 T(v)+ a_0 v\\
&= a_n\lambda^{n}v+\dots +a_1\lambda v+a_0v\\
&= (a_n\lambda^{n}+\dots +a_1\lambda +a_0)v\\
&= P(\lambda) v.
\end{align*}

Esto muestra que $P(\lambda)$ es un eigenvalor de $P(T)$.

$\square$

Relación con el polinomio mínimo

Una consecuencia del problema previo es la siguiente proposición.

Proposición. Sea $A\in M_n(\mathbb{C})$ una matriz y $P\in \mathbb{C}[X]$ un polinomio tal que $P(A)=O_n$. Entonces cualquier eigenvalor $\lambda$ de $A$ satisface $P(\lambda)=0$.

Solución. Por el problema anterior, $P(\lambda)$ es un eigenvalor de $P(A)$, pero $P(A)=O_n$ y el único eigenvalor de la matriz cero es $0$. Luego $P(\lambda)=0$.

$\square$

De esto, podemos por fin establecer una conexión con el polinomio mínimo, que enunciamos en forma de teorema.

Teorema. Sea $T:V\to V$ una transformación lineal sobre un espacio de dimensión finita sobre un campo $F$. Los eigenvalores de $T$ son precisamente las raíces en $F$ del polinomio mínimo $\mu_T$.

Demostración. Dado que $\mu_T(T)=0$, el problema que acabamos de resolver nos dice que todos los eigenvalores de $T$ son raíces de $\mu_T$.

Conversamente, supongamos que existe $\lambda$ una raíz de $\mu_T$ que no es eigenvalor. Entonces la transformación $T-\lambda \operatorname{Id}$ es invertible. Como $\mu_T(\lambda)=0$, podemos factorizar la raíz y escribir $\mu_T(X)=(X-\lambda)Q(X)$ para algún $Q\in F[X]$. Dado que $\mu_T(T)=0$ deducimos que

\begin{align*}
(T-\lambda \operatorname{Id})\circ Q(T)=0.
\end{align*}

Recordando una vez más que $T-\lambda \operatorname{Id}$ es invertible, esta ecuación implica que $Q(T)=0$. Ya que $\mu_T$ es el polinomio mínimo, por una propiedad que mostramos anteriormente obtendríamos que $\mu_T$ divide a $Q$. Pero esto se contradice con la igualdad $\mu_T(X)=(X-\lambda)Q(X)$, que nos dice que $\mu_T$ tiene grado mayor. Esto concluye la demostración.

$\square$

Ejercicios

Terminamos con un par de ejercicios para repasar el material de estas secciones. El primero de entre ellos toma prestados nombres de la probabilidad (lo lo cuál puede sugerirte en qué tipo de texto te podrías encontrar con estas matrices).

Problema 1. Una matriz $A\in M_n(\mathbb{R})$ se dice estocástica si $a_{ij}\geq 0$ para todo $i,j\in \{1,\dots, n\}$ y $\sum_{j=1}^{n} a_{ij}=1$ para todo $i\in \{1,\dots, n\}$.

Demuestra que $1$ es un eigenvalor de cualquier matriz estocástica.

Solución. Consideremos el vector $v=(1,\dots, 1)$. Nota que

\begin{align*}
A\cdot v&= \begin{pmatrix}
a_{11} & a_{12} &\dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots & \dots\\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{pmatrix} \cdot \begin{pmatrix}
1\\
1\\
\vdots\\
1
\end{pmatrix}\\
&= \begin{pmatrix}
a_{11}+a_{12}+\dots+a_{1n}\\
a_{21}+a_{22}+\dots+a_{2n}\\
\vdots\\
a_{n1}+a_{n2}+\dots+a_{nn}
\end{pmatrix}\\
&=\begin{pmatrix}
1\\
1\\
\vdots\\
1\end{pmatrix}.
\end{align*}

Es decir $A\cdot v=v$, por lo que $v$ es un eigenvector de $A$ con eigenvalor asociado $1$.

$\square$

Problema 2. Sea $V$ el espacio de todos los polinomios con coeficientes reales. Sea $T:V\to V$ la transformación lineal dada por $P(X)\mapsto P(1-X)$. ¿Cuáles son los eigenvalores de $T$?

Solución. Observa que
\begin{align*}T^2(P)&=T\circ T(P)\\&= T(P(1-X))\\&= P(1-(1-X))\\&= P(X).\end{align*} Así $T^2=\operatorname{Id}$, o bien $T^2-\text{Id}=0$. Luego, el polinomio mínimo $\mu_T$ tiene que dividir al polinomio $X^2-1$. Sin embargo, los únicos factores de este polinomio son $X-1$ y $X+1$. Dado que $T\neq \pm \operatorname{Id}$ se tiene que $\mu_T(X)=X^2-1$. Por el último teorema que vimos, los eigenvalores de $T$ son precisamente las raíces de $\mu_T$ en $\mathbb{R}$, es decir $\pm 1$.

$\triangle$

Más adelante…

En las entradas subsecuentes iremos más a fondo en el concepto de polinomio característico, para eventualmente llegar al teorema de Cayley-Hamilton. Para eso tendremos que equiparnos de bastante teoría y repasar varias propiedades de dicho polinomio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $V$ el espacio de polinomios con coeficientes reales de grado a lo más $n$. Encuentra los eigenvalores de la transformación $T:P(X)\mapsto P(X)-(1+X)P'(X)$.
  • Si $V$ es el espacio de polinomios con coeficientes reales, encuentra los eigenvalores de $T:P(X)\mapsto P(3X)$.
  • Sean $A,B$ matrices en $M_n(\mathbb{C})$ tales que $AB-BA=B$. Demuestra que para todo $k\geq 1$ se cumple que $AB^{k}-B^{k}A=kB^{k}$ y de esto deduce que $B$ es nilpotente: existe $m$ tal que $B^{m}=0$. Sugerencia: ¿Cuántos eigenvalores puede tener $T:X\mapsto AX-XA$?
  • ¿Puedes generalizar el último problema de la sección de matrices triangulares superiores?
  • Sea $A$ una matriz cuadrada con entradas reales. Supón que $\lambda$ es un real positivo que es eigenvalor de $A^2$. Demuestra que $\sqrt{\lambda}$ o $-\sqrt{\lambda}$ es un eigenvalor de $A$. ¿Sucederá a veces que sólo una de estas es eigenvalor?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior II: La construcción de los naturales

Por Roberto Manríquez Castillo

Introducción

En la entrada pasada presentamos los axiomas de Peano como una formalización de por qué los naturales se comportan como nuestra intuición nos indica. Sin embargo, también vimos que, por si mismos, los axiomas de Peano no nos dicen cómo hacer una construcción de los naturales a partir de conceptos previos. Para intentar lograr esto, introdujimos la definición del sucesor de un conjunto arbitrario y empezamos a iterarla en el conjunto vacío para generar una lista de conjuntos, que relacionamos con los números naturales que conocemos.

Por último, notamos que ocupar esta idea, al menos de forma directa, tiene el problema de dar «pasitos muy chicos», que no nos permitirían acabar nunca de definir a todos los números naturales y, en consecuencia, que no nos dejaría definir en sí el conjunto de los naturales.  Es por eso que en esta entrada acabaremos, de una vez por todas, con el problema de definir con precisión el conjunto de números naturales. Veremos que, en efecto, esta construcción que haremos se apega no sólo a nuestra intuición, sino también a los axiomas de Peano.

Conjuntos inductivos

Antes de empezar con la tarea de definir a los números naturales, recordamos la definición del sucesor de un conjunto.

Definición. Si $A$ es un conjunto, definimos el sucesor de $A$, como $\sigma(A):=A\cup \{A\}$.

El conjunto que queremos definir es el conjunto $\mathbb{N}$ de números naturales. Como mencionamos en las entrada pasada, buscamos de manera formal lograr que \[\mathbb{N}=\{\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…\},\] por lo que $\mathbb{N}$ satisfaría dos propiedades que englobamos en la siguiente definición.

Definición. Diremos que un conjunto $S$ es inductivo si cumple que:

  1. $\emptyset\in S$ y
  2. si $X\in S$, entonces $\sigma(X)\in S$.

Notemos que estas dos propiedades son muy similares a los dos primeros axiomas de Peano.

Hay que remarcar que aunque no sabemos que exista un conjunto tal que sus elementos son $\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…$, en caso de que sí existiera, sería un hecho que tal conjunto sería inductivo.

Otro posible ejemplo de un conjunto inductivo podría verse como \[\{…\sigma(\sigma(\{\{\emptyset\}\})), \sigma(\{\{\emptyset\}\}), \{\{\emptyset\}\},\emptyset,\sigma(\emptyset),\sigma(\sigma(\emptyset)),…\}.\]

Intuitivamente podemos notar que si $S$ es un conjunto inductivo, entonces, $\mathbb{N}\subset S$, por lo que uno podría aventurarse y definir a los naturales como $$\{x:  x \text{ está en todo conjunto inductivo}\}.$$

Sin embargo, los axiomas que de teoría de conjuntos que tenemos hasta ahora no nos permiten saber si se puede construir un conjunto así.

¿Qué es lo que sí nos permiten hacer los axiomas de teoría de conjuntos? Si tenemos una colección de conjuntos, podemos hacer la intersección de todos ellos. Esto motiva la siguiente proposición acerca de la intersección de conjuntos inductivos.

Proposición. Si $B\neq\emptyset$ es un conjunto tal que todos sus elementos son conjuntos inductivos, entonces $\bigcap {B}$ es también un conjunto inductivo.

Demostración. Como $B\neq\emptyset$, sabemos que la intersección sí es un conjunto. Veamos que este conjunto es inductivo. Antes de hacer esto recordemos que, por definición, los elementos de $\bigcap{B}$ son precisamente, todos los $x$ tales que $x\in Y$ para todo $Y\in B$.

Para ver que $\bigcap B$ es inductivo, necesitamos verificar que cumpla las dos características de la definición:

  1. Veamos primero que $\emptyset\in\bigcap B$.
    Sea $Y\in B$ arbitrario. Como los elementos de $B$ son inductivos, $\emptyset\in Y$, y como $Y$ es arbitrario, podemos concluir que $\emptyset$ está en todos los elementos de $B$. Esta es justo la definición de que $\emptyset\in \bigcap B$.
  2. Veamos ahora que $x\in \bigcap B \Rightarrow \sigma(x)\in \bigcap B$.
    Sea $x\in \bigcap B$ y sea $Y\in B$. Como $x\in\bigcap B$, entonces $x\in Y$ y como $Y$ es inductivo, $\sigma(x)\in Y$. De nuevo, como $Y$ fue arbitrario, se sigue que $\sigma(x)$ está en todos los elementos de B, por lo que $\sigma(x)\in\bigcap B$.

Con esto demostramos que $\bigcap B$ es inductivo.

$\square$

En otras palabras, «la intersección arbitraria de conjuntos inductivos es un conjunto inductivo».

El axioma del infinito y la construcción de los naturales

Por todo lo escrito anteriormente, y meditando el hecho de que si partimos de los primeros axiomas de la teoría de conjuntos, sólo podemos crear conjuntos con una cantidad finita de elementos, parece ser que la existencia de un conjunto como los naturales no puede ser deducida con las herramientas que tenemos. Esto en efecto es así. Por ello, debemos introducir un nuevo axioma de la teoría de conjuntos.

Axioma (del infinito). Existe un conjunto inductivo.

El axioma del infinito no nos garantiza inmediatamente la existencia de $\mathbb{N}$, ya que como se vio en un ejemplo más arriba, $\mathbb{N}$ no es el único conjunto inductivo. Sin embargo, esta es la última pieza que necesitamos para poder dar la construcción de los naturales. Hacemos esto a continuación.

Sea $A$ algún conjunto inductivo (que nos garantiza el axioma del infinito), y consideremos $B=\{X\subset A \mid X \text{ es inductivo}\}$ (¿por qué $B$ es un conjunto?). Notemos que $A\in B$ por lo que $B$ es no vacío, por lo tanto, podemos pensar en su intersección, $\bigcap B$. Como los elementos de $B$ son conjuntos inductivos, por la proposición anterior concluimos que $\bigcap B$ es inductivo. A esta intersección la denotaremos como $\mathbb{N}_{A}$. ¡Ya apareció por primera vez el símbolo de números naturales! Pero tiene algo adicional: usamos un subíndice $A$ ya que, a primera vista, su construcción depende del conjunto inductivo $A$ con el que empezamos. Sin embargo, justamente, el paso siguiente será ver que $\mathbb{N}_{A}$ no depende de $A$.

Para ello, primero hacemos la observación de que si $Y\subset A$ es inductivo, entonces $\mathbb{N}_{A}\subset Y$, la cual te dejamos corroborar usando las propiedades de la intersección. Dicho esto, probamos lo siguiente.

Proposición. Si $C$ es otro conjunto inductivo, entonces $\mathbb{N}_{A}= \mathbb{N}_{C} $.

Demostración. Consideremos $\mathbb{N}_{A} \cap \mathbb{N}_{C} $, el cual sabemos que es un conjunto inductivo. Como $\mathbb{N}_{A} \cap \mathbb{N}_{C} \subset A$, por la observación anterior, concluimos que $\mathbb{N}_{A} \subset \mathbb{N}_{A} \cap \mathbb{N}_{C} $. Como la intersección está contenida en cada intersecando, $\mathbb{N}_{A} \subset \mathbb{N}_{A} \cap \mathbb{N}_{C}\subset\mathbb{N}_{A} $, por lo que $\mathbb{N}_{A} = \mathbb{N}_{A} \cap \mathbb{N}_{C} $. Haciendo las mismas observaciones para $\mathbb{N}_{C}$, concluimos que $\mathbb{N}_{A} = \mathbb{N}_{A} \cap \mathbb{N}_{C}= \mathbb{N}_{C} $, con lo que concluimos la prueba.

$\square$

Como sabemos ahora que el conjunto $\mathbb{N}_{A}$ no depende del conjunto $A$ inductivo con el que empecemos, finalmente podemos definir al conjunto de números naturales.

Definición. Si $A$ es algún conjunto inductivo, definimos al conjunto de los números naturales $\mathbb{N}$ como $\mathbb{N}:=\mathbb{N}_{A}$. Definimos al cero como $0:=\emptyset$ y la función sucesor para los naturales como $\sigma:\mathbb{N}\to \mathbb{N}$ tal que $\sigma(n)=n\cup \{n\}$.

Nuestra construcción de los naturales cumple los axiomas de Peano

Para concluir esta entrada veremos que la construcción de los naturales que dimos en efecto da un modelo para los axiomas de Peano. En realidad, la construcción de la función sucesor, la noción de conjunto inductivo y la forma en la que creamos $\mathbb{N}$ fueron todas ellas siempre motivadas por estas ideas, por lo que no deberá ser difícil probar que en verdad todo funciona como queremos.

Teorema. El conjunto $\mathbb{N}$ junto con el $0$ y la función $\sigma$ que definimos satisfacen los cinco axiomas de Peano.

Demostración. Veamos que se verifican los cinco axiomas de Peano.

Axioma 1. $0\in\mathbb{N}$.

Como $\mathbb{N}$ es inductivo, $0=\emptyset\in\mathbb{N}$.

Axioma 2. Si $n\in \mathbb{N}$, entonces $\sigma(n)\in\mathbb{N}$.

Si $n\in\mathbb{N}$, como $\mathbb{N}$ es inductivo, se sigue que $\sigma(n)\in\mathbb{N}$.

Axioma 3. Para toda $n\in\mathbb{N}$ se tiene que $\sigma(n)\neq 0$.

Como $\sigma(n)=n\cup\{n\}$, tenemos que $n\in\sigma(n)$ por lo que $\sigma(n)\neq\emptyset=0$.

Axioma 4. Si $\sigma(n)=\sigma(m)$, entonces $n=m$.

Como $\sigma(n)=\sigma(m)$ y $n\in\sigma(n)$, entonces $n\in\sigma(m)= m\cup\{m\}$. Como $n$ está en una unión, hay dos opciones: $n\in\{m\}$ o $n\in m$. Si $n\in \{m\}$, entonces $n=m$ y concluimos.

En otro caso, $n\in m$. Veamos que podemos decir de $m$. Procediendo análogamente, podemos notar que $m=n$ o $m\in n$. En el primer caso, llegamos a lo que queremos. El segundo caso es imposible, pues tendríamos $n\in m\in n$ lo cual contradice el axioma de regularidad de teoría de conjuntos.

Axioma 5. Si $S\subset\mathbb{N}$ tal que $0\in S$ y $n\in S \Rightarrow \sigma(n)\in S$, entonces $S=\mathbb{N}$.

Notemos que las hipótesis de $S$ implican que éste es un conjunto inductivo. Por ello, $\mathbb{N}=\mathbb{N}_{S}\subset S\subset \mathbb{N}$. Esta cadena de contenciones implica la igualdad $\mathbb{N}=S$.

$\square$

Notemos que todos los axiomas salieron de forma casi inmediata de la definición de $\mathbb{N}$ o de la definición de $\sigma$, justo como esperábamos.

Más adelante…

Ya dimos la construcción de los naturales. También vimos que en verdad funcionan como esperábamos. nuestro siguiente objetivo será definir una suma, un producto y un orden en $\mathbb{N}$. Así como lo hicimos con los axiomas de Peano, veremos que nuestras definiciones coincidirán con las propiedades que conocemos.

Para hacer esto seguiremos pensando simultáneamente tanto en la definición conjuntista que hemos dado de los naturales, como en los axiomas de Peano. Especialemente usaremos el quinto axioma de manera repetida. Veremos cómo este axioma es básicamente el principio de inducción que conocimos en Álgebra Superior I. También veremos cómo nos ayuda a demostrar el teorema de recursión, el cual a su vez la herramienta que necesitaremos para definir con toda formalidad la suma y producto en los naturales.

Tarea moral

  1. Completa los detalles faltantes de la construcción de los naturales. En particular, sobre por qué el conjunto $B$, de los conjuntos inductivos de $A$, sí existe. Necesitarás usar un axioma muy específico de la teoría de conjuntos.
  2. Demuestra que si $x\subset y\subset\sigma(x) $, entonces $y=x$ o $y=\sigma(x)$.
  3. Si aún no estás tan acostumbrado a las intersecciones arbitrarias, considera un conjunto inductivo $A$ y la siguiente definición: $$\mathbb{N}’:=\{x\in A:  x \text{ está en todo conjunto inductivo}\}.$$ ¿Cómo se relaciona el axioma del infinito, con el hecho de que esto sí sea un conjunto?
  4. Esboza una demostración de que $\mathbb{N}’=\mathbb{N}$.
  5. Usa el quinto axioma de Peano para demostrar que para cualquier natural $n$ se cumple que $$\sigma(n)=\{0, 1, 2, …, n\}.$$
    Sugerencia. Considera el conjunto $S\subseteq \mathbb{N}$ de enteros $n$ para los cuales la afirmación anterior es cierta. Demuestra que $S$ es inductivo y usa el quinto axioma para concluir que $S=\mathbb{N}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Introducción al curso y a los números naturales

Por Roberto Manríquez Castillo

Introducción

El curso de Álgebra Superior I tuvo como principal objetivo darte las herramientas necesarias para poder entender, a grandes rasgos, la teoría que sustenta las primeras asignaturas con las que te encuentras a nivel universitario en tu trayectoria matemática. Por esta razón, en el temario se incluyeron los temas de lógica, demostraciones, teoría de conjuntos, números naturales, inducción matemática, conteo y espacios vectoriales.

Sin embargo, quedaron abiertas algunas preguntas. Por ejemplo: ¿cómo sabemos que los conjuntos con los que trabajamos existen?, ¿qué es en el fondo el conjunto de números reales que usamos en los espacios vectoriales? o ¿por qué funciona el principio de inducción?

En este sentido, el curso de Álgebra Superior II es la continuación de Álgebra Superior I. El objetivo de este curso será responder estas preguntas que en el curso anterior quedaron sin responder. Con esto en mente, usaremos las herramientas de la teoría de conjuntos que desarrollamos con anterioridad para estudiar qué son los números naturales, los enteros y hasta los complejos. Haremos una escala en cada tema para poder entender a profundidad las propiedades con las que hemos estado familiarizados desde educación básicas y para conocer otras propiedades que te servirán a lo largo de tu formación matemática.

En la parte final del curso, introduciremos otra estructura con la que seguramente ya estarás familiarizado gracias al curso de Cálculo Diferencial e Integral I: el anillo de polinomios con coeficientes reales (o complejos). Como en el caso de los temas anteriores, nos detendremos a estudiar las propiedades que caracterizan a este conjunto y las similitudes que podemos encontrar con algunos de los sistemas numéricos, como los números enteros.

La intuición detrás de formalizar a los números naturales

Desde la educación básica se aprende a contar. Con el pasar del tiempo, la idea de los números naturales y las características que se necesitan para contar “de uno en uno” seguramente se han hecho muy familiares en tu mente. A grandes rasgos, cuando contamos tenemos mente a los números $$0,1,2,3,4,5,6,7,\ldots.$$ De hecho, las propiedades de estos números probablemente son tan familiares que ya no reparas en ello a la hora de contar. Al cero le sigue el uno. Al uno le sigue el dos. Y así sucesivamente. Esto resulta práctico a la hora de contar, pero algo impráctico a la hora de establecer los fundamentos matemáticos de los números naturales. Por esta razón, tomémonos un momento para pensar en las propiedades que satisface este sistema numérico.

La primera característica en la que podemos pensar es que los números naturales cuentan con un elemento especial de entre todos los demás números, el primero de todos ellos. Dependiendo del contexto, el $0$ (y no el $1$) es considerado como el primer número natural y coincide con la intuición de que podemos «tener cero cosas», es decir, ninguna. Es importante que sepas que en cierto contextos (por ejemplo, otros cursos o áreas de las matemáticas) podría no serlo. La recomendación es que siempre uses la convención del área o comunidad con la que estés trabajando. En este curso el número $0$ siempre será un número natural.

Otra característica con la que seguramente estamos muy familiarizados es que si bien los números naturales tienen un comienzo (en nuestro caso, el $0$), por otra parte nunca terminan. No importa hasta qué número podamos haber contado, siempre podemos dar un paso más y avanzar al siguiente número. Cuando tenemos un natural, decimos entonces que siempre tiene un sucesor. Sabemos que sólo hay un sucesor para cada número.

Otra característica clave de los números naturales es que, a la hora de contar, nunca regresamos a un número por el cual ya pasamos; es decir, bajo ninguna circunstancia contamos $107, 108, 109, 37, ‘ldots$. Para enunciar esto formalmente, lo diremos en dos partes. Primero, el $0$ no es el sucesor de ningún número y segundo, en ninguna circunstancia, un mismo número es el sucesor de dos números diferentes.

Existe una quinta propiedad, tal vez más sutil que las anteriores, y es que si empezamos a contar desde el cero y vamos contando de uno en uno, entonces podremos alcanzar cualquier número natural, siempre que el tiempo lo permita.

Resulta que estas propiedades intuitivas son suficientes para definir muchas otras operaciones en los números naturales y para obtener una gran cantidad de propiedades. Es por esta razón que conviene incluirlas en nuestra formalización de los naturales, como discutimos a continuación.

Los axiomas de Peano para los números naturales

A finales del siglo XIX, los matemáticos empezaron a notar que a partir de algunas propiedades tan elementales como las que discutimos arriba, se podían probar las leyes de la aritmética que conocemos. En 1889, Giuseppe Peano, basado en las propiedades que acabamos de enunciar, dio un conjunto de axiomas que usó para estudiar sistemáticamente a los números naturales. Estos axiomas son:

  1. $0$ es un número natural.
  2. Si $n$ es un número natural, entonces existe un único natural, denotado $\sigma(n)$ al que llamamos su sucesor.
  3. Para todo número natural, $\sigma(n)\neq0$.
  4. Si $n,m$ son números naturales, tales que $\sigma(n)=\sigma(m)$, entonces $n=m$.
  5. Si $S$ es un subconjunto de números naturales tal que: $0$ está en $S$, y para todo $n$ en $S$, se cumple que $\sigma(n)$ está también en $S$, entonces $S$ es el conjunto de todos los naturales.

Nota que cada una de las cinco propiedades coinciden con una de las propiedades intuitivas que mencionamos antes.

Encontrando los primeros números naturales

El logro de Peano fue muy importante, ya que permitió reducir la teoría de los números naturales a solo cinco axiomas; sin embargo, aún quedan abiertas las preguntas ¿qué son los números naturales? y ¿cómo sabemos que existen? Aunque se hayan mencionado las propiedades de un objeto, no necesariamente tiene que existir tal objeto. Este fue el gran problema al que se enfrentaron los matemáticos cuando intentaron definir a un conjunto al que pertenecen todos los conjuntos.

Es por esta razón que debemos fundamentar la construcción de los números naturales en teoría que ya tengamos desarrollada. Por esta razón, a partir de este punto se aparece la teoría de los conjuntos, la cual nos permitirá definir formalmente lo que significan los símbolos que diariamente ocupamos (como el $0$), para después ver que en efecto estos conjuntos satisfacen los axiomas de Peano.

Definición: Definimos al cero como $0:=\emptyset$.

Cuando ponemos $:=$, quiere decir que estamos definiendo algo, típicamente un símbolo. Cuando veas algo así aparecer, puedes pensar que significa «esta es la primera vez que usamos el símbolo $0$, y lo que querrá decir es el conjunto vacío». Podemos pensar en esta definición como una simple ocurrencia de notación; sin embargo, es curioso notar que, pensando intuitivamente, $\emptyset$ tiene en efecto cero elementos. Más adelante veremos que los demás números naturales también satisfacen esta intuitiva coincidencia.

Definición: Dado un conjunto $A$ arbitrario, definimos el sucesor de $A$ como $\sigma(A):=A\cup\{A\}$.

Notemos que en realidad $\sigma$ no es en el sentido estricto una función ¿por qué? Más bien, lo que estamos haciendo es explicar a qué nos referimos con el símbolo $\sigma(A)$.

Considerando que hemos construido el primer número natural (el $0$) y hemos dado una forma de construir sucesores, parece una buena idea considerar \[\sigma(0)=\sigma(\emptyset)=\emptyset\cup\{\emptyset\}=\{\emptyset\}.\]

Y definir $1:= \{\emptyset\}$. Análogamente podemos pensar que \[2:=\sigma(1)=\sigma(\{\emptyset\})=\{\emptyset\}\cup\{\{\emptyset\}\}=\{\emptyset,\{\emptyset\}\}.\]

Podríamos continuar así sucesivamente. Observa que, efectivamente, los conjuntos $1$ y $2$ coinciden con la intuición de tener respectivamente $1$ y $2$ elementos.

Los «disfraces» de los números naturales

Actualmente usamos el sistema de numeración arábigo y sabemos exactamente qué quieren decir los «dibujos» $1$, $2$, $3$, $4$, etc. Si fueramos romanos, estaríamos usando los «dibujos» $I$, $II$, $III$, $IV$, etc. De manera estricta, los «dibujos» no son lo mismo que «el concepto que representan». Es decir, en el fondo, $2$ y $II$ son «disfraces distintos para el mismo concepto». Pero ninguno de esos «dibujos» es el concepto mismo, ni vive de manera formal en la teoría que estamos construyendo.

Lo que sí vive en la teoría que construimos es el $\{\emptyset,\{\emptyset\}\}$, pues a partir de los axiomas se puede garantizar su existencia. Por supuesto, en el curso usaremos los «disfraces» habituales de estos conceptos, de modo que casi siempre escribiremos $2$, $7$, $51$, etc. Sin embargo, es crucial que en todo momento tengas en cuenta que cuando escribimos esos «dibujos», en el fondo están las construcciones formales que realizaremos.

Más adelante

Hemos empezado a definir a los números naturales a partir del $0$ (el conjunto vacío) y la función sucesor $\sigma$; sin embargo, la realidad es que el proceso que hemos descrito debe ser refinado, ya que si continuamos así, jamás acabaremos de definir la infinidad de números naturales que queremos que existan.

Incluso asumiendo que los podemos definir a todos, un segundo problema que se origina es el intentar unirlos en un solo «conjunto de los números naturales». Uno podría intentar ocupar el principio de inducción para resolver el problema. Sin embargo, recordemos que por el momento sólo contamos con los axiomas de la teoría de conjuntos, y aún no sabemos que el principio de inducción (visto como en el curso de Álgebra Superior I, o a partir de los axiomas de Peano) sea válido. Entonces, necesitaremos pensar cómo resolver el problema desde otra perspectiva.

Además, queda el problema de ver que los números naturales que definamos sí satisfagan los axiomas de Peano. También haremos esto pronto, para que a partir de ello podamos comenzar a introducir otras propiedades aritméticas y de orden.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Prueba a partir de sólo los axiomas de Peano, que $n\neq \sigma (n) $ para todo $n\in\mathbb{N}$.
  2. ¿Qué axiomas de Peano satisface el conjunto $\sigma(\mathbb{N})$, es decir, el conjunto de los números a partir del $1$?
  3. ¿Cómo será un conjunto y una función que satisfagan los axiomas 1), 2), 4) y 5) de Peano, pero que no satisfaga el 3)? ¿Puedes construir formalmente un conjunto y una función así?
  4. A partir de la definición de $\sigma(n)$ que dimos, demuestra que para todo número natural $n$ se satisface que $n\in\sigma(n)$ y que $n\subset\sigma(n)$.
  5. Demuestra que si $A$ es un conjunto, entonces $\sigma(A)$ es un conjunto. Para ello, tendrás que recordar los axiomas de teoría de conjuntos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»