Archivo del Autor: Omar González Franco

Ecuaciones Diferenciales I: Campos de pendientes y su ecuación diferencial asociada

Por Omar González Franco

Todas las verdades de las matemáticas están vinculadas entre si.
– Adrien-Marie Legendre

Introducción

Hemos estudiado algunas propiedades de las soluciones de una ecuación diferencial, estas funciones son expresiones analíticas que nos son útiles para describir una solución de una ecuación diferencial, sin embargo no siempre es necesario obtener dicha expresión analítica para lograr describir las soluciones. En este entrada haremos un análisis geométrico (o cualitativo) sobre ecuaciones diferenciales ordinarias de la forma

$$\dfrac{dy}{dx} = f(x, y(x)) \label{1} \tag{1}$$

Campos de pendientes

Recordemos que geométricamente la derivada $\dfrac{dy}{dx}$ de una función derivable $y = y(x)$ corresponde a la pendiente de las rectas tangentes en cada punto de la gráfica de la función $y(x)$, este resultado nos será de utilidad para intentar describir cualitativamente las soluciones de una ecuación diferencial de la forma normal (\ref{1}).

De acuerdo a la definición de solución de una ecuación diferencial, la función $y(x)$ es necesariamente derivable y por tanto continua en un intervalo $\delta$, esto nos garantiza que la curva solución en $\delta$ no tiene cortes y debe tener una recta tangente en cada punto $(x, y(x))$.

Si la función $y(x)$ es solución, entonces tiene una gráfica en el plano $XY$, la gráfica corresponde a la curva solución y la pendiente en cada punto está dada por

$$m = \dfrac{dy}{dx} = f(x, y)$$

Es así que para cada punto $(x, y)$ en el plano $XY$ se le puede asociar una número dado por la función razón que corresponderá a la pendiente de la recta tangente de una curva solución que pasa por ese punto $(x, y)$.

Elemento lineal $l$ sobre un punto de la curva solución.

Por lo tanto, podemos construir en el plano $XY$ un conjunto de elementos lineales dados por el valor de la función razón en cada punto $(x, y)$. Veamos un ejemplo.

Ejemplo: Visualizar los elementos lineales de la ecuación diferencial

$$\dfrac{dy}{dx} = x -y$$

Solución: En este caso la función razón es

$$f(x, y) = x -y$$

$x$ y $y$ pueden tomar cualquier valor en $ \mathbb{R}$. En la siguiente tabla tenemos algunos valores para $x$ y $y$. En la primera fila tenemos los valores de $x$ en el intervalo $(-4, 4)$ en pasos de una unidad, mientras que en la primer columna tenemos los valores de $y$ en el intervalo $(-4, 4)$ en pasos de una unidad, el resto de valores corresponde al valor de la función razón $f(x, y) = x -y$ evaluada en los valores correspondientes. Por ejemplo si $x = -2$ y $y = 4$, entonces

$$f(x, y) = x -y = -2 -4 = -6$$

tal como se indica en la tabla.

Algunos valores de la función $f(x, y) = x -y$.

Con ayuda de esta tabla podemos construir un conjunto de elementos lineales con pendiente según el valor de la función razón (recordemos que una recta de $45°$ tiene pendiente $m = 1$).

Elementos lineales de la ecuación diferencial $\dfrac{dy}{dx} = x -y$.

Aumentando el número de valores para $x$ y $y$ en los rangos $(-4, 4)$ se puede obtener un conjunto mayor de elementos lineales.

Conjunto mayor de elementos lineales de la ecuación diferencial $\dfrac{dy}{dx} = x -y$.

Es posible notar un patrón en esta última imagen. Anteriormente mencionamos que el valor de la función razón $f(x, y)$ es el valor de la pendiente de la recta tangente en un punto $(x, y)$ de la curva solución de la ecuación diferencial (\ref{1}), en este caso los elementos lineales corresponden a las rectas tangentes de las curvas solución de la ecuación diferencial

$$\dfrac{dy}{dx} = x -y$$

Es decir, los elementos lineales son tangentes a funciones $y(x)$ ¡que son solución de la ecuación diferencial!, basta trazar curvas a lo largo de los elementos lineales para hallar gráficamente las soluciones.

$4$ curvas solución de la ecuación diferencial $\dfrac{dy}{dx} = x -y$.

Ya vimos que una ecuación diferencial puede tener infinitas soluciones, o bien una familia de soluciones, en este caso, en la gráfica se muestran $4$ curvas solución correspondientes a $4$ soluciones $y = y(x)$ particulares, cada una se obtiene de distintas condiciones iniciales.

Lo importante que debemos rescatar es que, a pesar de no tener la forma explícita (o implícita) de la función solución $y = y(x)$, gráficamente ¡ya conocemos las posibles gráficas de las curvas solución de la ecuación diferencial dada!. También es importante notar que el signo de la pendiente nos dice si la curva es creciente o decreciente, esto debido al resultado de cálculo en donde si $\dfrac{dy}{dx} > 0$ o $\dfrac{dy}{dx} < 0$ para toda $x$ en un intervalo $\delta$, entonces la función derivable $y = y(x)$ es creciente o decreciente en $\delta$, respectivamente.

Como ejercicio moral verifica que la solución general de la ecuación diferencial dada es

$$y(x) = x -1 + \dfrac{c}{e^{x}}$$

Posteriormente usa un graficador de funciones y traza la gráfica de la solución general dándole valores arbitrarios a la constante $c$ y compara los resultados con los obtenidos en la imagen anterior.

De acuerdo a la imagen se puede notar que las $4$ curvas solución que se muestran corresponden a los valores iniciales

$$y(3) = -4 \hspace{1cm} y(-3) = 0, \hspace{1cm} y(1) = 2, \hspace{1cm} y \hspace{1cm} y(-2) = -4$$

$\square$

Las imágenes anteriores corresponden al campo de pendientes de la ecuación diferencial

$$\dfrac{dy}{dx} = x -y$$

Un campo de pendientes indica el flujo de las soluciones y facilita el trazo de cualquier solución particular, la dirección del campo indica el aspecto o forma de una familia de curvas solución de la ecuación diferencial dada, esto permite observar a simple vista aspectos cualitativos de la solución, por ejemplo regiones en el plano donde la solución presenta un comportamiento poco común.

En este contexto una curva solución también es llamada curva integral.

Método de las isóclinas

Ahora somos capaces de esbozar campos de pendientes de ecuaciones diferenciales de la forma (\ref{1}), sin embargo es un proceso muy tardado si se piensa hacer a mano ya que hay que ir evaluando punto a punto del plano para obtener el valor de la pendiente en dicho punto y así poder dibujar un elemento lineal, esto puede ser mucho más rápido si se utilizan programas computacionales que lo realicen.

Existe un método que nos permite dibujar elementos lineales de forma eficiente sin necesidad de ir evaluando punto a punto, este método es conocido como el método de las isóclinas.

En otras palabras, una isóclina es una curva de nivel de la función $f(x, y)$, es decir

$$f(x, y) = k \label{2} \tag{2}$$

donde $k$ es una constante arbitraria, si sustituimos (\ref{2}) en (\ref{1}), obtenemos

$$\dfrac{dy}{dx} = k \label{3} \tag{3}$$

Con esta ecuación vemos que en efecto para todas las soluciones $y = y(x)$ va a haber puntos donde la pendiente $\dfrac{dy}{dx}$ sera la misma, una constante.

Con este método sólo basta encontrar las isóclinas de una ecuación diferencial y sobre ellas dibujar elementos lineales que tengan la misma pendiente obteniendo así el campo de pendientes y por tanto las curvas solución. Para que quede más claro construyamos las isóclinas de la ecuación diferencial del ejemplo anterior.

Ejemplo: Hallar las isóclinas y el campo de pendientes de la ecuación diferencial

$$\dfrac{dy}{dx} = x -y$$

Solución: Comencemos por igualar la función razón a una constante.

$$\dfrac{dy}{dx} = x -y = k$$

Despejemos la función dependiente $y$ en términos de la variable independiente y la constante.

$$y = y(x) = x -k$$

Es claro que es la ecuación de una recta, para cada valor arbitrario de $k$ se obtiene una recta distinta, lo importante es que a lo largo de toda esa recta hay elementos lineales con la misma pendiente, sólo basta evaluar un punto de cada isóclina en la función razón y obtendremos el valor de la pendiente para toda la isóclina.

Isóclinas de la ecuación $\dfrac{dy}{dx} = x -y$.

En la imagen vemos que a lo largo de cada isóclina (en este caso rectas marcadas de verde) los elementos lineales tienen la misma pendiente recuperando así el campo de pendientes que habíamos obtenido anteriormente.

$\square$

Este método es muy útil si lo que queremos es esbozar un campo de pendientes a mano. Una vez obtenido el campo de pendientes procedemos a dibujar las curvas solución como lo hicimos con anterioridad.

Método de Euler

El análisis geométrico que acabamos de hacer está íntimamente relacionado con un método numérico fundamental para aproximar soluciones de una ecuación diferencial de la forma (\ref{1}) acompañada de una condición inicial, dicho método es conocido como método de Euler. Consideremos el problema con condición inicial

$$\dfrac{dy}{dx} = f(x, y), \hspace{1cm} y(x_{0}) = y_{0} \label{4} \tag{4}$$

Debido a que $f(x, y)$ es dada, entonces podemos trazar su campo de pendientes en el plano $XY$, esto nos permite colocarnos en el punto $(x_{0}, y_{0})$ y comenzar a dar pequeños pasos dictados por las tangentes de dicho campo.

Comenzamos por elegir un tamaño de paso $\Delta x$ pequeño de tal manera que la pendiente de la solución aproximada se actualice cada $\Delta x$ unidades de $x$, es decir, en cada paso nos movemos $\Delta x$ unidades a lo largo del eje $x$. El tamaño de $\Delta x$ determina la exactitud de la solución, así como el número de cálculos que son necesarios para obtener la aproximación.

Imaginemos que nos colocamos en el punto $(x_{0}, y_{0})$, el primer paso es hacia el punto $(x_{1}, y_{1})$, donde

$$x_{1} = x_{0} + \Delta x \label{5} \tag{5}$$

El punto $(x_{1}, y_{1})$ se encuentra sobre la línea que pasa por $(x_{0}, y_{0})$ y cuya pendiente esta dada por el campo de pendiente en dicho punto, o bien, por $f(x_{0}, y_{0})$. Una vez que estemos en $(x_{1}, y_{1})$ repetimos el procedimiento, damos nuevamente un paso cuyo tamaño a lo largo del eje $x$ es $\Delta x$ y cuya dirección esta determinada por el campo de pendientes en $(x_{1}, y_{1})$, esto nos permitirá llegar al punto $(x_{2}, y_{2})$, donde

$$x_{2} = x_{1} + \Delta x \label{6} \tag{6}$$

El punto $(x_{2}, y_{2})$ está sobre el segmento de línea que comienza en $(x_{1}, y_{1})$ y tiene pendiente $f(x_{1}, y_{1})$. Repetimos este procedimiento para llegar al punto $(x_{3}, y_{3})$, tal como se ilustra en la siguiente figura.

Gráfica de una solución y su aproximación usando el método de Euler.

En la figura vemos en verde la gráfica de una solución y en segmentos negros los pasos que el método de Euler establece para aproximarnos a la solución. Geométricamente, el método genera una secuencia de pequeños segmentos de línea que conectan $(x_{n}, y_{n})$ con $(x_{n + 1}, y_{n + 1})$. Notemos que en casa paso cometemos un error, si el tamaño de $\Delta x$ es suficiente pequeño, los errores no resultarán demasiado grandes conforme avanzamos y la gráfica resultante será cercana a la solución buscada.

Para llevar a cabo el método de Euler, necesitamos una fórmula que determine $(x_{n + 1}, y_{n + 1})$ a partir de $(x_{n}, y_{n})$. Al especificar el tamaño del paso $\Delta x$ determinamos que, de forma general

$$x_{n + 1} = x_{n} + \Delta x \label{7}, \tag{7}$$

Para obtener $y_{n + 1}$ a partir de $(x_{n}, y_{n})$ usamos la ecuación diferencial. La pendiente de la solución de la ecuación (\ref{1}) en el punto $(x_{n}, y_{n})$ es $f(x_{n}, y_{n})$, el punto $(x_{n + 1}, y_{n + 1})$ se determina suponiendo que éste se encuentra sobre la línea que pasa por $f(x_{n}, y_{n})$.

Podemos determinar $y_{n + 1}$ de la siguiente fórmula de pendiente.

$$\dfrac{y_{n + 1} -y_{n}}{x_{n + 1} -x_{n}} = f(x_{n}, y_{n}) \label{8}, \tag{8}$$

Usando (\ref{7}) se puede escribir lo siguiente:

\begin{align*}
\dfrac{y_{n + 1} -y_{n}}{\Delta x} &= f(x_{n}, y_{n}) \\
y_{n + 1} -y_{n} &= f(x_{n}, y_{n}) \Delta x
\end{align*}

Esto es

$$y_{n + 1} = y_{n} + f(x_{n}, y_{n}) \Delta x \label{9}, \tag{9}$$

Por lo tanto, dada la condición inicial $y(x_{0}) = y_{0}$ y el tamaño del paso $\Delta x$, el punto $(x_{n + 1}, y_{n + 1})$ se determina a partir del punto precedente $(x_{n}, y_{n})$ usando la ecuación diferencial para determinar valor de la pendiente $f(x_{n}, y_{n})$ y utilizando las ecuaciones (\ref{7}) y (\ref{9}).

Ejemplo: Determinar una aproximación de la solución del siguiente PVI:

$$\dfrac{dy}{dx} = x -y, \hspace{1cm} y(1) = -1$$

Solución: Ya conocemos el campo de pendientes de la ecuación diferencial $\dfrac{dy}{dx} = x -y$. En este caso buscamos una aproximación a la solución particular que pasa por el punto $(x_{0}, y_{0}) = (1, -1)$. Para usar el método de Euler, propongamos un paso de unidad 1, es decir, $\Delta x = 1$. La función razón es

$$f(x, y) = x -y$$

Entonces,

$$f(x_{0}, y_{0}) = f(1, -1) = 1 -(-1) = 2$$

Sustituyamos en las ecuaciones (\ref{7}) y (\ref{9}):

\begin{align*}
x_{1} &= x_{0} + \Delta x = 1 + 1 = 2 \\
y_{1} &= y_{0} + f(x_{0}, y_{0}) \Delta x = -1 + 2(1) = 1
\end{align*}

Por lo tanto, $(x_{1}, y_{1}) = (2, 1)$. Ahora vemos que

$$f(x_{1}, y_{1}) = f(2, 1) = 2 -1 = 1$$

Nuevamente aplicamos (\ref{7}) y (\ref{9}):

\begin{align*}
x_{2} &= 2 + 1 = 3 \\
y_{2} &= 1 + 1(1) = 2
\end{align*}

Por lo tanto, $(x_{2}, y_{2}) = (3, 2)$. Continuando verificamos que $f(3, 2) = 3 -2 = 1$, entonces

\begin{align*}
x_{3} &= 3 + 1 = 4 \\
y_{3} &= 2 + 1(1) = 3
\end{align*}

El nuevo punto obtenido es $(x_{3}, y_{3}) = (4, 3)$. Uno más, $f(4, 3) = 4 -3 = 1$.

\begin{align*}
x_{4} &= 4 + 1 = 5 \\
y_{4} &= 3 + 1(1) = 4
\end{align*}

Así, $(x_{4}, y_{4}) = (5, 4)$.

Este proceso se sigue indefinidamente hasta hallar una gráfica aproximada de la solución buscada. En la siguiente figura se muestra la curva solución y los pasos obtenidos usando el método de Euler.

Aproximación de la curva solución.

$\square$

Dos casos especiales

Hemos trabajado con la ecuación diferencial

$$\dfrac{dy}{dx} = f(x, y(x))$$

Es posible que ocurra que la función razón sólo dependa de la variable dependiente $y(x)$, o sólo de la variable independiente $x$, es decir, tener las ecuaciones diferenciales

$$\dfrac{dy}{dx} = f(y) \label{10} \tag{10}$$

o

$$\dfrac{dy}{dx} = f(x) \label{11} \tag{11}$$

Más adelante veremos que estas ecuaciones son más fácil de resolver analíticamente debido a que son lo que se conoce como ecuaciones separables, pero por ahora vamos a hacer un análisis cualitativo como lo hemos estado haciendo en esta entrada.

Campo de pendientes para $\dfrac{dy}{dx} = f(x)$

El hecho de tener la ecuación diferencial

$$\dfrac{dy}{dx} = f(x)$$

en su forma normal nos permite reconocer que la pendiente de un elemento lineal en cualquier punto es la misma que la de cualquier otro punto con la misma coordenada $x$.

Campo de pendientes de la ecuación diferencial $\dfrac{dy}{dx} = x$.

En la imagen tenemos como ejemplo el campo de pendientes de la ecuación diferencial

$$\dfrac{dy}{dx} = f(x) = x$$

La curva verde representa una curva solución y notamos que a lo largo de las líneas verticales (líneas rojas) todos los elementos lineales tienen la misma pendiente.

Geométricamente podemos decir que en un campo de pendientes si los elementos lineales sobre cada línea vertical del dominio en consideración son paralelos, entonces la ecuación diferencial correspondiente es de la forma (\ref{10}).

Campo de pendientes para $\dfrac{dy}{dx} = f(y)$

En el caso en el que la función razón sólo depende de la variable dependiente $y$ los elementos lineales de un campo de pendientes van a tener la misma pendiente en dos puntos diferentes con la misma coordenada $y$, es decir, el campo de pendientes es paralelo a lo largo de cada línea horizontal.

Campo de pendientes de la ecuación $\dfrac{dy}{dx} = y$.

En la imagen tenemos como ejemplo el campo de pendientes de la ecuación diferencial

$$\dfrac{dy}{dx} = f(y) = y$$

Las curvas verdes corresponden a soluciones de la ecuación, mientras que las líneas rojas sólo intentan hacer notar que las pendientes de los elementos lineales para un valor de $y$ son las mismas.

Hasta aquí concluimos la entrada, en la siguiente continuaremos explorando más sobre la teoría cualitativa de este tipo de ecuaciones diferenciales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Esbozar el campo de pendientes de las siguientes ecuaciones diferenciales. Hacerlo a mano en una hoja de papel usando el método de las isóclinas y posteriormente verifica tu resultado usando algún programa computacional. Una vez construido el campo de pendientes trazar tres curva solución aproximadas, donde cada una pase por cada uno de los puntos indicados.
  • $\dfrac{dy}{dx} = 1-y$ $\hspace{2cm}$ Puntos: $(0, 3)$, $\hspace{0.5cm}$ $(-2, -1)$, $\hspace{0.5cm}$ $(0, 1)$.
  • $\dfrac{dy}{dx} = x^{2} -y -2$ $\hspace{1cm}$ Puntos: $(-1, 1)$, $\hspace{0.5cm}$ $(4, 0)$, $\hspace{0.5cm}$ $(0, -2)$.
  • $\dfrac{dy}{dx} = xy$ $\hspace{2.5cm}$ Puntos: $(0,1)$, $\hspace{0.5cm}$ $(1, -2)$, $\hspace{0.5cm}$ $(-3, 2)$.
  1. Considerando el ejercicio anterior, en cada ecuación diferencial dada elegir una condición inicial y usando el método de Euler determinar una solución aproximada. Se recomienda calcular al menos 5 puntos.
  1. Dados los siguientes campos de pendientes, determinar la opción qué indica la ecuación diferencial que corresponde al campo de pendientes. Justificar la respuesta.
Campo de pendientes.
  • a) $\dfrac{dy}{dx} = \sin(x) + \cos(x)$; $\hspace{0.7cm}$ b) $\dfrac{dy}{dx} = \sin(x) \cos(x)$; $\hspace{0.7cm}$ c) $\dfrac{dy}{dx} = 2\sin(x)$
Campo de pendientes.
  • a) $\dfrac{dy}{dx} = x^{2} + y^{2}$; $\hspace{0.7cm}$ b) $\dfrac{dy}{dx} = 5y^{2}$; $\hspace{0.7cm}$ c) $\dfrac{dy}{dx} = x^{2} -y^{2}$

Más adelante…

En la siguiente entrada continuaremos con las descripciones cualitativas de las soluciones de una ecuación diferencial, en particular estudiaremos con mayor detalle las ecuaciones de la forma

$$\dfrac{dy}{dx} = f(y)$$

llamadas ecuaciones diferenciales autónomas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Soluciones a las ecuaciones diferenciales

Por Omar González Franco

Las matemáticas son la puerta y la llave a la ciencia.
Roger Bacon

Introducción

En la entrada anterior vimos lo que son las ecuaciones diferenciales (ED), en particular las ecuaciones diferenciales ordinarias (EDO) con las que trabajaremos a lo largo del curso. Vimos también como clasificarlas por tipo, orden y linealidad.

Mencionábamos que lo que nos interesa al tener una ecuación diferencial es hallar la función involucrada que depende de la variable independiente, hallar dicha función significa que hemos resuelto la ecuación diferencial y a la función encontrada la llamaremos función solución, o simplemente solución. Antes de aprender a resolver ecuaciones diferenciales, en esta entrada estudiaremos las propiedades mismas de una solución.

Soluciones de ecuaciones diferenciales

Una función $f$ es solución si para una ecuación diferencial ordinaria de $n$-ésimo orden cumple lo siguiente.

$$F(x, f(x), f^{\prime}(x), \cdots, f^{(n)}(x)) = 0 \tag{1} \label{1}$$

para toda $x \in \delta$. En este curso supondremos que una solución $f$ es una función con valores reales, es decir, $\delta \in \mathbb{R}$.

El intervalo de solución $\delta$ también es conocido como intervalo de definición, intervalo de existencia, intervalo de validez o dominio de la solución y puede ser un intervalo abierto $(a, b)$, un intervalo cerrado $[a, b]$, un intervalo infinito $(a, \infty)$, etcétera.

Ejemplo: Verificar que la función

$$f(x) = y = \dfrac{1}{x}$$

es solución de la ecuación diferencial

$$x \dfrac{dy}{dx} + y = 0$$

Solución: Consideremos la función $y = \dfrac{1}{x}$ para toda $x \neq 0$. La derivada de esta función es

$$\dfrac{dy}{dx} = -\dfrac{1}{x^{2}}$$

para toda $x \neq 0$. Sustituyamos estas funciones en la ecuación diferencial y verifiquemos que se satisface la igualdad.

\begin{align*}
x \dfrac{dy}{dx} + y &= x \left( -\dfrac{1}{x^{2}} \right) + \dfrac{1}{x} \\
&= -\dfrac{1}{x} + \dfrac{1}{x} \\
&= 0
\end{align*}

Como hemos recuperado la ecuación diferencial decimos que en efecto $y = \dfrac{1}{x}$ es solución. Observemos que la solución no está definida para $x = 0$, sin embargo, al ser solución significa que es una función definida en un intervalo $\delta$ en el que es derivable y satisface la ecuación, esto indica que $y$ es solución en cualquier intervalo que no contenga al $0$.

Como observación notemos que la función $f(x) = y = 0$ y la derivada correspondiente $\dfrac{dy}{dx} = 0$, también satisfacen la misma ecuación diferencial, entonces decimos que dicha ecuación diferencial tiene solución trivial.

Como podemos notar, tanto la función $y = \dfrac{1}{x}$, como la función constante $y = 0$, son solución de la misma ecuación diferencial, ¡esto significa que una ecuación diferencial puede tener más de una solución!.

$\square$

Curva solución de una ecuación diferencial

Las soluciones de las ecuaciones diferenciales ordinarias de una variable dependiente son funciones de una variable independiente, por lo tanto se pueden graficar en el plano $XY$. De acuerdo a la definición de solución, y al ejemplo anterior, es importante hacer una distinción entre el dominio de una función (los valores para los cuales la función está definida) y un intervalo de solución.

Si $f(x)$ es solución de una ecuación diferencial, entonces $f(x)$ es derivable, lo que también significa que es continua en su intervalo de definición $\delta$, esto es necesario para ser solución y no siempre va a ocurrir para todo el dominio de la función $f$. Puede haber diferencia entre la gráfica de la función $f(x)$ y la gráfica de la solución $f(x)$. En el ejemplo anterior el dominio de la función $y = \dfrac{1}{x}$ es $D = \mathbb{R} -\{0\}$, mientras que el intervalo de solución es cualquier intervalo que no contenga al $0$, por ejemplo $\delta = (-\infty, -1)$, $\delta = (5, 100)$ o $\delta = (1, \infty)$, etcétera. El intervalo de solución no necesita ser igual al dominio de la función $f(x)$.

Gráfica de la función $y = \dfrac{1}{x}$.
Curva solución definida por $y = \dfrac{1}{x}$ en el intervalo $\delta = (1, 100)$.

Ejemplo: Comprobar que la función

$$f(x) = y = \dfrac{1}{4 -x^{2}}$$

es solución de la ecuación diferencial

$$\dfrac{dy}{dx} = 2xy^{2}$$

y determinar al menos un intervalo de solución.

Solución: La función dada es

$$y = \dfrac{1}{4 -x^{2}}$$

La derivada de esta función es

$$\dfrac{dy}{dx} = \dfrac{2x}{(4 -x^{2})^{2}}$$

Esta ecuación se puede reescribir de la siguiente manera:

$$\dfrac{dy}{dx} = \dfrac{2x}{(4 -x^{2})^{2}} = 2x \dfrac{1}{(4 -x^{2})^{2}} = 2x \left(\dfrac{1}{4 -x^{2}}\right) ^{2} = 2xy^{2}$$

Esto es,

$$\dfrac{dy}{dx} = 2xy^{2}$$

Efectivamente, la función dada es solución de la ecuación diferencial.

Ahora debemos determinar un intervalo de solución, para hacerlo podemos comenzar por determinar el dominio de la función. La función $y = \dfrac{1}{4 -x^{2}}$ no está definida cuando $4 = x^{2}$, es decir, cuando $x = 2$ o $x = -2$, por lo tanto el dominio de la función es

$$D = (-\infty, -2) \cup (-2, 2) \cup (2, \infty)$$

Gráfica de la función $\dfrac{1}{4 -x^{2}}$.

El intervalo de solución es cualquiera que no contenga al $-2$ ni al $2$, el ejercicio nos pide determinar al menos un intervalo de solución, podemos entonces considerar el intervalo abierto$\delta = (2, \infty)$ como el intervalo de solución.

Curva solución en el intervalo $ \delta = (2, \infty)$.

$\square$

Soluciones explícitas y soluciones implícitas

Recordemos que una función es explícita si se puede escribir como $y = f(x)$, es decir, si la variable dependiente se puede escribir en términos de la variable independiente, mientras que una función implícita esta dada por la forma $f(x, y) = 0$. Ya sabemos que las soluciones de las ecuaciones diferenciales son funciones por lo que estos conceptos se pueden extender a estas soluciones.

Una solución explicita $y = f(x)$ la podemos manejar, evaluar y derivar usando las reglas usuales. Más adelante nos encontraremos con soluciones en las que no es factible obtener la forma explicita y tendremos que hallar al menos una forma implícita de la solución.

Ejemplo: Verificar que la relación

$$x^{2} + y^{2} = 100$$

es una solución implícita de la ecuación diferencial

$$\dfrac{dy}{dx} = -\dfrac{x}{y}$$

y determinar las soluciones explícitas.

Solución: Primero notemos que, de acuerdo a la definición de solución implícita, la relación dada se puede escribir como

$$G(x, y) = x^{2} + y^{2} -100 = 0$$

Derivemos esta ecuación implícitamente.

\begin{align*}
\dfrac{d}{dx} \left( x^{2} + y^{2} -100 \right) &= \dfrac{d}{dx} (0) \\
\dfrac{d}{dx} (x^{2}) + \dfrac{d}{dx} (y^{2}) -\dfrac{d}{dx} (100) &= \dfrac{d}{dx} (0) \\
2x + \dfrac{d}{dy}y^{2}\dfrac{dy}{dx} -0 &= 0 \\
2x + 2y \dfrac{dy}{dx} &= 0
\end{align*}

De la última relación despejamos $\dfrac{dy}{dx}$ obteniendo así la ecuación diferencial $\dfrac{dy}{dx} = -\dfrac{x}{y}$. Por lo tanto $x^{2} + y^{2} = 100$ es una solución implícita. El intervalo de solución es $\delta = (-10, 10)$.

Gráfica de la solución implícita $x^{2} + y^{2} = 100$

La relación $x^{2} + y^{2} = 100$ es una solución implícita ya que no es de la forma $y = f(x)$, sin embargo se puede obtener la solución explícita con sólo despejar a $y$.

$$y = \pm \sqrt{100 -x^{2}}$$

Pero notemos que ahora tenemos dos soluciones.

$$y_{1} = \sqrt{100 -x^{2}} \hspace{1cm} y \hspace{1cm} y_{2} = -\sqrt{100 -x^{2}}$$

Estas funciones satisfacen respectivamente $x^{2} + y_{1}^{2} = 100$ y $x^{2} + y_{2}^{2} = 100$, además de la ecuación diferencial. Por lo tanto, ambas son soluciones explícitas en el mismo intervalo $\delta = (-10, 10)$ .

En las siguientes gráficas se muestran las curvas solución de cada solución explícita.

Curva solución $y_{1} = \sqrt{100 -x^{2}}$.
Curva solución $y_{2} = -\sqrt{100 -x^{2}}$.

Observamos que cada solución explícita corresponde a un tramo de la solución implícita y ambas forman dicha solución.

$\square$

Con este ejemplo vemos que es importante entender las circunstancias del problema para poder determinar la solución adecuada de la ecuación diferencial. En este caso la solución implícita involucra a las dos soluciones explícitas y nos permite conocer más acerca del problema. Cabe mencionar que no siempre será necesario o posible obtener la solución explícita, en el ejemplo fue sencillo obtener la función $y$ en términos de $x$, pero no siempre será el caso y obtener la solución implícita $G(x, y) = 0$ será suficiente.

Otro punto importante a observar es que al derivar la constante $100$ se obtiene un cero, eso significa que, independientemente del valor de la constante, al derivar siempre vamos a obtener un cero, considerando esto, la forma más general de expresar la solución anterior es

$$x^{2} + y^{2} = c$$

donde $c$ es una constante arbitraria. Si derivamos obtendremos nuevamente la ecuación diferencial

$$\dfrac{dy}{dx} = -\dfrac{x}{y}$$

Debido a que hay una infinidad de valores que puede tomar $c$ (en el campo de los reales), entonces significa que la ecuación diferencial ¡tiene infinitas soluciones!.

En efecto, una ecuación diferencial puede tener una infinidad de soluciones, así que dependerá del problema o de las condiciones, la solución que debamos considerar. A pesar de que una ecuación diferencial puede tener infinitas soluciones es posible encontrar un solución general que considere todas las posibilidades.

Familias de soluciones

Al resolver una ecuación diferencial de primer orden

$$F(x, y , y^{\prime}) = 0 \label{2} \tag{2}$$

normalmente se obtiene una solución que contiene una sola constante arbitraria $c$.

Este concepto se puede extender a una ecuación diferencial de orden $n$

$$F(x, y, y^{\prime}, \cdots, y^{(n)}) = 0 \label{4} \tag{4}$$

en este caso la solución

$$G(x, y, c_{1}, c_{2}, \cdots, c_{n}) = 0 \label{5} \tag{5}$$

corresponde a una familia de soluciones $n$-paramétrica.

En el ejemplo que vimos, la relación

$$x^{2} + y^{2} = c$$

corresponde a la solución general de la ecuación diferencial

$$\dfrac{dy}{dx} = – \dfrac{x}{y}$$

mientras que la relación

$$x^{2} + y^{2} = 100$$

corresponde a una posible solución, en este caso decimos que es una solución particular.

Concluyamos esta entrada con un último ejemplo.

Ejemplo: Mostrar que la función

$$y(x) = 3x^{2} + c_{1}x + c_{2}$$

con $c_{1}$ y $c_{2}$ constantes arbitrarias, es solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} = 6$$

Solución: Derivemos dos veces la función dada y veamos si obtenemos la ecuación diferencial. Derivando una vez obtenemos lo siguiente.

\begin{align*}
\dfrac{dy}{dx} &= \dfrac{d}{dx}(3x^{2}) + \dfrac{d}{dx}(c_{1}x) + \dfrac{d}{dx}(c_{2}) \\
&= 2(3x) + c_{1} + 0 \\
&= 6x + c_{1}
\end{align*}

La primer derivada es

$$ \dfrac{dy}{dx} = 6x + c_{1}$$

Derivemos nuevamente esta función.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} &= \dfrac{d}{dx}(6x) + \dfrac{d}{dx}(c_{1}) \\
&= 6 + 0 \\
&= 6
\end{align*}

Efectivamente

$$\dfrac{d^{2}y}{dx^{2}} = 6$$

Por lo tanto, la función

$$y(x) = 3x^{2} + c_{1}x + c_{2}$$

es solución de la ecuación diferencial. Sabemos que es la solución general porque satisface a la ecuación diferencial de segundo orden y contiene dos constantes arbitrarias. Una posible solución particular sería la función

$$y(x) = 3x^{2} + 10x -5$$

o

$$y(x) = 3x^{2} -0.2x + 155$$

etcétera. En este caso no hay restricción de valores para $x$ por lo que el intervalo de solución puede ser cualquiera en $\mathbb{R}$ o bien $\delta = \mathbb{R}$

$\square$

Hemos concluido la entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Comprobar que las siguientes funciones $y = f(x)$ son solución de la correspondiente ecuación diferencial y establecer un adecuado intervalo de solución $\delta$.
  • $2 \dfrac{dy}{dx} + y = 0$; $\hspace{1cm}$ $y = e^{-x/2}$
  • $\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 13y = 0$; $\hspace{1cm}$ $y = e^{3x} \cos{(2x)}$
  • $(y -x) \dfrac{dy}{dx} = y -x + 8$; $\hspace{1cm}$ $y = x + 4\sqrt{x + 2}$
  1. Comprobar que las siguientes familias de soluciones son solución de la correspondiente ecuación diferencial y establecer un adecuado intervalo de solución $\delta$.
  • $\dfrac{dy}{dx} = y(1 -y)$; $\hspace{1cm}$ $y = \dfrac{c_{1}e^{x}}{1 + c_{1}e^{x}}$
  • $\dfrac{d^{2}y}{dx^{2}} -4\dfrac{dy}{dx} + 4y = 0$; $\hspace{1cm}$ $y = c_{1}e^{2x} + c_{2}xe^{2x}$

Más adelante…

Ahora ya conocemos algunas características de las funciones solución de las ecuaciones diferenciales ordinarias. Sabemos que existen soluciones generales, o familias de soluciones, de una ecuación diferencial, sin embargo en algunas situaciones nos veremos en la necesidad de conocer una solución particular debido a condiciones prescritas según el problema que estemos estudiando, a estas condiciones prescritas las llamamos condiciones iniciales (o valores iniciales) y serán las que establezcan una solución particular que nos sirva para modelar nuestro problema.

En la siguiente entrada estudiaremos soluciones con condiciones iniciales y revisaremos algunos problemas del mundo real que involucran ecuaciones diferenciales ordinarias.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Introducción a las Ecuaciones Diferenciales

Por Omar González Franco

La vida es buena por sólo dos cosas, descubrir y enseñar las matemáticas.
– Simeon Poisson

Introducción

Bienvenidos a la primera clase del curso, en esta entrada conoceremos qué son las ecuaciones diferenciales, cómo clasificarlas y presentaremos una parte de la terminología elemental que usaremos a lo largo del curso.

Las leyes del universo están escritas en el lenguaje de las matemáticas. Muchos de los fenómenos naturales que ocurren en el universo involucran cambios y si logramos crear modelos matemáticos que los describan, sin duda, la derivada será una herramienta fundamental que estará presente. Sabemos que la derivada $\dfrac{dy}{dx} = f'(x)$ de la función $f$ es la razón a la cual la cantidad $y = f(x)$ está cambiando respecto de la variable independiente $x$, es natural, entonces, que las ecuaciones que involucran derivadas se usen frecuentemente para describir el universo cambiante. Una ecuación que relacione una función desconocida con una o más de sus derivadas se llama ecuación diferencial.

Ecuaciones diferenciales

Al tratarse de un curso introductorio, sólo trabajaremos con ecuaciones diferenciales que contienen sólo una variable independiente, estas ecuaciones tienen un nombre particular.

El reto al que nos enfrentamos con las ecuaciones diferenciales es hallar la función involucrada que depende de la variable independiente. Supongamos que tenemos la función

$$y = f(x) = 2e^{x^{2}}$$

Esta función es derivable en todo $\mathbb{R}$, si la derivamos obtenemos otra función dada de la siguiente forma.

$$\dfrac{dy}{dx} = f'(x) = 4xe^{x^{2}}$$

Este resultado se puede reescribir como

$$\dfrac{dy}{dx} = 2x(2e^{x^{2}})$$

Podemos observar que lo que está entre paréntesis es de nuevo la función $y = 2e^{x^{2}}$ , si la sustituimos obtenemos como resultado la siguiente ecuación.

$$\dfrac{dy}{dx} = 2xy$$

Este resultado corresponde a una ecuación diferencial ordinaria, pues contiene la derivada de la variable dependiente $y$ con respecto a la variable independiente $x$, esto es $\dfrac{dy}{dx}$.

Ahora imagina que lo primero que vemos es la ecuación diferencial $\dfrac{dy}{dx} = 2xy$ y lo que debemos de hacer es obtener la función $f(x) = y$. ¿Cómo la obtendrías?. ¡Este es el reto!.

Básicamente el objetivo del curso será desarrollar distintos métodos para resolver los diferentes tipos de ecuaciones diferenciales ordinarias que se puedan presentar, analizaremos las circunstancias en las que aparecen y la forma en que surgen con el fin de describir o modelar fenómenos físicos en términos matemáticos.

Notación

En la mayor parte del curso utilizaremos la notación de Leibniz.

$$\dfrac{dy}{dx}, \hspace{0.4cm} \dfrac{d^{2}y}{dx^{2}}, \hspace{0.4cm} \dfrac{d^{3}y}{dx^{3}}, \hspace{0.4cm} \cdots,$$

En este caso la expresión $\dfrac{d}{dx}$ sirve como un operador que indica una derivación de la variable dependiente $y$ con respecto a la variable independiente $x$.

En ocasiones para ser más compactos utilizaremos la notación prima o también conocida como notación de Lagrange.

$$y^{\prime}, \hspace{0.4cm} y^{\prime \prime}, \hspace{0.4cm} y^{\prime \prime\prime}, \hspace{0.4cm} \cdots$$

En el caso de esta notación, a partir de la cuarta derivada ya no se colocan primas, sino números entre paréntesis, dicho número indica el grado de la derivada.

$$y^{(4)}, \hspace{0.4cm} y^{(5)}, \hspace{0.4cm} \cdots, \hspace{0.4cm} y^{(n)}$$

En este curso haremos mayor uso de la notación de Leibniz debido a que indica con claridad las variables independientes y dependientes. Por ejemplo, en la ecuación

$$\dfrac{dx}{dt} + 8x = 0$$

se observa de forma inmediata que el símbolo $x$ representa a la variable dependiente, mientras que $t$ a la variable independiente.

Cuando se trata de resolver problemas en contextos del mundo real relacionados con Física o ingeniería por ejemplo, es común utilizar la notación de Newton.

$$\dot{y}, \hspace{0.4cm} \ddot{y}, \hspace{0.4cm} \dddot{y}, \hspace{0.4cm} \cdots$$

Es común utilizar esta notación cuando la variable independiente corresponde al tiempo $t$.

$$\dfrac{dy}{dt} = \dot{y}(t)$$

Clasificación de las ecuaciones diferenciales

Para comenzar será importante clasificar a las ecuaciones diferenciales por tipo, orden y linealidad.

  • Clasificación por tipo

Un primer tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Ordinarias (EDO) que, como se definieron anteriormente, son aquellas que relacionan una función desconocida de una variable independiente con sus derivadas. Algunos ejemplos de ecuaciones diferenciales ordinarias son:

$$\dfrac{dy}{dx} + 5y = e^{x}, \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 6y = 0 \hspace{1cm} y \hspace{1cm} \dfrac{dx}{dt} + \dfrac{dy}{dt} = 2x + y$$

Otro tipo de ecuaciones diferenciales son las Ecuaciones Diferenciales Parciales (EDP), estas ecuaciones presentan las derivadas parciales de una o más variables dependientes de dos o más variables independientes. Algunos ejemplos de ecuaciones diferenciales parciales son:

$$\dfrac{\partial^{2}z}{\partial x^{2}} + \dfrac{\partial^{2}z}{\partial y^{2}} = 0, \hspace{1cm} \dfrac{\partial^{2}z}{\partial x^{2}} = \dfrac{\partial^{2}z}{\partial t^{2}} -2\dfrac{\partial z}{\partial t} \hspace{1cm} y \hspace{1cm} \dfrac{\partial u}{\partial y} = – \dfrac{\partial v}{\partial x}$$

En este curso no estudiaremos a las ecuaciones diferenciales parciales.

  • Clasificación por orden

El orden de una ecuación diferencial representa el orden de la derivada más alta presente en la ecuación. Así, la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es una ecuación diferencial ordinaria de segundo orden. Importante, no confundir orden de la derivada con el grado o potencia de las derivadas.

Una EDO de $n$-ésimo orden se puede expresar como una variable dependiente empleando la forma general

$$F(x, y, y^{\prime}, \cdots , y^{(n)}) = 0 \tag{1} \label{1}$$

Donde $F$ es una función con valores reales de $n + 2$ variables. Por motivos teóricos debemos suponer que es posible resolver la EDO anterior únicamente para la derivada de mayor grado $y^{(n)}$ en términos de las $n + 1$ variables restantes, es decir, suponemos que se puede resolver la siguiente ecuación.

$$\dfrac{d^{n}y}{dx^{n}} = f(x, y, y^{\prime}, \cdots , y^{(n – 1)}) \tag{2} \label{2}$$

Donde $f$ es una función continua con valores reales. A la ecuación (\ref{2}) se le denomina forma normal de (\ref{1}). En ocasiones será útil utilizar las formas normales

$$\dfrac{dy}{dx} = f(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = f(x, y, y^{\prime})$$

para representar ecuaciones diferenciales ordinarias de primer y segundo orden, respectivamente.

Por ejemplo, la forma normal de la ecuación diferencial de primer orden

$$4x \dfrac{dy}{dx} + y = x$$

es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Para $x \neq 0$. En este caso la función $f$ sería

$$f(x, y) = \dfrac{x -y}{4x}$$

Mientras que la forma general de la misma ecuación es

$$F \left( x, y , \dfrac{dy}{dx} \right) = 4x \dfrac{dy}{dx} + y -x = 0$$

Las ecuaciones diferenciales ordinarias de primer orden ocasionalmente se escriben en lo que se conoce como la forma diferencial.

$$M(x, y) dx + N(x, y) dy = 0 \tag{3} \label{3}$$

Anteriormente vimos que la forma normal de la ecuación diferencial dada es

$$\dfrac{dy}{dx} = \dfrac{x -y}{4x}$$

Haciendo de un abuso de notación podemos escribir a esta ecuación como

$$4x dy = (x -y) dx$$

O bien,

$$(y -x) dx + 4x dy = 0$$

Esta es la correspondiente forma diferencial, en este caso

$$M(x, y) = y -x \hspace{1cm} y \hspace{1cm} N(x, y) = 4x$$

Con este ejemplo encontramos tres formas distintas de representar a la misma ecuación diferencial. Veremos más adelante que cada forma de representación nos será de utilidad cuando intentemos encontrar a la función dependiente.

  • Clasificación por linealidad

Una ecuación diferencial ordinaria de $n$-ésimo orden (\ref{1}) es lineal si $F$ es lineal en $y, y^{\prime}, \cdots, y^{(n)}$, es decir, una EDO es lineal si se puede escribir como

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x) y = g(x) \tag{4} \label{4}$$

Cumpliendo las siguientes propiedades:

  • La variable dependiente $y$, así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$ son de primer grado, es decir, la potencia de cada uno de los términos que involucran a $y$ es $1$.
  • Los coeficientes $a_{0}, a_{1}, \cdots, a_{n}$ de $y^{\prime}, y^{\prime \prime}, \cdots, y^{(n)}$, respectivamente, así como la función $g(x)$ dependen a lo sumo de la variable independiente $x$.

Una ecuación diferencial ordinaria no lineal simplemente es una ecuación que no es lineal, es decir, que no cumple con las propiedades anteriores.

La ecuación

$$4x \dfrac{dy}{dx} + y = x$$

claramente es lineal, mientras que la ecuación

$$\dfrac{d^{2} y}{dx^{2}} + 5 \left( \dfrac{dy}{dx}\right) ^{3} -4y = e^{x}$$

es no lineal debido a que la primera derivada de la variable dependiente $y$ no es de primer grado, sino de grado $3$.

Ejemplo: Clasificar las siguientes ecuaciones diferenciales.

  • $\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$
  • $(1-y) y^{\prime} + 2y = e^{x}$

Solución:

En la ecuación

$$\dfrac{d^{3}y}{dx^{3}} + 3x \dfrac{dy}{dx} -5y = e^{x}$$

observamos que se trata de una ecuación diferencial ordinaria, pues la variable dependiente $y$ sólo depende de una variable independiente, en este caso de $x$. Por otro lado, observamos que la derivada más alta es $\dfrac{d^{3}y}{dx^{3}}$ , por lo tanto el orden de la ecuación es $3$, es decir, es una ecuación diferencial de tercer orden. Finalmente vemos que se trata de una ecuación lineal, pues la potencia de los términos que involucran a $y$ es $1$ y además la función $g(x) = e^{x}$ sólo depende de la variable independiente.

En la ecuación

$$\dfrac{d^{2}y}{dx^{2}} + \sin (y) = 0$$

notamos que corresponde a una ecuación diferencial ordinaria de segundo orden ya que la derivada más alta es $\dfrac{d^{2}y}{dx^{2}}$. En este caso la ecuación es no lineal ya que la función $\sin(y)$ no es lineal e involucra a la variable dependiente.

Finalmente, en la ecuación

$$(1-y) y^{\prime} + 2y = e^{x}$$

se observa que es una ecuación diferencial ordinaria de primer orden y que es no lineal ya que el coeficiente de $y^{\prime}$, la función $(1 -y)$, depende de la variable dependiente.

$\square$

Como podemos notar, para deducir si una ecuación diferencial es lineal o no es conveniente escribirla en la forma (\ref{4}) y verificar las dos propiedades de linealidad.

De acuerdo a (\ref{4}), las ecuaciones diferenciales de primer orden ($n = 1$) y segundo orden ($n = 2$) se pueden escribir de forma general como

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{5} \label{5}$$

y

$$a_{2}(x) \frac{d^{2}y}{dx^{2}} + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{6} \label{6}$$

Respectivamente.

Hemos concluido con esta entrada.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Definir el orden de las siguientes ecuaciones diferenciales ordinarias y establecer si son lineales o no lineales.
  • $(1 -x) y^{\prime \prime} -4xy^{\prime} + 5y = \cos(x)$
  • $\dfrac{d^{2}y}{dx^{2}} = \sqrt {1 + \left(\dfrac{dy}{dx}\right)^{2}}$
  • $x \dfrac{d^{3}y}{dx^{3}} -\left( \dfrac{dy}{dx} \right) ^{4} + y = 0$
  1. Determinar si las siguientes ecuaciones diferenciales de primer orden son lineales en la variable dependiente indicada comparándola con la ecuación (\ref{4}). (es decir, considera primero a una variable como dependiente de la otra y reescribe la ecuación en la forma general (\ref{4}) para deducir si es lineal o no, posteriormente intercambia al papel de las variables y vuelve a ver si la ecuación es lineal o no).
  • $(y^{2} -1) dx + x dy = 0$, $\hspace{0.5cm}$ en $y$, $\hspace{0.2cm}$ en $x$
  • $u dv + (v + uv -ue^{u}) du = 0$, $\hspace{0.5cm}$ en $v$, $\hspace{0.2cm}$ en $u$

Más adelante …

Como se mencionó, uno de los objetivos es hallar a la función involucrada que depende de la variable independiente, a esta función formalmente se le conoce como función solución de la ecuación diferencial. Antes de estudiar cómo obtener estas funciones solución será conveniente primero estudiar sus propiedades generales.

En la siguiente entrada comenzaremos a estudiar lo relacionado a la solución (o soluciones) de una ecuación diferencial.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»