Archivo del Autor: Miguel Ángel Rodríguez García

Cálculo Diferencial e Integral II: Métodos Numéricos de Integración – Regla de Simpson

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos dos métodos numéricos de integración: el método del punto medio y el método del trapecio. Otra regla de aproximación numérica a las integrales se llama regla de Simpson, el cual consiste en usar parábolas (como se muestra en la figura $1$) en lugar de segmentos de rectas para aproximarse a una curva.

Método de la regla de Simpson

Comencemos deduciendo la regla de Simpson.

Sea una curva dada por $f(x)$ en el plano en un intervalo $[a, b]$, dividimos el intervalo $[a, b]$ en $n$ subintervalos de igual longitud dado como:

$$\Delta x=\frac{b-a}{n}$$

En el que esta vez se requiere que $n$ sea un número par.

Figura 1: Regla de Simpson con aproximaciones parabólicas a la función $f(x)$.

La ecuación de una parábola está dada como:

$$y=Ax^{2}+Bx+C \tag{1}$$

Por lo que su área en el intervalo $[-h, h]$ es:

$$Área=\int_{-h}^{h}(Ax^{2}+Bx+C)dx=\left [ A\frac{x^{3}}{3}+B\frac{x^{2}}{2}+Cx+D \right ]\bigg{|}_{-h}^{h}$$

$$=\left [ A\frac{h^{3}}{3}+B\frac{h^{2}}{2}+Ch+D \right ]- \left [ A\frac{(-h)^{3}}{3}+B\frac{ (-h) ^{2}}{2}+C (-h) +D \right ]$$

$$=\left [ A\frac{h^{3}}{3}+B\frac{h^{2}}{2}+Ch+D \right ]+\left [ A\frac{h^{3}}{3}-B\frac{h^{2}}{2}+Ch-D \right ] $$

$$=\frac{2Ah^{3}}{3}+2Ch=h\frac{(2Ah^{2}+6C)}{3} \tag{2}$$

De la figura $1$ vemos que una de las curvas pasa por los puntos $(-h, y_{0})$, $(0, y_{1})$ y $(h, y_{2})$, evaluando estos puntos en la ecuación cuadrática $(1)$ se obtiene lo siguiente:

$$y_{0}=Ah^{2}-Bh+C$$

$$y_{1}=C$$

$$y_{2}=Ah^{2}+Bh+C$$

Si sumamos estas relaciones como:

$$y_{0}+4y_{1}+y_{2}= Ah^{2}-Bh+C +4C+ Ah^{2}+Bh+C= 2Ah^{2}+6C $$

Podemos expresar el área $(2)$ en términos de $y_{0}$, $y_{1}$ y $y_{2}$, como:

$$A_{1}=\frac{h}{3}(y_{0}+4y_{1}+y_{2})$$

Que es el área debajo de la parábola que pasa por los puntos $(x_{0}=-h, y_{0})$, $(x_{1}=0, y_{1})$ y $(x_{2}=h, y_{2})$, imaginemos que la segunda parábola intercepta en los puntos: $(x_{2}, y_{2})$, $(x_{3}, y_{3})$ y $(x_{4}, y_{4})$ entonces el área de esta segunda parábola es:

$$A_{2}=\frac{h}{3}(y_{2}+4y_{3}+y_{4})$$

Si sumamos todas las áreas hasta un n-esima parábola que se aproxima a la función $f(x)$, tendremos que el área total es:

$$\int_{a}^{b}f(x)dx\approx S_{n}=\frac{h}{3}(y_{0}+4y_{1}+y_{2})+\frac{h}{3}(y_{2}+4y_{3}+y_{4})+…+\frac{h}{3}(y_{n-2}+4y_{n-1}+y_{n})$$

$$=\frac{h}{3}(y_{0}+4y_{1}+2y_{2}+4y_{3}+…+2y_{n-2}+4y_{n-1}+y_{n})$$

Vemos que hay un patrón en los coeficientes:

$$1, \space 4, \space2, \space4, \space2 \space…. \space 2, \space4, \space1$$

Por lo que la regla de Simpson se define como:

$$\int_{a}^{b}f(x)dx\approx \frac{\Delta x}{3}(y_{0}+4y_{1}+y_{2})+\frac{\Delta x}{3}(y_{2}+4y_{3}+y_{4})+…+\frac{\Delta x}{3}(y_{n-2}+4y_{n-1}+y_{n})$$

$$=\frac{\Delta x}{3}(y_{0}+4y_{1}+2y_{2}+4y_{3}+…+2y_{n-2}+4y_{n-1}+y_{n}) \tag{3}$$

Con $\Delta x=\frac{b-a}{n}$, $n$ un número par, y los puntos $x_{i}$ los calculamos como:

$$x_{0}=a$$

$$x_{1}=a+\Delta x$$

$$…..$$

$$x_{n-1}=a+(n-1)\Delta x$$

$$x_{n}=b \tag{4}$$

Cota de error para la regla de Simpson

Para la estimación de la cota de error en la regla de Simpson, suponga que $|f^{4}(x)|\leq K$ para $a\leq x\leq b$ con $|f^{4}(x)|$ el valor absoluto de la cuarta derivada de la función. Si $E_{s}$ es el error relacionado con la regla de Simpson, entonces la cota de error para la regla de Simpson es:

$$E_{s}\leq\frac{K(b-a)^{5}}{180n^{4}}$$

Veamos un ejemplo.

Ejemplo

  • Usar la regla de Simpson para aproximar la integral $\int_{1}^{2}\frac{1}{x}dx$ con $n=10$.

Tenemos que $n=10$, $a=1$ y $b=2$ lo que implica que $\Delta x=\frac{b-a}{n}=0.1$.

Por la regla de Simpson $(3)$ y calculando los puntos $x_{i}$ $(4)$ tenemos que:

$$\int_{1}^{2}\frac{1}{x}dx\approx\ S_{10}=\frac{\Delta x}{3}\left [ f(1)+4f(1.1)+2f(1.2)+…+2f(1.8)+4f(1.9)+f(2) \right ]$$

$$=\frac{0.1}{3}\left [ \frac{1}{1}+\frac{4}{1.1}+\frac{2}{1.2}+\frac{4}{1.3}+\frac{2}{1.4}+\frac{4}{1.5}+\frac{2}{1.6}+\frac{4}{1.7}+\frac{2}{1.8}+\frac{4}{1.9}+\frac{1}{2}+ \right ]\approx 0.693150$$

Comparando este resultado con lo obtenido con la regla del punto medio y regla del trapecio, la regla de Simpson nos da una aproximación mucho mejor respecto a estos dos métodos, pues resulta que la regla de Simpson son promedios ponderados de la regla del punto medio y regla del trapecio, se puede demostrar que:

$$S_{2n}=\frac{1}{3}T_{n}+\frac{2}{3}M_{n}$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invito a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestre que: $S_{2n}=\frac{1}{3}T_{n}+\frac{2}{3}M_{n}$
  2. ¿Qué tan grande debe de ser n para que al utiliza la regla de Simpson al aproximar la integral $\int_{1}^{2}\frac{1}{x}dx$, sea exacta hasta dentro de 0.0001?
    1. Use la regla de Simpson con n=10 para aproximar la integral $\int_{0}^{1} e^{x^{2}}dx$
    2. Estime el error con esta aproximación
    1. Estimar la integral con n=3: $\int_{0}^{2} x^{3}dx$
    2. En este caso, ¿la regla de Simpson es exacta? ¿Porque?

Más adelante…

En esta sección vimos la regla de Simpson que consiste en otro método de aproximación numérica para las integrales por medio de parábolas y que es este método es un promedio ponderado de los métodos del punto medio y del trapecio. Aunque existen más métodos numéricos para aproximar integrales, solo veremos estos métodos. En la siguiente sección veremos el teorema del valor medio para las integrales.

Entradas relacionadas

Cálculo Diferencial e Integral II: Métodos Numéricos de Integración – Regla del punto medio y del trapecio

Por Miguel Ángel Rodríguez García

Introducción

En caso contrario a las derivadas, algunas integrales no se pueden resolver o son muy difíciles de resolver y esto es porque ninguna técnica puede ni podrá que tales integrales se puedan expresar en términos de funciones elementales, por lo que a estas integrales se recurre a aproximarlas numéricamente, por lo que en esta entrada enseñaremos solo algunos métodos numéricos para integrales definidas, ya que hay un mundo de métodos numéricos.

Métodos numéricos de integración

La idea de evaluar una integral definida $\int_{a}^{b}f(x)dx$ consiste en determinar una fórmula $F(x)$ para una de las antiderivadas $f(x)$ y calcular el número $F(b)-F(a)$, sin embargo, en algunas ocasiones es difícil o incluso imposible hallar una antiderivada, por ejemplo, es difícil hallar de manera exacta la siguiente integral definida:

$$\int_{0}^{1} e^{x^{2}}dx$$

Por lo que en estos casos se necesita hallar valores aproximados a estas integrales definidas usando algunos métodos de aproximación como la regla del punto medio o la regla del trapecio.

Regla del punto medio

Para el método de la regla del punto medio comenzamos a deducir este método.

Sea una función $f(x)$ continua en un intervalo $[a, b]$. Dividimos este intervalo en $n$ subintervalos de igual longitud como se observa en la figura $1$, expresemos esta longitud como:

$$\Delta x=\frac{b-a}{n}$$

A medida que $n \to \infty$ mejor es la aproximación a la integral de la función $f(x)$.

Figura 1: Aproximación del método del punto medio a una función $f(x)$.

Recordemos que la integral definida se puede aproximar como [Hipervinculo: Calculo II-Definición de la integral]

$$\int_{a}^{b}f(x)dx\approx \sum_{i=1}^{n}f(x_{i})\Delta x$$

Donde $x_{i}$ es cualquier punto en el i-ésimo subintervalo $[a, b]$. Se puede considerar a $x_{i}$ como el punto medio, denotemos este punto como $\bar{x_{i}}$, así como se muestra en la figura $1$.

Sumamos estos $n$ puntos medios evaluados sobre la función $f(x)$ multiplicadas por $\Delta x$, obtenemos una aproximación a la integral, a este método se le conoce como regla del punto medio y está definida como:

$$\int_{a}^{b}f(x)dx\approx M_{n}= \sum_{i=1}^{n}f(\bar{x_{i}})\Delta x=\Delta x\left [ f(\bar{x_{1}})+f(\bar{x_{2}})+…+f(\bar{x_{n}}) \right ] \tag{1}$$

Con:

$$\Delta x=\frac{b-a}{n}$$

Llamado tamaño de la malla y:

$$\tilde{x_{i}}=\frac{1}{2}\left ( a+b \right )$$

Es el punto medio del intervalo $[a, b]$.

Regla del trapecio

Este método consiste en considerar varios trapecios y aproximarse a la función $f(x)$ mediante estos, recordemos que el área de un trapecio es:

$$1/2 (base \space mayor + base \space menor) \space por \space altura$$

Así el área del i-esimo trapecio es:

$$A=\frac{f(x_{i-1})+f(x_{i})}{2}\Delta x$$

Análogamente, a la deducción del método de la regla del punto medio, consideremos una función $f(x)$ continua en el intervalo $[a, b]$, dividimos este intervalo en $n$ subintervalos con longitud $\Delta x=\frac{b-a}{n}$, en donde se aproxima el área de la integral por medio de trapecios como lo vemos en la siguiente imagen:

Figura 2: Aproximación del método del trapecio a una función $f(x)$.

Por lo que se puede aproximar la integral de la función $f(x)$ tomando $n$ subintervalos, como:

$$\int_{a}^{b}f(x)dx\approx T_{n}= \frac{1}{2}\left [ \sum_{i=1}^{n}(f(x_{i-1})+f(x_{i})) \Delta x \right ]$$

$$=\frac{\Delta x}{2}\left [ \sum_{i=1}^{n}(f(x_{i-1})+f(x_{i})) \right ]=\frac{\Delta x}{2} \left [ f_{0}+f_{1}+…+f_{n-1}+f_{1}+f_{2}+…+f_{n} \right ]=\frac{\Delta x}{2}\left [ f_{0}+2f_{1}+…+2f_{i-1}+f_{n} \right ]$$

$$\therefore \int_{a}^{b}f(x)dx\approx T_{n}=\frac{\Delta x}{2} \left [ f_{0}+2f_{1}+…+2f_{i-1}+f_{n} \right ] \tag{2}$$

Donde:

$$\Delta x=\frac{b-a}{n}$$

Y:

$$x_{i}=a+i\Delta x$$

Cotas de error

Como son métodos de aproximación, entonces hay un error en el cual se define como la cantidad que debe ser sumada a la aproximación para llegar al valor exacto. Cuando el valor $n$ tiende a ser muy grande, el valor $\Delta x=\frac{b-a}{n}$ tiende a cero, por lo que $M_{n}$ y $T_{n}$ tienden al valor exacto de $\int_{a}^{b}f(x)dx$ pero es claro que hacerlo en papel es muy difícil de llegar al valor exacto por lo que a continuación se definen las estimaciones de las cotas de los errores:

Consideremos que $|f´´(x)|\leq K$ para $a\leq x \leq b$ , es decir, la segunda derivada de $f(x)$ está acotada por $K$, una cota superior para los valores de $|f´´|$ en $[a, b]$. Si $E_{M}$ y $E_{T}$ son los errores en la regla del punto medio y la regla del trapecio respectivamente, para $n$ pasos, entonces:

$$|E_{M}|\leq \frac{K(b-a)^{3}}{24n^{2}}$$

$$|E_{T}|\leq \frac{K(b-a)^{3}}{12n^{2}}$$

Obsérvese que $|f´´(x)|$ es el valor absoluto de la segunda derivada de la función.

Veamos un ejemplo de como se aplican estos dos métodos numéricos.

Ejemplos

  • Usar la regla del punto medio y del trapecio con $n=5$ para aproximar la integral $\int_{1}^{2}\frac{1}{x}dx$ y calculé los errores respectivos.

Vemos que $n=5$, $a=1$ y $b=2$ $\Rightarrow \Delta x=\frac{2-1}{5}=\frac{1}{5}$

Comenzamos con el método de la regla del punto medio, tenemos que los puntos medios son: $\tilde{x_{i}}=\frac{1}{2}\left [ x_{i-1}+x_{i} \right ]$, como estamos en el intervalo $[1, 2]$ dividimos este intervalo en $5$, ya que $n=5$ y tendremos los siguientes subintervalos:

$$[1, 1.2], \space [1.2, 1.4], \space [1.4, 1.6], \space [1.6, 1.8] \space y \space [1.8, 2]$$

Ahora obtengamos $\bar{x_{i}}$, que son los puntos medios respectivamente de los subintervalos anteriores, los cuales son:

$$1.1, \space 1.3, \space 1.5, \space 1.7 \space y \space 1.9$$

Usando la relación $(1)$, tenemos que:

$$\int_{1}^{2}\frac{1}{x}dx\approx \Delta x\left [ f(1.1)+f(1.3)+f(1.5)+f(1.7)+f(1.9) \right ]=\frac{1}{5}\left [ \frac{1}{1.1}+\frac{1}{1.3}+\frac{1}{1.5}+\frac{1}{1.7}+\frac{1}{1.9} \right ]\approx 0.691908 \tag{3}$$

Ahora usamos el método de la regla del trapecio recordando que:

$$x_{i}=a+i\Delta x$$

Entonces:

$$x_{0}=1$$

$$x_{1}=1+(1)(\frac{1}{5})=1.2$$

$$x_{2}=1+(2)(\frac{1}{5})=1.4$$

$$x_{3}=1+(3)(\frac{1}{5})=1.6$$

$$x_{4}=1+(4)(\frac{1}{5})=1.8$$

$$x_{5}=1+(5)(\frac{1}{5})=2$$

Por ende, usamos la relación $(2)$, se tiene que:

$$\int_{1}^{2}\frac{1}{x}dx\approx \frac{0.2}{2} \left [ f(1)+2f(1.2)+2f(1.4)+2f(1.6)+2f(1.8)+f(2) \right ]=0.1\left [ \frac{1}{1}+\frac{2}{1.2}+\frac{2}{1.4}+\frac{2}{1.6}+\frac{2}{1.8}+\frac{1}{2} \right ]\approx 0.695635 \tag{4}$$

Para calcular las cotas de los errores tomemos la segunda derivada de la función:

$$|f´´(x)|=|\frac{2}{x^{3}}|$$

Como estamos en un intervalo, entonces:

$$1\leq x \leq2 \Rightarrow 1 \geq \frac{1}{x}$$

Por lo que:

$$|f´´(x)|=|\frac{2}{x^{3}}|\leq|\frac{2}{1^{3}}|\leq 2 $$

Así tenemos que una cota superior es $K=2$, de manera que:

$$|E_{T}|\leq \frac{2(2-1)^{3}}{12(5)^{2}} \approx 0.06667$$

$$|E_{M}|\leq \frac{2(2-1)^{3}}{24(5)^{2}} \approx 0.00333$$

Observemos que las cotas de error se encuentran en un intervalo al resolver las desigualdades, es decir, el valor de la cota de error para el método del trapecio está en el intervalo $(-0.06667,0.06667 )$ y la cota de error para el método del punto medio está en el intervalo $(- 0.00333,0.00333 )$.

Si hacemos la integral de manera directa tenemos lo siguiente:

$$\int_{1}^{2}\frac{1}{x}dx=0.693147…. \tag{5}$$

Comparamos los resultados $(3)$ y $(4)$ de estos dos métodos y observamos que en los dos métodos se aproximan al valor de la integral definida $(5)$ incluso para $n$ pequeñas, para $n$ mucho más grandes se espera que se aproximen mejor al valor de la integral definida.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Para que valor de n se deben tomar a fin de garantizar que la aproximación de la regla del punto medio para $\int_{1}^{2}\frac{1}{x}dx$ sean exactas hasta dentro de 0.001?
  2. ¿Para que valor de n se deben tomar a fin de garantizar que la aproximación de la regla del trapecio para $\int_{1}^{2}\frac{1}{x}dx$ sean menor que $10^{-4}$?
  3. Utilice la regla del punto medio con n =4 para estimar $\int_{1}^{2}x^{2}dx$
  4. Utilice la regla del trapecio con n =4 para estimar $\int_{1}^{2}x^{2}dx$
  5. De una cota superior para aproximar la siguiente integral $\int_{1}^{2}e^{x^{2}}dx$

Más adelante…

En esta sección vimos dos métodos de aproximación numérica para las integrales que son el método del punto medio y el método del trapecio, el cual vimos que se pueden aproximar a la integral que deseemos, pero para lograr una mejor aproximación, en general, se utiliza lenguajes de programación como Python, C++, R, o software especializados como Mathematica o MatLab para mejorar la precisión de estos métodos facilitando el trabajo y obteniendo una aproximación que se quiera, siempre y cuando su computador lo permita. En el siguiente entrada veremos otro método de aproximación numérica llamado el método de la regla de Simpson.

Entradas relacionadas

Cálculo Diferencial e Integral II: Método de sustitución o cambio de variable

Por Miguel Ángel Rodríguez García

Introducción

En las unidades anteriores, se dieron las bases para la integración de funciones, así como, la integración de funciones con rigurosidad matemática. En esta unidad se estudiaran varias técnicas de integración para determinar integrales sin demasiada rigurosidad matemática y aunque no se estudiaran todas las técnicas de integración se verán las más relevantes.

Método de sustitución o cambio de variable

La integración por sustitución o cambio de variable, que como bien se menciona, es una técnica de integración que necesita uno o más cambios de variables adecuados en el integrando, de tal forma que la integral sea más sencilla de resolver. Comenzamos enunciando el teorema siguiente, la integración por sustitución.

Teorema: Método de sustitución

Sea $g$ una función derivable y con derivada continua, sea $f$ una función continua en un intervalo. Supón además que $F$ es una antiderivada de $f$ entonces:

$$\int_{a}^{b}f(g(x)) \cdot g'(x)dx=\int_{g(a)}^{g(b)}f(u)du= F(g(x)){\bigg|}_{ a }^{ b } $$

Demostración:

Por hipótesis, $F$ es primitiva de $f$, entonces por el segundo teorema fundamental del Cálculo [ Hipervinculo: Calculo II-Segundo Calculo fundamental del calculo] tenemos que:

$$\int_{g(a)}^{g(b)}f(u)du = F(g(b))-F(g(a)) \tag{1}$$

Por otro lado, dado que $f$ es continua, entonces tiene una antiderivada $F$, la función compuesta $f\circ g$ está definida, ya que $g$ es una función, como $g$ es diferenciable, tenemos que, por la regla de la cadena y la definición de antiderivada obtenemos que:

$$\frac { d }{ dx } (F(g(x))=F'(g(x))\cdot g'(x)=f(g(x))\cdot g'(x) \tag{2}$$

Integramos de $a$ hasta $b$, nos fijamos en el lado derecho e izquierdo de la ecuación $(2)$ como sigue:

$$\int_{a}^{b} \frac { d }{ dx } (F(g(x))dx=\int_{a}^{b} f(g(x)) \cdot g'(x) dx $$

Utilizamos nuevamente el teorema fundamental del Cálculo, obteniendo lo siguiente:

$$\int _{ a }^{ b }{ f(g(x)) \cdot g'(x)dx=F(g(b))-F(g(a)) } \tag{3}$$

Observamos las ecuaciones $(1)$ y $(3)$, vemos que se obtuvo la igualdad deseada, por lo que:

$$\int _{ a }^{ b }{ f(g(x)) \cdot g'(x)=F(g(b))-F(g(a)) } = \int_{g(a)}^{g(b)}f(u)du$$

$\square$

Puede quedar no muy claro el cómo utilizar este teorema, por lo que a continuación se ejemplificara con varios ejercicios el método de sustitución.

Ejemplos:

  • $\int { { ({ x }^{ 2 }+1) }^{ 2 }(2x)dx }$

Se hace un cambio de variable para resolver esta integral, cabe destacar que el símbolo para el cambio de variable puede ser cualquiera que guste, por ejemplo cualquier letra del alfabeto o incluso una carita feliz, en la literatura es común utilizar los símbolos de $u$ y $v$ para tales cambios de variable.

Para resolver esta integral, proponemos a $u = {x}^{2}+1$, por lo que, al derivar, se obtiene: $du = 2x dx$, así, al sustituir estas variables, el integrando queda de la siguiente forma:

$$\int u^{2}du$$

Vemos que al hacer el cambio de variable la integral es más sencilla, ya que sabemos que en general cualquier polinomio de grado $n$ se integra como:

$$\int { { x }^{ n }dx } =\frac { { x }^{ n+1 } }{ n } +C$$

Donde $C$ es la constante de integración, siguiendo con el ejercicio:

$$\int { { u }^{ 2 }du= \frac { { u }^{ 3 } }{ 3 } +C } $$

Volviendo a la variable original $x$, la resolución de la integral es:

$$\int { { ({ x }^{ 2 }+1) }^{ 2 }(2x)dx } = \frac { { ({ x }^{ 2 }+1) }^{ 3 } }{ 3 } +C $$

Obsérvese que este integral se puede resolver también multiplicando los factores y utilizar la linealidad de la integral, pero esto es un poco más laborioso. Así vemos que este método nos ayuda a resolver integrales fácilmente.

  • $\int { \frac { 2x-9 }{ \sqrt { { x }^{ 2 }-9x+1 } } } dx$

A simple vista esta integral puede ser complicada y necesitar de otros métodos, pero veamos que no es necesario.

Proponemos como cambio de variable: $u={ x }^{ 2 }-9x+1$, la derivada es: $du=(2x-9)dx$, por lo que la integral se reescribe como:

$$\int { \frac { du }{ \sqrt { u } } }=\int { { u }^{ -1/2 }du }$$

Esta integral se resuelve como:

$$\int { { u }^{ -1/2 }du }=\frac { { u }^{ -1/2+1 } }{ -\frac{1}{2}+1 } +C={ 2u }^{ 1/2 }+C$$

Volviendo a la variable original, el resultado es:

$$\int { \frac { 2x-9 }{ \sqrt { { x }^{ 2 }-9x+1 } } } dx=2\sqrt { { x }^{ 2 }-9x+1 } +C$$

  • $\int { \frac { x+1 }{ { x }^{ 2 }+2x } dx }$

Proponemos como cambio de variable: $u={x}^{2}+2x \Rightarrow du=(2x+2)dx=2(x+1)dx$

Vemos en el integrando que solo está el término $x+1$, por lo que en la relación de la diferencia de $u$, al ser una igualdad, pasamos el $2$ dividiendo como sigue:

$$\Rightarrow \frac { du }{ 2 } =\left(x+1 \right) dx$$

Por lo que reescribimos la integral y la resolvemos:

$$\int \frac { 1 }{ u } \frac{du}{2}=\frac { 1 }{ 2 } ln\left| u \right| +C$$

Volviendo a la variable original, se obtiene que la resolución de la integral es:

$$\int { \frac { x+1 }{ { x }^{ 2 }+2x } dx }=\frac { 1 }{ 2 } ln\left| { x }^{ 2 }+2x \right| +C $$

  • $\int _{ 1 }^{ 3 }{ \frac { { e }^{ 3/x } }{ { x }^{ 2 } } dx }$

Vemos en este caso que tenemos una integral definida. Proponemos como cambio de variable: $$u=\frac { 3 }{ x } \Rightarrow du=-3{ x }^{ -2 }dx$$

Al hacer un cambio de variable en las integrales con límites de integración, se tiene que cambiar los límites de integración como sigue: Si $x=1 \Rightarrow u=3$, si $x=3 \Rightarrow u=1$, así la integral se reescribe como:

$$\int _{ 3 }^{ 1 }{\left ( -\frac { 1 }{ 3 }\right ) { e }^{ u }du }$$

Resolviendo esta integral, sabemos que al cambiar los límites de integración se cambia el signo de la integral [ Hipervinculo: Calculo II-Tema que contiene el cambio de signo al cambiar los límites de integración], entonces tenemos que:

$$\int _{ 1 }^{ 3 }{ \frac { 1 }{ 3 } { e }^{ u }du}={ \left[ \frac { 1 }{ 3 } { e }^{ u }du \right] }{\bigg|}_{ 1 }^{ 3 }=\frac { 1 }{ 3 } \left( { e }^{ 3 }-{ e } \right)$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Resuelve las siguientes integrales utilizando el método de sustitución:

  1. $$\int \sqrt { 2x+1 }dx$$
  2. $$\int 3{ x }^{ 2 }\sqrt { { x }^{ 3 }-2 } dx$$
  3. $$\int \frac { { x }^{ 2 }+x+1 }{ { x }^{ 2 }+1 } dx $$ Hint: Hacer la división de polinomios.
  4. $$\int _{ -2 }^{ 3 } x \cos { {( x }^{ 2 }+3)}dx$$
  5. $$\int _{ 0 }^{ \pi /4 } \sqrt { 1+\cos(4x)} dx$$ Hint: Utilizar la identidad ${ \cos }^{2 }(\theta) =\frac { 1+\cos { (2\theta) } }{ 2 }$ y utilizar un cambio de variable.

Más adelante…

Como se mencionó anteriormente, esta técnica de integración facilita resolver algunas integrales utilizando uno o más cambios de variables apropiados para poder resolver la integral como se vio en esta sección, pero en otros casos no se pueden resolver integrales solo utilizando el cambio de variable, en la siguiente sección veremos otro método de integración llamado integración por partes.

Entradas relacionadas

Cálculo Diferencial e Integral II: Integración de funciones racionales por fracciones parciales

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos el método de sustitución trigonométrica que es un método que utiliza sustituciones con funciones básicas trigonométricas para poder resolver ciertos tipos de integrales, en esta sección mostraremos como integrar cualquier función racional como una suma de fracciones más simples llamadas fracciones parciales y que son más fáciles de integrar, a este método se le denomina el método por fracciones parciales.

Método de las fracciones parciales

Considérese una función racional: $f(x)=\frac{P(x)}{Q(x)}$

Donde $P(x)$ y $Q(x)$ son polinomios de grado $n$ y $m$ respectivamente, es posible reescribir el polinomio $f(x)$ si el grado de $P(x)$ es menor que el grado de $Q(x)$, es decir, $n < m$.

Al reescribir la función $f(x)$ como combinación lineal de más polinomios se le conoce como método de fracciones parciales, así, al integrar la función $f(x)$ se integran estos polinomios facilitando la integración en algunos casos.

A continuación veremos los casos en los que se puede utilizar este método

Caso 1: El denominador $Q(x)$ es un producto de factores lineales distintos

Como los factores del polinomio $Q(x)$ son productos de factores lineales distintos, entonces podemos escribir a $Q(x)$ como: $(a_{1}x+b_{1})(a_{2}x+b_{2})….(a_{k}x+b_{k})$ donde ningún factor se repite y ningún factor es un múltiplo constante de otro, entonces existen constantes $A_{1}, A_{2}…., A_{k}$ tales que:

$$f(x)=\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1}x+b_{1}}+\frac{A_{2}}{a_{2}x+b_{2}}+….+\frac{A_{k}}{a_{k}x+b_{k}}$$

Veamos el ejemplo siguiente.

  • $\int \frac{1}{x^{2}-5x+6}dx$

Notamos que el grado del numerador es menor que el grado del denominador, pero para utilizar el caso anterior podemos reescribir el denominador como sigue:

$$x^{2}-5x+6=(x-3)(x-2)$$

Lo cual los factores son lineales, entonces podemos usar las fracciones parciales como:

$$\frac{1}{x^{2}-5x+6}=\frac{1}{(x-3)(x-2)}=\frac{A}{x-3}+\frac{B}{(x-2)}=\frac{A(x-2)+B(x-3)}{(x-3)(x-2)}$$

Tenemos que identificar los valores de las variables $A$ y $B$.

Observamos la igualdad, vemos que se debe tener que tanto los denominadores y los numeradores de ambos lados de la igualdad deben ser iguales respectivamente, por lo que:

$$1=A(x-2)+B(x-3)=Ax-2A+Bx-3B=x(A+B)-2A-3B$$

$$1= x(A+B)-2A-3B $$

Vemos que: $A+B=0$ ya que no hay un factor de $x$ en el lado izquierdo de la igualdad $\Rightarrow A=-B$

Por otro lado: $1=-2A-3B=-2(-B)-3(B) \Rightarrow B=-1 \Rightarrow A=1$

Por lo que la integral se reescribe como:

$$\int \frac{1}{x^{2}-5x+6}dx=\int \frac{1}{(x-3)}-\frac{1}{(x-2)}dx=\int \frac{1}{(x-3)}dx-\int \frac{1}{(x-2)}dx$$

Estas integrales se pueden resolver por el método de sustitución, quedando como resultado:

$$\int \frac{1}{(x-3)}dx-\int \frac{1}{(x-2)}dx=ln(x-3)-ln(x-2)+C$$

$$\therefore \int \frac{1}{x^{2}-5x+6}dx =ln(x-3)-ln(x-2)+C$$

Caso 2: El denominador es un producto de factores lineales algunos de los cuales se repiten

Suponga que el primer factor lineal: $a_{1}x+b_{1}$ se repite $k$ veces, es decir, el factor lineal está elevado a la $k$, por lo que podemos usar las fracciones parciales como:

$$f(x)=\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1}x+b_{1}}+\frac{A_{2}}{(a_{1}x+b_{1})^{2}}+….+\frac{A_{k}}{(a_{1}x+b_{1})^{k}}$$

Veamos un ejemplo.

  • $\int \frac{5x^{2}-36x+48}{x(x-4)^{2}}dx$

Vemos que el denominador es de grado mayor que el nominador y que el factor $(x-4)$ se repite dos veces, utilizando lo visto del caso $(2)$ y el caso $(1)$, tenemos que:

$$\frac{5x^{2}-36x+48}{x(x-4)^{2}}=\frac{A}{x}+\frac{B}{x-4}+\frac{C}{(x-4)^{2}}$$

Hacemos la suma de las fracciones:

$$\frac{A(x-4)^{2}}{x(x-4)^{2}}+\frac{Bx(x-4)}{x(x-4)^{2}}+\frac{Cx}{x(x-4)^{2}}=\frac{A(x-4)^{2}+Bx(x-4)+Cx}{x(x-4)^{2}}$$

Vemos que:

$5x^{2}-36x+48=A(x-4)^{2}+Bx(x-4)+Cx=A(x^{2}-8x+16)+Bx(x-4)+Cx=x^{2}(A+B)+x(-8A-4B+C)+16A$

$\Rightarrow 5=A+B$

$-36=-8A-AB+C$

$48=16A$

Resolviendo este sistema de 3 ecuaciones y 3 incógnitas tenemos que:

$$A=3 \Rightarrow B=2 \Rightarrow C=-4$$

Así la integral se reescribe como:

$$\int \frac{5x^{2}-36x+48}{x(x-4)^{2}}dx=\int \left (\frac{3}{x}+\frac{2}{x-4}-\frac{4}{(x-4)^{2}} \right )dx=\int \frac{3}{x}dx+\int \frac{2}{x-4}dx-\int \frac{4}{(x-4)^{2}}dx$$

Resolvemos estas integrales por el método de sustitución resultando:

$$\int \frac{5x^{2}-36x+48}{x(x-4)^{2}}dx=3ln(x)+2ln(x-4)+\frac{4}{x-4}+C$$

Caso 3: El denominador contiene un factor cuadrático irreducible, ninguno de los cuales se repite

Si el denominador $Q(x)$ tiene un factor $ax^{2}+bx+c$ irreducible, entonces se tendrá un término de la forma;

$$\frac{1}{Q(x)}=\frac{Ax+B}{ax^{2}+bx+c}$$

Veamos un ejemplo donde se use este caso, pero sin integrar la función $f(x)$, ya que esta entrada se haría un poco larga y tediosa.

  • $\frac{4x^2-8x+1}{(x+2)(x^{2}-2x+3)}$

Combinando lo visto del caso $1$ y caso $3$ tenemos que:

$$\frac{4x^2-8x+1}{(x+2)(x^{2}-2x+3)}=\frac{A}{(x+2)}+\frac{Bx+C}{(x^{2}-2x+3)}=\frac{A(x^{2}-2x+3)+(Bx+C)(x+2)}{(x+2)(x^{2}-2x+3)}$$

$\Rightarrow 4x^2-8x+1=A(x^{2}-2x+3)+(Bx+C)(x+2)=Ax^{2}-2Ax+3A+Bx^{2}+2Bx+Cx+2C$

$\Rightarrow 4x^2-8x+1=x^{2}(A+B)+x(-2A+2B+C)+3A+2C$

$\Rightarrow 4=A+B$

$-8=-2A+2B+C$

$1=3A+2C$

Resolviendo este sistema de 3 ecuaciones y 3 variables tenemos que:

$$A=3 \Rightarrow B=1\Rightarrow C=-4$$

Así podemos reescribir la división polinómica como:

$$\frac{4x^2-8x+1}{(x+2)(x^{2}-2x+3)}=\frac{3}{x+2}+\frac{x-4}{x^{2}-2x+3}$$

Caso 4: El denominador contiene un factor cuadrático irreducible que se repite $k$ veces

Si $Q(x)$ tiene un factor $ax^{2}+bx+c$ irreducible y se repite $k$ veces, entonces se tendrá la siguiente forma:

$$\frac{1}{Q(x)}=\frac{A_{1}x+B_{1}}{ax^{2}+bx+c}+\frac{A_{2}x+B_{2}}{(ax^{2}+bx+c)^{2}}+….+\frac{A_{k}x+B_{k}}{(ax^{2}+bx+c)^{k}}$$

Veamos un ejemplo utilizando este caso sin integrar.

  • $\frac{1-x+2x^2-x^3}{x(x^{2}+1)^{2}}$

De los casos anteriores tenemos que:

$$\frac{1-x+2x^2-x^3}{x(x^{2}+1)^{4}}=\frac{A}{x}+\frac{Bx+C}{x^{2}+1}+\frac{Dx+E}{(x^{2}+1)^{2}}=\frac{A(x^{2}+1)^{2}+(Bx+C)x(x^{2}+1)+x(Dx+E)}{x(x^{2}+1)^{2}}$$

$\Rightarrow 1-x+2x^2-x^3=A(x^{2}+1)^{2}+(Bx+C)x(x^{2}+1)+x(Dx+E)=A(x^{4}+2x^{2}+1)+B(x^{2}+Cx)(x^2+1)+Dx^{2}+Ex$

$=Ax^{4}+2Ax^{2}+A+Bx^{4}+Bx^{2}+C^{3}+Cx+Dx^{2}+Ex=(A+B)x^{4}+Cx^{3}+x^{2}(2A+B+D)+(C+E)x+A$

$\Rightarrow 0=A+B$

$-1=C$

$2=2A+B+D$

$1=C+E$

$1=A$

Resolviendo este sistema de ecuaciones con 5 incógnitas y 5 ecuaciones, vemos que: $A=1$ y $C=-1 \Rightarrow B=1$, $D=1$ y $E=0$

Así tenemos que:

$$\frac{1-x+2x^2-x^3}{x(x^{2}+1)^{4}}=\frac{1}{x}+\frac{-x-1}{x^{2}+1}+\frac{x}{(x^{2}+1)^{2}}$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Resolver las siguientes integrales:

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\int \frac{x^{2}+4x+1}{(x-1)(x+1)(x+3)}dx$$
  2. $$\int \frac{6x+7}{(x+2)^{2}}dx$$
  3. $$\int \frac{2x^{2}-4x-8}{(x^{2}-x)(x^2+4)}dx$$
  4. $$\int \frac{5x^{2}+20x+6}{x^{3}+2x^{2}+x}dx$$
  5. $$\int \frac{4x}{(x^{2}+1)(x^{2}+2x+3)}dx$$

Más adelante…

Aunque el método de fracciones parciales es un poco laborioso, es un gran método para resolver este tipo de integrales con funciones racionales, utilizando también el método de fracciones parciales en el cual se divide en 4 casos diferentes para que la función racional sea más sencilla de integrar. En la siguiente sección comenzaremos a ver algunos métodos numéricos para la integral.

Entradas relacionadas

Cálculo Diferencial e Integral II: Sustitución Trigonométrica

Por Miguel Ángel Rodríguez García

Introducción

En las últimas dos secciones anteriores vimos integrales trigonométricas que contiene producto de potencias de las funciones trigonométricas básicas, en esta sección veremos integrales que se resuelven con sustituciones utilizando las funciones trigonométricas, veamos como.

Método de sustitución trigonométrica

El método de sustitución trigonométrica consiste en resolver integrales que contienen términos de la forma:

  • $$\sqrt{a^{2}-x^{2}}$$
  • $$\sqrt{x^{2}-a^{2}}$$
  • $$\sqrt{x^{2}+a^{2}}$$

Para hacer estas sustituciones con las funciones trigonométricas básicas se debe ver cada caso según corresponda.

Caso 1: Integrales de la forma: $\sqrt{a^{2}-x^{2}}$

Figura 1: Triángulo de referencia para la sustitución $x=a\sin(\theta)$

Podemos auxiliarnos con un triángulo rectángulo como vemos en la figura $(1)$, y recordar un poco de trigonometría básica, recordemos que en un triángulo rectángulo:

$$\sin(\theta)=\frac{Cateto \space opuesto}{Hipotenusa}=\frac{x}{a}\Rightarrow a \cdot \sin\theta=x $$

Podemos hacer la sustitución:

$$x=a \cdot \sin(\theta) \tag{1}$$

Por otro lado:

$$\cos(\theta)=\frac{Cateto \space adyacente}{Hipotenusa}=\frac{\sqrt{a^{2}-x^{2}}}{a} \Rightarrow \sqrt{a^{2}-x^{2}}=a \cdot \cos(\theta) \tag{2}$$

Estas son las sustituciones que debemos de hacer para integrales del tipo $\sqrt{a^{2}-x^{2}}$, en este punto talvez pueda ser un poco confuso de utilizarlas, así que veamos el ejemplo siguiente.

  • $\int \frac{dx}{x^{2}\sqrt{9-x^{2}}}$

Vemos que lo que está adentro de la raíz es similar al del caso $(1)$, por lo que podemos hacer la siguiente figura:

Figura 2: Triángulo para el ejercicio 1.

De la figura $(2)$ y de la relación $(1)$, podemos escribir:

$$\frac{x}{3}=\sin(\theta) \Rightarrow x=3\sin(\theta) \Rightarrow dx=3\cos(\theta)d\theta$$

Elevamos al cuadrado la variable $x$ como:

$$x^{2}=9\sin^{2}(\theta)$$

Por otro lado, utilizando la relación $(2)$ tenemos que:

$$\frac{\sqrt{9-x^{2}}}{3}=\cos(\theta) \Rightarrow \sqrt{9-x^{2}}=3\cos(\theta)$$

Así sustituimos estas variables en la integral obteniendo lo siguiente:

$$\int \frac{dx}{x^{2}\sqrt{9-x^{2}}}=\int \frac{3\cos(\theta)d\theta}{9\sin^{2}(\theta)3\cos(\theta)}=\frac{1}{9}\int \frac{1}{\sin^{2}(\theta)}d\theta=\frac{1}{9}\int csc^{2}(\theta)d\theta$$

La resolución de esta integral se utiliza los métodos de integrales trigonométricas vistos en esta entrada, por lo que:

$$\frac{1}{9}\int \csc^{2}(\theta)d\theta=\frac{1}{9}(-\cot(\theta))+C$$

Volvemos a la variable original $x$, reescribimos a la función cotangente como: $$\cot(\theta)=\frac{\cos(\theta)}{\sin(\theta)}$$

Con los cambios de variable que hicimos, tenemos que:

$$\cot(\theta)=\frac{\cos(\theta)}{\sin(\theta)}=\frac{\frac{\sqrt{9-x^{2}}}{3}}{\frac{x}{3}}=\frac{{\sqrt{9-x^{2}}}}{{x}}$$

Así la resolución de la integral es:

$$\int \frac{dx}{x^{2}\sqrt{9-x^{2}}}= -\frac{1}{9}\frac{{\sqrt{9-x^{2}}}}{{x}}+C$$

Caso 2: Integrales de la forma $\sqrt{x^{2}-a^{2}}$

Figura 3: Triángulo de referencia para la sustitución $x=a\sec(\theta)$

Análogamente, nos auxiliamos de un triángulo rectángulo como vemos en la figura $(3)$, recordamos que:

$$\sec(\theta)=\frac{1}{\cos(\theta)}=\frac{Hipotenusa}{Cateto \space adyacente}=\frac{x}{a} $$

Podemos hacer la sustitución:

$$x=a \cdot \sec(\theta) \tag{3}$$

Por otro lado:

$$\tan(\theta)=\frac{Cateto \space opuesto}{Cateto \space adyacente}=\frac{\sqrt{x^{2}-a^{2}}}{a} \Rightarrow \sqrt{x^{2}-a^{2}}=a \cdot \tan(\theta) \tag{4}$$

Por lo que estas son las sustituciones que debemos hacer en este caso, veamos un ejemplo.

  • $\int \frac{dx}{\sqrt{25x^{2}-4}}$

Nos fijamos en el radicando y notamos que es similar al caso $(2)$, pero vemos que tenemos un problema con el número que va multiplicando $x^{2}$, ya que se quiere que sea de la forma: $\sqrt{x^{2}-a^{2}}$, por lo que podemos rescribir el radical como sigue: $$\sqrt{25x^{2}-4}=\sqrt{25(x^{2}-\frac{4}{25}})=5\sqrt{x^{2}-\left (\frac{2}{5} \right )^{2}} \tag{5}$$.

Así podemos hacer la siguiente figura:

Figura 4: Triángulo para el ejercicio 2.

De la figura $(4)$ y de la relación $(3)$, hacemos la sustitución:

$$x=\frac{2}{5}\sec(\theta) \Rightarrow dx=\frac{2}{5}\sec(\theta)\tan(\theta)d\theta$$

Por otro lado, utilizando la relación $(4)$, tenemos que:

$$\frac{\sqrt{x^{2}-(\frac{2}{5})^{2}}}{\frac{2}{5}}=\tan(\theta) \Rightarrow \sqrt{x^{2}-\left ( \frac{2}{5} \right )^{2}}=\frac{2}{5}\tan(\theta)$$

Sustituyendo en la integral tenemos que:

$$\int \frac{dx}{\sqrt{25x^{2}-4}}=\int \frac{\frac{2}{5}\sec(\theta)\tan(\theta)}{5(\frac{2}{5}\tan(\theta))}d\theta=\frac{1}{5}\int \sec(\theta )d\theta$$

Recordemos que el 5 que está multiplicando en el divisor viene de la relación $(5)$.

Sabemos que la solución de esta integral está dada como:

$$\int \sec(\theta )d\theta = ln|\sec(\theta)+\tan(\theta )|+C$$

Por lo que:

$$\frac{1}{5}\int \sec(\theta )d\theta=\frac{1}{5}ln|\sec(\theta)+\tan(\theta )|+C$$

Volviendo a la variable original $x$, el resultado de la integral es:

$$\int \frac{dx}{\sqrt{25x^{2}-4}}=\frac{1}{5}ln\bigg|\frac{5x}{2}+\frac{5\sqrt{x^{2}-\left (\frac{2}{5} \right )^{2}}}{2}\bigg|+C$$

Caso 3: Integrales de la forma $\sqrt{x^{2}+a^{2}}$

Figura 5: Triángulo de referencia para la sustitución $x=a\tan(\theta)$

Análogamente, nos auxiliamos de un triángulo rectángulo, como se muestra en la figura $(5)$, sabemos que: $$\tan(\theta)=\frac{Cateto \space opuesto}{Cateto \space adyacente}=\frac{x}{a}$$

Podemos hacer la sustitución:

$$x=a \cdot \tan(\theta) \tag{6}$$

Por otro lado:

$$\sec(\theta)=\frac{1}{\cos(\theta)}=\frac{Hipotenusa}{Cateto \space adyacente}=\frac{\sqrt{x^{2}+a^{2}}}{a} \Rightarrow \sqrt{x^{2}+a^{2}}=a \cdot \sec(\theta) \tag{7}$$

Veamos el siguiente ejemplo para ejemplar este caso.

  • $\int \frac{dx}{(x^{2}+1)^{\frac{3}{2}}}$

Podemos expresar el integrando de la siguiente forma:

$$\int \frac{dx}{(x^{2}+1)^{\frac{3}{2}}}=\int \frac{dx}{(\sqrt{x^{2}+1})^{3}}$$

Figura 6: Triángulo para el ejercicio 3.

Vemos que es igual al caso $(3)$, por lo que nos ayudamos de la figura $(6)$ y utilizando la relación $(6)$, tenemos que:

$$\frac{x}{1}=\tan(\theta) \Rightarrow dx=\sec^{2}(\theta)d\theta$$

Por otro lado, utilizando la relación $(7)$, se tiene que:

$$\frac{\sqrt{x^{2}+1}}{1}=\sec(\theta) \Rightarrow (\sqrt{x^{2}+1})^{3} =\sqrt[3]{x^{2}+1}=\sec^{3}(\theta)$$

Sustituyendo en la integral tenemos que:

$$\int \frac{dx}{(x^{2}+1)^{\frac{3}{2}}}=\int \frac{\sec^{2}(\theta )d\theta}{\sec^{3}(\theta )}=\int \frac{1}{\sec(\theta )}d\theta=\int \cos(\theta)d\theta=\sin\theta+C$$

Para regresar a la variable $x$ volvemos a auxiliarnos de la figura $(6)$, recordemos que:

$$\sin(\theta)=\frac{Cateto \space opuesto}{Hipotenusa}=\frac{x}{\sqrt{x^{2}+1}}$$

Así:

$$\int \frac{dx}{(x^{2}+1)^{\frac{3}{2}}}=\frac{x}{\sqrt{x^{2}+1}}+C$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Resolver las siguientes integrales:

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\int \frac{\sqrt{9-x^{2}}}{x^{2}}dx$$
  2. $$\int \frac{dx}{\sqrt{4x^{2}+1}}dx$$
  3. $$\int \frac{\sqrt{x^{2}-1}}{x}dx$$
  4. $$\int \sqrt{x^{2}+x}dx$$
  5. $$\int_{0}^{2\sqrt{3}} \frac{x^{3}}{\sqrt{16-x^{2}}}dx$$
  6. $$\int_{\sqrt{3}}^{2} \frac{\sqrt{x^{2}-3}}{x}dx$$

Más adelante…

En esta sección vimos el método de sustitución trigonométrica viendo las condiciones para poder aplicar este método auxiliándonos con triángulos rectángulos en el cual nos ayuda a resolver integrales fácilmente, por lo que en esta entrada vimos que se pueden resolver integrales utilizando las funciones trigonométricas. En la siguiente sección veremos el método de fracciones parciales para poder integrar polinomios que tengan el grado del numerador menor que el del denominador.

Entradas relacionadas