Cálculo Diferencial e Integral II: Integrales trigonométricas – Productos de potencias de tan(x) y sec(x)

Introducción

En la sección anterior vimos integrales que involucran producto de potencias de funciones senos y cosenos, ahora veremos integrales trigonométricas en donde el integrando son potencias de las funciones trigonométricas tangente y secante.

Integrales trigonométricas-Producto de potencias de $tan(x)$ y $sec(x)$

Para resolver este tipo de integrales lo dividiremos por caso, entonces la integral a resolver es el siguiente:

$$\int sec^{m}(x)tan^{n}(x)dx$$

Donde $m$ y $n \space \epsilon \space \mathbb{Z}^{+}$. Para esta integral vamos a obtener 4 casos distintos:

Caso 1: Si $m$ es par y positiva

Entonces a $m$ lo podemos reescribir como $m=2k$ con $k$ $\epsilon$ $\mathbb{N}$, así, la integral la reescribimos como:

$$\int sec^{m}(x)tan^{n}(x)dx=\int sec^{m-2}(x)sec^{2}(x)tan^{n}(x)dx=\int sec^{2(k-1)}(x)sec^{2}(x)tan^{n}(x)dx$$

$$=\int \left ( sec^{2}(x) \right )^{k-1}sec^{2}(x)tan^{n}(x)$$

Recordemos que:

$$tan^{2}(x)+1=sec^{2}(x) \tag{1}$$

Sustituyendo en el integrando tenemos que:

$$ \int sec^{m}(x)tan^{n}(x)dx =\int (tan(x)+1)^{k-1}(x)sec^{2}(x)tan^{n}(x)dx$$

Para resolver esta integral hacemos el siguiente cambio de variable:

$$u=tan(x)$$

Veamos un ejemplo para aplicar este caso.

  • $\int sec^{4}(3x)tan^{3}(3x)dx$

Vemos que $m$ es par y positiva, entonces podemos reescribir la integral utilizando la relación $(1)$ como:

$$\int sec^{4}(3x)tan^{3}(3x)dx=\int sec^{2}(3x)sec^{2}(3x)tan^{3}(3x)dx=$$

$$=\int (tan(3x)+1)^{2}sec^{2}(3x)tan^{3}(3x)dx$$

Hacemos el cambio de variable.

Sea $u=tan(3x) \Rightarrow du=3sec^{2}(3x)dx \Rightarrow \frac{du}{3}=sec^{2}(3x)dx$

$$\Rightarrow \int sec^{4}(3x)tan^{3}(3x)dx=\frac{1}{3}\int (u^{2}+1)u^{3}du = \frac{1}{3}\int (u^{5}+u^{3})du $$

$$= \frac{1}{3}(\frac{u^{6}}{6}+\frac{u^{4}}{4}+C)$$

Volvemos a la variable original, así el resultado de la integral es:

$$\int sec^{4}(3x)tan^{3}(3x)dx=\frac{tan^{6}(3x)}{18}+\frac{tan^{4}(3x)}{12}+C$$

Caso 2: Si $n$ es impar y positiva

Entonces a $n$ lo podemos reescribir como $n=2k+1$ con $k \space \epsilon \space \mathbb{N}$ entonces la integral la reescribimos como:

$$\int sec^{m}(x)tan^{n}(x)dx=\int sec^{m-1}(x)tan^{n-1}(x)sec(x)tan(x)dx=\int sec^{m-1}(x)tan^{2k}(x)sec(x)tan(x)dx$$

Utilizamos la siguiente relación como:

$$tan^{2}(x)=sec^{2}(x)-1 \tag{2}$$

$$ \Rightarrow \int sec^{m-1}(x)(tan^{2}(x))^{k}sec(x)tan(x)dx=\int sec^{m-1}(x)(sec^{2}(x)-1)^{k}sec(x)tan(x)dx$$

Para resolver esta integral hacemos el siguiente cambio de variable:

$$u=sec(x)$$

Veamos un ejemplo para aplicar este caso.

  • $\int tan^{3}(\frac{\pi x}{2})sec^{2}(\frac{\pi x}{2})dx$

Vemos en este caso que $n$ es impar y positiva, por lo que reescribimos el integrando utilizando la relación $(2)$ como:

$$\int tan^{3}(\frac{\pi x}{2})sec^{2}(\frac{\pi x}{2})dx= \int tan^{2}(\frac{\pi x}{2})sec(\frac{\pi x}{2})tan(\frac{\pi x}{2})sec(\frac{\pi x}{2})dx$$

$$=\int (sec^{2}(\frac{\pi x}{2})-1)sec(\frac{\pi x}{2})tan(\frac{\pi x}{2})sec(\frac{\pi x}{2})dx$$

Hacemos el cambio de variable.

Sea $u=sec(\frac{\pi x}{2}) \Rightarrow du=\frac{\pi}{2}sec(\frac{\pi x}{2})tan(\frac{\pi x}{2}) \Rightarrow \frac{2}{\pi}du=sec(\frac{\pi x}{2})tan(\frac{\pi x}{2})$, sustituyendo tenemos que:

$$\frac{2}{\pi } \int (u^{2}-1)udu=\frac{2}{\pi } \int (u^{3}-u)du=\frac{2}{\pi }(\frac{u^4}{4}-\frac{u^2}{2})+C$$

Así:

$$\int tan^{3}(\frac{\pi x}{2})sec^{2}(\frac{\pi x}{2})dx=\frac{sec^{4}(\frac{\pi x}{2})}{2\pi}-\frac{sec^{2}(\frac{\pi x}{2})}{\pi}+C$$

Caso 3: Si no hay factores de $sec(x)$, $n$ es par y positiva

Entonces reescribimos a $n$ como $n=2k$, así se tiene que la integral la reescribimos utilizando la relación $(2)$ como:

$$\int tan^{n}(x)dx=\int tan^{2k}(x)dx=\int tan^{2k-2}(x)tan^{2}(x)dx=$$

$$=\int tan^{2k-2}(x)(sec^{2}(x)-1)dx=\int tan^{2k-2}(x)sec^{2}(x)dx-\int tan^{2k-2}(x)dx$$

Repetimos el mismo procedimiento cuantas veces sea necesario, es decir, cuando las integrales sean más sencillas de resolver o sea una integral directa. Veamos un ejemplo:

  • $\int_{0}^{\frac{\pi }{4}}tan^{4}(x)dx$

Vemos que no hay factores de $sec(x)$, $n$ es par y positiva, entonces:

$$\int_{0}^{\frac{\pi }{4}}tan^{4}(x)dx=\int_{0}^{\frac{\pi }{4}}tan^{2}(x)tan^{2}(x)dx=\int_{0}^{\frac{\pi }{4}}(sec^{2}(x)-1)tan^{2}(x)dx=\int_{0}^{\frac{\pi }{4}}sec^{2}(x)tan^{2}(x)dx-\int_{0}^{\frac{\pi }{4}}tan^{2}(x)dx$$

Para la primera integral vemos que estamos en el caso $(1)$ por lo que podemos hacer el siguiente cambio de variable:

Sea $u=tan(x) \Rightarrow du=sec^{2}(x)dx$ Revisemos los límites de integración, si $x=0 \Rightarrow u=tan(0)=0$, si $x=\frac{\pi }{4} \Rightarrow u=tan(\frac{\pi }{4})=1$.

Para la segunda integral utilizamos la relación $(2)$, así, se tiene que:

$$\int_{0}^{\frac{\pi }{4}}tan^{4}(x)dx=\int_{0}^{1}u^{2}du-\int_{0}^{\frac{\pi }{4}}(sec^{2}(x)-1)dx=\int_{0}^{1}u^{2}du-\int_{0}^{\frac{\pi }{4}}sec^{2}(x)dx+\int_{0}^{\frac{\pi }{4}}1dx$$

$$=\frac{u^{3}}{3}\bigg|_{0}^{1}-tan(x)\bigg|_{0}^{\frac{\pi }{4}}+x\bigg|_{0}^{\frac{\pi }{4}}=\left(\frac{1}{3}-0 \right) – \left(1-0 \right)+ \left (\frac{\pi }{4}-0 \right )=\frac{\pi }{4}-\frac{2}{3}$$

Caso 4: Si no hay factores de tan(x) y $m$ es impar

Donde $n=2k+1$, para este caso solo se tiene que integrar por partes.

$$\int sec^{n}(x)dx=\int sec^{2k+1}(x)dx$$

Veamos un ejemplo donde se aplique este caso.

  • $\int sec^{3}(x)dx$

Lo podemos reescribir como:

$$\int sec^{3}(x)dx=\int sec^{2}(x)sec(x)dx$$

Integramos por partes:

Sea $u=sec(x) \Rightarrow du=sec(x)tan(x)$ y sea $dv=sec^{2}(x) \Rightarrow v=tan(x)$, asi:

$$\int sec^{3}(x)dx=sec(x)tan(x)-\int sec(x)tan^{2}(x)dx=sec(x)tan(x)-\int sec(x)(sec^{2}(x)-1)dx$$

$$= sec(x)tan(x)-\int (sec^{3}(x)-sec(x))dx=sec(x)tan(x)-\int sec^{3}(x)dx+\int sec(x)dx$$

Podemos pasar sumando la primera integral como:

$$\Rightarrow 2\int sec^{3}(x)dx=sec(x)tan(x)+\int sec(x)dx$$

La segunda integral es una integral que ya habíamos visto:

$$\int sec(x)dx=ln(sec(x)+tan(x))+C$$

$$\Rightarrow \int sec^{3}(x)dx=\frac{1}{2}sec(x)tan(x)+\frac{1}{2}ln(sec(x)+tan(x))+C$$

Con este último ejemplo se terminan los casos para resolver este tipo de integrales, sin embargo, análogamente a estos casos, se pueden resolver integrales que contienen productos de potencia de cot(x) y csc(x).

Integrales con términos de productos de potencias de cot(x) y csc(x)

Integrales de la forma: $$\int csc^{m}(x)cot^{n}(x)dx$$

Se pueden determinar mediante los métodos similares que vimos en esta sección para resolver integrales con términos de productos de potencias de cot(x) y csc(x) utilizando la siguiente identidad:

$$1+cot^{2}(x)=csc^{2}(x)$$

Y con sus respectivos cambio de variables $u=cot(x)$ y $u=csc(x)$, según sea el caso que corresponda.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Resuelve las siguientes integrales:

  1. $$\int tan^{6}(x)sec^{4}(x)dx$$
  2. $$\int \frac{tan^{3}(x)}{\sqrt{sec(x)}}dx$$
  3. $$\int tan^{3}(x)dx$$
  4. $$\int sec^{5}(x)dx$$
  5. $$\int csc^{4}(3x)cot^{3}(3x)dx$$

Más adelante…

En esta sección vimos como resolver integrales de productos de potencias de $tan(x)$ y $sec(x)$ en el cual se dividió por casos, así mismo, del mismo método, se pueden resolver las integrales de productos de potencias de $cot(x)$ y $csc(x)$ utilizando la relación entre esas mismas funciones y los cambios de variable correspondientes. En la siguiente sección veremos otro método de integración llamado integración por sustitución trigonométrica.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.