Archivo del Autor: Guillermo Oswaldo Cota Martínez

Acerca de Guillermo Oswaldo Cota Martínez

Soy Guillermo. Soy pasante de la Licenciatura en Matemáticas en la Facultad de Ciencias de la UNAM, y estudiante de la Licenciatura en Ciencia de Datos del IIMAS, UNAM. Me interesan los problemas referente al análisis de datos y a la docencia.

Álgebra Superior I: Condicionales y dobles condicionales

Por Guillermo Oswaldo Cota Martínez

Introducción

Hemos hablado en las últimas entradas de tres conectores muy importantes: la negación, la conjunción y la disyunción. Sin embargo, como recordarás en la introducción al tema, mencionamos más de tres conectores. Ha llegado el momento en que veamos a los dos conectores restantes: la implicación y la doble implicación.

Pensar en consecuencias

Para introducir mejor la implicación, pensemos en qué significa la palabra sin algún contexto matemático. ¿Qué se te viene a la mente cuando oyes la palabra «implicación»? Quizá se te venga a la mente «consecuencia», que a su vez significa cosas o acciones que derivan otras más.

Un ejemplo es el siguiente: ¿qué implicación tiene que se acabe la pila de un celular? Pues en principio se apaga el teléfono. Entonces podríamos decir «Si se acaba la pila del celular entonces se apagará». Otro ejemplo: ¿qué consecuencias tiene llegar tarde a una cita médica? Pues muy probablemente se cancelará. Esto mismo lo podemos decir así: «Si llego tarde a una cita médica entonces la cancelarán». Un último ejemplo sería el siguiente: «Si sube el nivel de dióxido de carbono en la atmósfera entonces los polos se derretirán».

Todas estas oraciones son ejemplos de condicionales, y para entender su estructura, volvamos al primer ejemplo. Pensemos en las proposiciones
\begin{align*}
P &= \text{El celular se queda sin pila.}\\
Q &= \text{El celular se apaga.}
\end{align*}

Podemos reescribir la oración «Si se acaba la pila del celular entonces se apagará» como «Si pasa $P$ entonces pasa $Q$». Observa que siempre que pase $P$, entonces pasará $Q$. Esto lo escribiremos como $P \Rightarrow Q$ y se lee «$P$ implica $Q$». Lo que estamos diciendo con esta oración es que si el valor de verdad de $P$ es verdadero entonces el valor de verdad de $Q$ es verdadero.

Observa que si al celular no se le acaba la pila, entonces no tendría porqué apagarse, entonces si $P$ es falso, $Q$ puede ser falso y no hay problema. También puede pasar que apagues el celular, pero no necesariamente sea porque se le acabó la pila, entonces si $P$ es falso, $Q$ también puede ser verdadero y no hay algún problema con ello. El único problema sería decir que se le acabó la pila al celular y sigue prendido, eso sería algo que no puede suceder, porque sabemos que «Si se acaba la pila del celular entonces se apagará».

Todo esto lo resumimos en la tabla de verdad de la siguiente sección.

Tabla de verdad de la implicación

$P$$Q$$P \Rightarrow Q$
$0$$0$$1$ 
$0$$1$$1$ 
$1$$0$ $0$
$1$$1$ $1$

Quizá sigas teniendo dificultades para entender porqué si $P$ es falso, $Q$ puede tener cualquier valor y seguir haciendo la expresión verdadera. Para ello, piensa en lo siguiente: lo que dice la implicación es que siempre que pase la primera condición $P$, también llamada hipótesis, ocurrirá $Q$, también conocida como tesis. Puede ser que se cumpla $Q$ y no se cumpla $P$, pero eso no contradice lo que dice la implicación, o puede que igual no se cumpla ni $Q$ ni $P$. Lo único que nos dice la implicación es que siempre que se cumpla $P$ va a tener como consecuencia que se cumpla $Q$. Entonces el único caso en donde desobedecemos a la implicación (donde es falsa), es cuando pasa $P$ y no pasa $Q$, que corresponde al penúltimo renglón de la tabla de verdad.

Condiciones suficientes y necesarias

El siguiente y último conector que vamos a ver es la doble implicación. A diferencia de la implicación, asumimos que para que una proposición sea verdadera, es necesaria que la otra también y viceversa. Para esto, refiramos a la doble implicación como una equivalencia lógica $P \Leftrightarrow Q = (P \Rightarrow Q) \land (Q \Rightarrow P)$. En otras palabras decimos que hay una doble implicación entre $P$ y $Q$ si $P$ implica $Q$ y además $Q$ implica $P$.

Además de este nombre, algunas formas de referirse a la doble implicación que encontrarás serán:

  • «$P$ es equivalente a $Q$»
  • «Una condición necesaria y suficiente para $Q$ es $P$»
  • «$P$ si y sólo si $Q$»

Esta última se utiliza mucho en enunciados matemáticos como proposiciones y teoremas.

Tabla de verdad de la doble implicación

$P$$Q$$P \Rightarrow Q$$Q \Rightarrow P$$(P \Rightarrow Q) \land (Q \Rightarrow P)$$P\Leftrightarrow Q$
$0$$0$ $1$$1$$1$  $1$ 
$0$$1$$1$ $0$ $0$ $0$ 
$1$$0$  $0$$1$ $0$ $0$
$1$$1$  $1$$1$ $1$   $1$

Nota que la doble implicación es verdad cuando los valores de $P$ y $Q$ son ambos verdaderos o ambos falsos. Esto quiere decir que en este caso si alguno es verdadero, entonces los dos son verdaderos, mientras que si uno es falso, los dos lo serán.

La implicación en términos de otros conectores

El hecho de que hayamos aprendido los primeros tres conectores (negación, conjunción y disyunción) antes que estos no es coincidencia. Resulta que la implicación y la doble implicación se «pueden construir» a partir de los primeros tres. Con esto nos referimos a que la implicación es equivalente a una expresión hecha únicamente por los anteriores.

Para ello, primero recuerda cómo construimos la implicación. La única forma en que la implicación $P \Rightarrow Q$ sea falsa es que $P$ sea verdadero y $Q$ falso. Entonces si $P$ es falso, no importa qué valor tome $Q$. De esta forma, cada vez que $\neg P$ sea verdad, la implicación también será verdadera. Pero si $P$ es verdadero, entonces $Q$ debe serlo también. Eso lo podemos expresar como $\neg P \lor Q$ que quiere decir «$P$ no pasa o $Q$ es verdadero» y coincide con lo que acabamos de decir. Para convencerte de eso, revisa con cuidado la siguiente tabla.

$P$$Q$$\neg P$ $\neg P \lor Q$$P \Rightarrow Q$
$0$$0$ $1$$1$  $1$ 
$0$$1$$1$  $1$ $1$ 
$1$$0$  $0$ $0$ $0$
$1$$1$  $0$ $1$   $1$

Entonces $\neg P \lor Q = P \Rightarrow Q$. Entonces cada vez que digamos que «Una cosa implica la otra», podemos pensarlo como «La negación de la primera cosa o la otra». Siempre es útil regresar a ejemplos concretos. Piensa cuidadosamente por qué es lo mismo decir «si llueve el piso se moja» y decir «no llueve o el piso está seco».

La contrapositiva de una implicación

Una propiedad que más adelante nos servirá sobre la implicación es el hecho de que en ocasiones es más sencillo trabajar con las negaciones de las proposiciones que con las proposiciones normales. No te preocupes si no entiendes a qué nos referimos con esto, más adelante lo veremos con más calma.

Un ejemplo de esto es verificar la siguiente proposición: «Si un número al cuadrado es par, entonces el número es par». A primera vista no es tan fácil verificar directamente esta proposición que es de la forma $P \Rightarrow Q$. Resulta que la forma en que se comprueba esto es con una equivalencia de la implicación. Para llegar a esta equivalencia, como primer paso, notaremos que podemos poner a la implicación en términos de la negación. Para esto, vamos a usar el resultado anterior para encontrar lo que buscamos.

Recordemos que $\neg P \lor Q = P \Rightarrow Q$, y la conjunción es conmutativa, es decir $\neg P \lor Q = Q \lor \neg P$.

¿Podemos ver esto de otra forma?

Pues resulta que sí. Veamos a $Q$ como la negación de la negación de $Q$, dicho de otra forma, $Q = \neg \neg Q$. Esto último nos ayuda a ver la equivalencia de otra forma: $Q \lor \neg P =\neg \neg Q \lor \neg P$. El siguiente paso es pensar a $\neg Q$ como un término por sí mismo y a $\neg P$ como otro término. Dicho de otra forma agrupemos términos para ver la equivalencia de manera distinta: $$Q \lor \neg P =\neg (\neg Q) \lor (\neg P).$$ Ahora, pensemos a $\neg Q$ como una proposición y a $\neg P$ como otra. La expresión está diciendo «La negación de $\neg Q$ una cosa o $\neg P$» ¿Suena familiar? Esto justamente es la equivalencia de la implicación. Dicho de otra manera, fíjate que tenemos una equivalencia:

$$Q \lor \neg P =\neg (\neg Q) \lor (\neg P) = \neg Q \Rightarrow \neg P.$$

Es decir,

$$P \Rightarrow Q = \neg Q \Rightarrow \neg P.$$

Cuando tenemos una implicación de la forma $P\Rightarrow Q$, a la proposición equivalente $\neg Q \Rightarrow \neq P$ le llamamos la contrapositiva.

Regresando al ejemplo inicial de esta sección, la proposición «Si un número al cuadrado es par, entonces el número es par» podemos pensarla como «Si un número es impar entonces su cuadrado es impar», lo cual es mucho más fácil de verificar. En entradas posteriores retomaremos esta forma de pensar. Por lo mientras es suficiente que entiendas que la implicación es equivalente a su contrapositiva.

El caso en donde todo es verdadero

Antes de terminar esta entrada, introduciremos un concepto que resultará útil cuando llegue el momento de estudiar inferencias. Para ello, observa la tabla de verdad de la proposición $((Q \Rightarrow P) \land Q) \Rightarrow P$:

$P$$Q$$Q \Rightarrow P$$Q \Rightarrow P \land Q$$(Q \Rightarrow P \land Q) \Rightarrow P$
$0$$0$ 1 0
$0$$1$ 0 0 1
$1$$0$ 1 0 1
$1$$1$ 1 1

¿Notas algo peculiar? Toda la columna de nuestra regla de inferencia es verdadera. Esto quiere decir que no importa qué valores tomen nuestras premisas, siempre es verdadera la expresión. A esto en matemáticas le llamamos una tautología.

Sucede algo que une aún más los conceptos de tautología y doble condicional. ¿Recuerdas que las proposiciones $\neg(P \land Q) = \neg P \lor \neg Q$ son equivalentes? Pues veamos ahora sus tablas de verdad:

$P$$Q$$P \land Q$$\neg (P \land Q)$$\neg P$$\neg Q$$\neg P \lor \neg Q$$\neg (P \land Q)\Leftrightarrow (\neg P \lor \neg Q)$
$0$$0$ 01 111
$0$$1$ 01 101 1
$1$$0$ 01 011 1
$1$$1$ 10000 1

Hemos agregado una última columna, la correspondiente a $\neg (P \land Q))\Leftrightarrow (\neg P \lor \neg Q)$. ¡Es una tautología! Esto sucede siempre: dos proposiciones o expresiones $P, Q$ son equivalentes siempre que $P \Leftrightarrow Q$ sea una tautología.

Más adelante…

Recuerda el ejemplo que mencionamos anteriormente «Un número al cuadrado es par si el número es par», no especificamos de qué número se trataba, sin embargo hay una infinidad de números los cuales podemos tomar como ejemplo para verificar la propiedad. Entonces podemos decir «$1^2$ es par si $1$ es par» o «$38^2$ es par si $38$ es par», o en general podemos decir «$x^2$ es par si $x$ es par». ¿Pero quién es $x$? ¿Qué valores puede tomar? En la siguiente entrada veremos algo conocido como cuantificadores. Estos ampliarán el poder de las proposiciones introduciendo variables dentro de las proposiciones. Con ello, se puede cambiar el objeto al que se refiere una proposición y, dependiendo de esto, su valor de verdad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Escribe las siguientes frases en lógica proposicional:
    • Si hoy es lunes, entonces mañana será viernes.
    • El caos implica el orden.
    • Para que crezcan las plantas, tienes que regarlas.
    • Hoy es lunes si mañana es martes y mañana es martes si hoy es lunes.
    • Hoy es lunes si y sólo si mañana es martes.
  2. Verifica que siempre «Una cosa siempre se implica a sí misma», es decir, verifica que si $P$ es una proposición, entonces $P \Rightarrow P$ siempre es verdadera.
  3. Haz la tabla de verdad de la implicación $P\Rightarrow Q$ y de su contrapositiva $\neg Q \Rightarrow \neg P$ para convencerte de que en verdad son equivalentes.
  4. ¿Cómo verificarías que  $P \Leftrightarrow Q = (\neg Q \lor P)\land(\neg P \lor Q)$? Recuerda que la doble implicación $P \Leftrightarrow Q$ es equivalente a $(P \Rightarrow Q) \land (Q \Rightarrow P)$.
  5. Verifica que la doble condicional es conmutativa, es decir $P \Leftrightarrow Q = Q \Leftrightarrow P $. ¿La condicional es conmutativa?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Problemas de proposiciones y conectores

Por Guillermo Oswaldo Cota Martínez

Introducción

En esta entrada, presentaremos únicamente problemas resueltos de proposiciones y conectores. Con ayuda de ellos podrás poner en práctica lo visto con anterioridad y entender mejor las propiedades de los conceptos vistos.

Problemas resueltos

Problema 1. ¿Cuáles de los siguientes enunciados son proposiciones?

  • ¿Qué día es hoy?
  • Toda función derivable es continua.
  • ¿El día de hoy lloverá?
  • ¿Cuántos números primos existen?
  • ¡Que gusto verte!
  • Todo espacio vectorial tiene dimensión finita.
  • El libro habla sobre historia universal.

Solución. Veamos cada oración con cuidado.

¿Qué día es hoy?

No es proposición. Esta oración es una pregunta, por lo cuál no puede tener asignado algún valor de verdad, pues no denota información que puede ser cierta o falsa (ojo: al responder la pregunta con por ejemplo «Hoy es lunes» esta respuesta tiene valor de verdad, pues podríamos decir que es lunes o no, pero en sí, la pregunta no tiene un valor de verdad por lo que no es proposición).

Toda función derivable es continua.

es proposición. Independientemente de que sepas qué es una función derivable o qué es una función continua, sabes que esta solo tiene dos opciones: o es cierta o no lo es. Esto es lo que le da el atributo de ser proposición (además es proposición matemática), pues se le puede asignar un valor de verdad.

¿El día de hoy lloverá?

No es proposición. Nuevamente como el primer ejemplo, la pregunta no carga consigo algún valor de verdad, puesto que la pregunta no está afirmando o negando algo, sino está preguntando algo sin decir que será de una u otra manera. Otro caso sería si la oración fuera «El día de hoy lloverá» (¿Notas que ya no tiene signos de interrogación?) que sí es una proposición.

¿Cuántos números primos existen?

No es una proposición. Esto debido a que es una pregunta que no afirma o niega algún hecho.

¡Que gusto verte!

No es una proposición. Esta es una expresión, y no se le puede asignar un valor de verdad. Este tipo de oraciones que denotan expresiones no son proposiciones.

Todo espacio vectorial tiene dimensión finita.

es una proposición. Esta es una proposición matemática la cual puede ser verdadera o falsa, pues afirma que todo espacio vectorial (no es necesario que sepas que es un espacio vectorial) cumple la propiedad de tener dimensión finita (tampoco es necesario que sepas que significa esto). Entonces podemos decir «Es cierto que todo espacio vectorial tiene dimensión finita» o «Es falso que todo espacio vectorial tiene dimensión finita».

El libro habla sobre historia universal.

es una proposición. Observa que para decidir si es verdad o no deberíamos saber de qué libro estamos hablando, pero independientemente de eso, se puede decir que la oración es verdadera o falsa, es decir, se le puede asignar un valor de verdad.

$\triangle$

Problema 2. ¿Son equivalentes $\neg Q$ y $(\neg P \land Q) \lor \neg Q)$?

Solución. No lo son, para ello, nota que no coinciden en su tabla de verdad. Estamos indicando en verde las columnas de las expresiones que nos interesan.

$P$$Q$$\neg P$ $\neg Q$$\neg P \land Q$$(\neg P \land Q) \lor \neg Q)$
$0$$0$ $1$$1$ $0$  $1$ 
$0$$1$$1$  $0$  $1$ $1$ 
$1$$0$  $0$ $1$  $0$ $1$
$1$$1$  $0$ $0$  $0$   $0$

Esto quiere decir que si $P$ es falso y $Q$ es verdadero,  $\neg Q$ es falso mientras que $(\neg P \land Q) \lor \neg Q)$ es verdadero, por lo que las expresiones no son equivalentes.

$\triangle$

Problema 3. ¿Cuál de las siguientes expresiones es equivalente a $\neg (P \lor (Q \land R))$?

  • $ P \lor (\neg Q \lor \neg R)$
  • $\neg P \land (\neg Q \lor \neg R)$
  • $\neg P \land (\neg Q \land \neg R)$

Para la que es equivalente, justifica por qué lo es. Para las que no son equivalentes, encuentra valores de verdad de $P$, $Q$ y $R$ que haga que las expresiones sean diferentes.

Solución. Una técnica que podríamos usar son las tablas de verdad, sin embargo sería una tabla grande, pues en principio hay 8 combinaciones para los valores de verdad de $P,Q$ y $R$. Por esta razón, mejor haremos uso de las propiedades de los conectores que ya hemos demostrado.

Primero veamos de qué forma podríamos cambiar la forma en que pensamos a $\neg (P \lor (Q \land R))$. ¿Notas que hay una negación al principio de la proposición? Algo natural sería tratar de «distribuirla», pero recuerda que cuando «distribuimos» la negación, aplicamos las leyes de De Morgan. Entonces,

$$\neg (P \lor (Q \land R)) = \neg P \land \neg(Q \land R) $$

Ahora vamos a fijarnos en $\neg P \land \neg(Q \land R)$. Y vamos a notar que podemos aplicar nuevamente las leyes de De Morgan, ahora para distribuir la negación del segundo paréntesis. Dicho de otra manera,

$$\neg P \land \neg (Q \land R) = \neg P \land (\neg Q \lor \neg R)$$

Nota que para esto, la negación se distribuyó entre $Q$ y $R$. Así, hemos mostrado que

\begin{align*}
\neg (P \lor (Q \land R)) &= \neg P \land \neg(Q \land R), \text{ y que}\\
\neg P \land \neg (Q \land R) &= \neg P \land (\neg Q \lor \neg R).
\end{align*}

Ahora, recordando la propiedad transitiva de la equivalencia, tenemos que

$$\neg (P \lor (Q \land R)) = \neg P \land (\neg Q \lor \neg R)$$

Así, encontramos que la la expresión del inicio es equivalente a la segunda opción. Si quisieras, podrías hacer la tabla de verdad para verificar esto.

Veamos ahora que las otras dos proposiciones no son equivalentes. Para ello, basta encontrar valores de verdad de $P$ y $Q$ para los cuales las expresiones no tengan el mismo valor de verdad.

Primero verificaremos que $ P \lor (\neg Q \lor \neg R)$ no es equivalente a $\neg (P \lor (Q \land R))$. Para ello, nota que $ P \lor (\neg Q \lor \neg R) = P \lor \neg (Q \land R)$ Y esta última es equivalente a $\neg (\neg P \land (Q \land R))$. Ahora nota que si $P$ es verdadero, entonces $\neg (\neg P \land (Q \land R))$ es verdadero, mientras que $\neg (P \lor (Q \land R))$ es falso. Si aún no te queda claro, observa el siguiente renglón de la tabla de verdad:

$P$$Q$$R$$Q \land R$$P \lor (Q \land R)$$\neg (P \lor (Q \land R))$$\neg P$$\neg P \land (Q \land R)$$\neg(\neg P \land (Q \land R))$
$1$$0$$0$$0$$1$$0$$0$$0$$1$

En el párrafo anterior estamos mostrando un caso en donde $P$ es verdadero (observa que en nuestra justificación del párrafo anterior no importa qué valores tienen $Q$ y $R$, pero en este caso observamos la combinación en donde ambos son falsos, eso no afecta el resultado) y las celdas coloreadas (que son aquellas que deseamos comparar) no coinciden. Es decir no pueden ser equivalentes porque existe al menos un caso en donde no coinciden en su tabla de verdad.

De manera similar, para probar que $\neg P \land (\neg Q \land \neg R)$ no es equivalente a $\neg (P \lor (Q \land R))$ daremos un caso en donde no se da la igualdad en las tablas de verdad. Nota que $\neg P \land (\neg Q \land \neg R) = \neg P \land \neg ( Q \lor R)$ y a su vez, $\neg P \land \neg ( Q \lor R) = \neg (P \lor (Q \lor R))$. Ahora veamos el caso particular en la siguienta tabla de verdad:

$P$$Q$$R$$Q \land R$$P \lor (Q \land R)$$\neg (P \lor (Q \land R))$$Q \lor R$$ P \lor (Q \lor R)$$ \neg (P \lor (Q \lor R))$
$0$$1$$0$$0$$0$$1$$1$$1$$0$

Esto termina el problema.

$\triangle$

¿Cómo le hicimos en la segunda parte para «sacar de la manga» los valores de verdad de $P$, $Q$ y $R$ que nos ayudarían a verificar que las proposiciones no eran equivalentes? La intuición fue la siguiente:

Quisiéramos un caso en que no coincidieran los valores, uno que fuera verdadero y otro falso. Veamos cómo se comporta $\neg (P \lor (Q \land R))$. Para que esta no sea equivalente a la segunda proposición, deberíamos pensar que una es verdadera y la otra falsa. Le asignaremos un valor de verdad a la primera proposición, digamos que es verdadera (entonces la segunda proposición sería falsa), y como hay una negación delante entonces $P \lor (Q \land R)$ debería ser falsa. Pon atención que tenemos un $\lor$ adentro de la expresión, el cuál es falso si las dos proposiciones que conectan son falsas, así que piensa en qué necesitan para ser falsas, y date cuenta que requieren las siguientes dos condiciones:

  • $P$ falsa
  • $Q$ o $R$ falsa

A fuerza, $P$ debe ser falsa, así que no le movemos más.

Por otro lado, vamos a ver cómo se comporta $ \neg (P \lor (Q \lor R))$. Recuerda que pensamos en un caso en que no coincidan las proposiciones, y si quedamos en que la primera proposición era verdadera, entonces esta es falsa, lo cual haría a $P \lor (Q \lor R)$ verdadera. Además también dijimos que $P$ es falsa, entonces para que toda la proposición sea verdadera, tendremos que hacer que $Q \lor R$ sea verdadera. Alguna de estas dos es falsa (también era una condición que establecimos para la veracidad de la primera proposición), digamos que $R$ es la falsa, entonces $Q$ es verdadera. De esta manera obtuvimos el ejemplo que hacía las proposiciones diferir en alguna combinación de valores de verdad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Completa la tabla de verdad para verificar que $\neg (\neg P \land (Q \land R))$ no es equivalente a $\neg (P \lor (Q \land R))$. Observa cómo en todas los renglones en donde $P$ es verdadero, $\neg (\neg P \land (Q \land R))$ es distinto a $\neg (P \lor (Q \land R))$.
  2. Completa la tabla de verdad de$ \neg (P \lor (Q \lor R))$ junto a $\neg (P \lor (Q \land R))$. ¿Existen otros casos en donde sus valores de verdad sean distintos?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Propiedades de la negación, conjunción y disyunción

Por Guillermo Oswaldo Cota Martínez

Introducción

En la entrada pasada vimos que con conectores podemos construir nuevas proposiciones a partir de otras. Y nombramos a tres de ellas: la negación, la conjunción y la disyunción.

Ahora, discutiremos sobre algunas consecuencias que tiene juntar unas con otras y diremos en términos formales qué significa que una proposición sea «igual» a otra.

Equivalencia de proposiciones

Volvamos a retomar un ejemplo que ya habíamos revisado anteriormente.

$P$$\neg P$$\neg(\neg P)$
$0$$1$ $0$
$1$$0$$1$ 

Habíamos dicho que al coincidir las columnas de $\neg ( \neg P)$ con $P$ entonces $\neg(\neg P) = P$. Esto leeremos como «$\neg(\neg P)$ es equivalente a $P$». La equivalencia de proposiciones nos dice que sus valores de verdad siempre coinciden. En este ejemplo, en cualquier caso en que $\neg(\neg P)$ sea verdad, sucede que $P$ es verdad. De igual forma, cada vez que suceda que $\neg(\neg P)$ sea falso, $P$ también lo será.

Podemos dar un ejemplo más concreto. Pensemos en que nuestra proposición $P$ es: «El 2 es un número impar». En este caso $\neg(\neg P)$ corresponde a: «No es cierto que 2 no es un número impar». Si la proposición $P$ es verdadera, entonces la equivalencia nos diría que $\neg(\neg P)$ también lo es. Es decir, si es verdadero que 2 es un número impar, entonces también es verdadero que «No es cierto que 2 no es un número impar». Aunque nosotros sepamos que 2 es un número par (y por ende la proposición $P$ es falsa), una persona que no tuviera el conocimiento de este hecho pero que sepa lógica, podría saber que si $P$ es verdadero $\neg(\neg P)$ también es verdadero. O si $\neg(\neg P)$ es verdadero, $P$ también es verdadero.

Ahora, nota que acabamos de hacer una definición, pues nombramos a dos proposiciones que tienen la misma tabla de verdad como equivalentes. Como lo mencionamos en la entrada de los tipos de enunciados, les estamos poniendo un nombre a un objeto matemático que cumple ciertas propiedades.

Definición. Dos proposiciones $P$ y $Q$ son equivalentes si sus tablas de verdad coinciden y lo escribiremos como $P=Q$.

Esta «igualdad» en las proposiciones nos será muy útil, pues en la matemática nos ayudará a ver algunos resultados de otra manera. Por ejemplo, retomemos $\neg(\neg P) = P$. Como sabemos que es falso que 2 es impar, en consecuencia también sabemos que es falso que «No sea cierto que 2 no es impar» y esto lo sabemos sin tener que verificar algo más, pues el hecho de que sean equivalentes, basta saber que una sea verdad para que la otra sea verdad, o que una sea falsa para que la otra también lo sea. Esta equivalencia también nos ayudará a demostrar otros resultados en el futuro.

Nota además que si $P$ y $Q$ son equivalentes, y $Q$ y $R$ son equivalentes (es decir $P=Q$, $Q=R$) entonces $P$ y $R$ también son equivalentes. Puedes convencerte de esto como sigue. Del hecho de que $P$ y $Q$ lo sean, sale que $P$ y $Q$ tienen la misma tabla de verdad. Del hecho de que $Q$ y $R$ lo sean, sale que $Q$ y $R$ tienen la misma tabla de verdad. Pero entonces $P$ y $R$ tienen la misma tabla de verdad (la de $Q$). A esto se le conoce como la propiedad transitiva. No es importante que recuerdes este nombre, sin embargo después volveremos a estudiar esta propiedad con más calma. Y para recordar mejor esto, piensa en que funciona similar a la igualdad entre números, por ejemplo $2+2=4$ y $4=2^2$, entonces $2+2=2^2$.

Algunas propiedades de la conjunción y la disyunción

Hemos hablado un poco sobre la negación, pero ahora cambiemos el foco a la conjunción y la disyunción. Para empezar, recordemos que la conjunción $P\land Q$ solo es verdadera cuando tanto $P$ como $Q$ son verdaderas, y en la entrada anterior verificamos que $Q \land P$ es equivalente a $P \land Q$.

También nos va a interesar el caso en donde combinamos más de dos proposiciones. Sin embargo, hay que tener cuidado. Por definición, la conjunción es un conector que combina únicamente dos proposición. Así, para unir a más de dos proposiciones mediante la conjunción, tendremos que agruparlas.

Piensa el agrupamiento como piensas la suma: si quieres sumar $2+3+4$, lo más habitual es sumar primero $2+3$ que resulta en cinco, y después sumárselo a $4$, de manera que podemos escribir la suma como $2+3+4=(2+3)+4$. Algo similar va a pasar con las proposiciones, pues podemos pensar a $P \land Q \land R$ como $(P \land Q) \land R$. Ahora piensa de nuevo en la suma $2+3+4$. El resultado de esta suma es $9$ y nosotros decidimos agrupar $2+3$ y después sumar el resultado con $4$. Pero esto es lo mismo que haber agrupado primero $3+4$ y después sumarlo a $2$. Esto no es coincidencia, pues la suma tiene una propiedad que se llama asociatividad que nos dice que $(2+3)+4=2+(3+4)$. ¿Pasará lo mismo con la conjunción? Veamos que sí.

Lo que queremos ver si $P \land (Q \land R)=(P \land Q) \land R$ es decir, queremos ver si $P \land (Q \land R)$ es equivalente a $(P \land Q) \land R$. La equivalencia está dada en términos de tablas de verdad, así que tenemos que hacer las tablas para ambas proposiciones. La presentamos a continuación.

$P$$Q$$R$$Q \land R$$P \land ( Q\land R)$$P \land Q$$(P \land Q) \land R$
$0$$0$$0$$0$$0$$0$$0$
$0$$0$$1$$0$$0$$0$$0$
$0$$1$$0$$0$$0$$0$$0$
$0$$1$$1$$1$$0$$0$$0$
$1$$0$$0$$0$$0$$0$$0$
$1$$0$$1$$0$$0$$0$$0$
$1$$1$$0$$0$$0$$1$$0$
$1$$1$$1$$1$$1$$1$$1$

Como puedes notar, las columnas $P \land (Q \land R)$ y $(P \land Q) \land R$ coinciden, es decir, coinciden en sus tablas de verdad, por lo tanto son equivalentes.

Con este ejemplo, vimos cómo la conjunción tiene la propiedad asociativa, es decir, cuando combinamos tres o más proposiciones mediante la conjunción, no importa «dónde pongamos los paréntesis». Lo mismo pasará con la disyunción que de igual manera es asociativa.

Combinando la conjunción con la disyunción

También podemos juntar los conectores de conjunción y disyunción. Porejemplo, piensa que tenemos tres proposiciones $P, Q, R$ donde,

$P = \text{Toda persona es mortal}$

$Q = \text{2 es un número impar}$

$R = \text{2 es un número par}$

¿Qué significaría la proposición $P \lor (Q \land R)$? Si lo escribieramos en palabras, sería «Toda persona es mortal o 2 es un número par e impar a la vez». Sabemos que toda persona es mortal, y también sabemos que 2 no puede ser impar y par a la vez (por ahora parece que sabemos que 2 es un número par, en otros cursos profundizarás más en lo que significa ser par). Entonces nuestra proposición está formada por dos componentes, la proposición $P$ y la proposición $Q \land R$. Como un número no puede ser par e impar a la vez, entonces la segunda proposición es falsa. Pero la primera proposición $P$ es verdadera, entonces la proposición $P \lor (Q \land R)$ es verdadera, porque para la disyunción solo basta que alguna de las dos sea verdadera.

Vayamos un poco más lejos. ¿Será que esta es la única forma de escribir la proposición? Resulta que no. Esta proposición tiene una propiedad que se llama la propiedad distributiva para los conectores de conjunción y disyunción, la cual nos dice que $$P \lor (Q \land R) = (P \lor Q) \land (P \lor R).$$

Si te resulta un poco confuso esto, puedes pensarlo por ahora como la distribución de una multiplicación con la suma, es decir la operación $2 \times (1+3) = (2 \times 1) + (2 \times 3)$, en donde nuestra disyunción $\lor$ junta a $P$ con $Q$ y a $P$ con $R$ y la conjunción $\land$ los distribuye.

Para convencernos de que se satisface la propiedad distributiva, veamos las tablas de verdad de cada una de las expresiones que están involucradas.

$P$$Q$$R$$Q \land R$$P \lor ( Q\land R)$$P \lor Q$$P \lor R$$(P \lor Q) \land (P \lor R)$
$0$$0$$0$$0$$0$$0$$0$$0$
$0$$0$$1$$0$$0$$0$$1$$0$
$0$$1$$0$$0$$0$$1$$0$$0$
$0$$1$$1$$1$$1$$1$$1$$1$
$1$$0$$0$$0$$1$$1$$1$$1$
$1$$0$$1$$0$$1$$1$$1$$1$
$1$$1$$0$$0$$1$$1$$1$$1$
$1$$1$$1$$1$$1$$1$$1$$1$

Nota que las columnas coloreadas corresponden a las proposiciones y son iguales, entonces $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$. Lo mismo sucede si cambiamos el orden de los conectores, es decir $P \land (Q \lor R) = (P \land Q) \lor (P \land R)$, así podemos distribuir los conectores conjuntivos y disyuntivos como más nos convenga.

Agregando la negación a la mezcla

Por último, vamos a incluir a la negación en nuestra mezcla de conjunciones y disyunciones. ¿Qué pasará cuando tenemos proposiciones del estilo $\neg (P \land Q)$ y $\neg (P \lor Q)$? Sería lógico pensar en un inicio que igual la negación se va a distribuir, pero eso no es cierto. Para esto, piensa en el siguiente ejemplo:

$$P = \text{32 es un número perfecto} $$

$$ Q = 2^7-1 \text{ es un número primo} $$

Aquí hablamos de dos cosas que quizá aún no sepas: números perfectos y números primos, no te preocupes por lo que signifiquen, en otros cursos los verás con más detalle, aunque te puedo decir que solo una de estas dos afirmaciones es correcta (¿Puedes adivinar cuál es?), entonces la conjunción es falsa, por lo que la negación de la conjunción es verdadera.

Lo que acabamos de decir es que $P \land Q$ es falsa y por consecuente $\neg (P \land Q)$ es verdadera. Si sucediera que la negación fuera distributiva, entonces $\neg (P \land Q)$ sería equivalente a $\neg P \land \neg Q$. Pero esto no es cierto, porque $\neg P$ es verdadero, y $\neg Q$ es falso, y entonces $\neg P \land \neg Q$ es falso. Acabamos de llegar a una contradicción en nuestro pensar matemático es decir, primero dijimos que $\neg (P \land Q)$ es verdadera y después observamos que si la negación se distribuyera, sería falso, pero recuerda que una proposición es verdadera o falsa, no puede ser verdadera y falsa al mismo tiempo, entonces alguna de las dos suposiciones que hicimos es incorrecta. Si quieres pensarlo de otra forma, $\neg P \land \neg Q$ y $\neg (P \land Q)$ no son equivalentes pues sus tablas de verdad difieren en el renglón en el que $P$ es verdadero y $Q$ es falso.

Nuestro error fue haber distribuido la negación sin cuidado. Resulta que la negación no cumple esa propiedad, pero «casi» es distributiva. Veamos sus reglas.

$$ \neg (P \land Q) = \neg P \lor \neg Q $$

$$ \neg (P \lor Q) = \neg P \land \neg Q $$

En el ejemplo concreto de arriba, esto quiere decir que es lo mismo decir «No es cierto que (32 sea un número perfecto y $2^7-1$ sea un número primo)» a decir «No es cierto que 32 es un número perfecto, o no es cierto que $2^7-1$ es un número primo». Para que lo entiendas más claro, revisa la tabla de verdad:

$P$$Q$$P \land Q$$\neg (P \land Q)$$\neg P$$\neg Q$$\neg P \lor \neg Q$
$0$$0$$0$$1$$1$$1$$1$
$0$$1$$0$$1$$1$$0$$1$
$1$$0$$0$$1$$0$$1$$1$
$1$$1$$1$$0$$0$$0$$0$

Observa que las columnas correspondientes a las expresiones que queremos coinciden, lo que quiere decir que son equivalentes. Lo mismo puedes verificar para comprobar que $ \neg (P \lor Q) = \neg P \land \neg Q $. A estas propiedades se les conoce como las leyes de De Morgan (más adelante volverás a oír ese nombre).

Más adelante…

Recapitulando, en esta entrada hablamos sobre las propiedades que tienen tres conectores. Vimos lo siguiente:

  • Hablamos de la equivalencia de proposiciones que ocurre cuando dos proposiciones coinciden en su tabla de verdad.
  • Observamos tres propiedades de los conectores: la asociatividad, la distributividad y las leyes de DeMorgan.

Todo esto nos da herramienta suficiente para ya empezar a hablar de lógica proposicional, pero esto apenas empieza. Recuerda que tenemos más conectores. Aún nos faltan revisar dos muy importantes: la implicación y la doble implicación. Estos dos las vamos a ver con más calma en la siguiente entrada.

Tarea Moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que $\neg ( \neg (\neg P))$ es equivalente a $\neg P$.
  2. En la entrada vimos que podemos asociar la conjunción como queramos. Ahora verifica que lo mismo pasa con la disyunción, es decir $P \lor (Q \lor R) = (P \lor Q) \lor R$.
  3. Verifica con la tabla de verdad que $P \land (Q \lor R) = (P \land Q) \lor (P \land R)$.
  4. Verifica con la tabla de verdad que $ \neg (P \lor Q) = \neg P \land \neg Q $.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»