Archivo del Autor: Aurora Martínez Rivas

Probabilidad I-Videos: Distribución Bernoulli

Por Aurora Martínez Rivas

Introducción

En esta ocasión estudiaremos una distribución de probabilidad discreta que resulta ser un bloque de construcción básico para otras distribuciones del mismo tipo. Se trata de la distribución Bernoulli, la cual obtiene su nombre por el matemático suizo Jacob Bernoulli (1654-1705), quien fue el primero en formalizar este modelo.

Distribución Bernoulli

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( p\right ) $. Encuentra la distribución de probabilidad de la variable $1-X$.
  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( \theta\right ) $. Encuentra la distribución de probabilidad de la variable $$\begin{array}{ll} a) & X^{n} \\ b) & \left ( 1-X\right ) ^{n} \end{array}$$
  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( p\right ) $  y sean $a$ y $b$ constantes con $a\neq 0$. Sea $Y$ la variable aleatoria definida como $Y=aX+ b$. Encuentra la distribución de probabilidad de $Y$.
  • Considera el experimento en el que se prueba un medicamento en personas que contraen cierta enfermedad para ver si funciona y se recuperan. La probabilidad de que un paciente se recupere es .7. Si se sabe tres personas han contraído dicha enfermedad, ¿Cuál sería la función de masa de probabilidad asociada a este experimento?
  • Tomando en cuenta el ejercicio anterior, ¿Cuál sería la función de masa de probabilidad si son $n$ las personas que se han enfermado?, explica tu respuesta.

Más adelante…

Los ensayos Bernoulli conforman un modelo teórico que solo con experiencia se puede determinar si es apropiado para describir observaciones específicas. Asegurar que un experimento, se ajusta a un ensayo Bernoulli se deriva casi siempre de evidencia experimental y en muchas ocasiones puede servir como un indicador de problemas que en cierto proceso pudieran presentarse.

Entradas relacionadas

L

Probabilidad I-Videos: Variables aleatorias discretas

Por Aurora Martínez Rivas

Introducción

Una vez que se realiza un experimento y se conoce un resultado particular de nuestro espacio muestral, una variable aleatoria toma algún valor numérico. En general, es más probable que este valor numérico se encuentre en ciertos subconjuntos de los números reales. La naturaleza de estos subconjuntos es de lo que depende el cálculo de las probabilidades asociadas a cada variable aleatoria.

En este video estudiaremos aquellas variables aleatorias que toman sus posibles valores de un subconjunto a lo más numerable de números reales.

Variables aleatorias discretas

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

  • Demuestra que si $X$ y $Y$ son variables aleatorias tal que $Y=g\left ( x\right )$, entonces $Y$ tiene función de masa de probabilidad igual a $\displaystyle \sum_{x:g\left ( x\right ) =y} {f_X(x)}$.
  • Para que valores de la constante $k$ ,las siguientes definen funciones de masa de probabilidad sobre el conjunto de los números naturales? $$\begin{array}{ll} i) & f\left ( x\right ) =k2^{-x} \\ ii) & f\left ( x\right ) =\frac{k2^x} {x!} \end{array}$$
  • Si $X$ y $Y$ son variables aleatorias con función de masa de probabilidad igual a la dada en el ejercicio anterior, inciso $i$ y $ii$ respectivamente, encuentra: $$\begin{array}{ll} I) & P\left ( X>1\right ) \\ & P\left ( Y>1\right ) \\ II) & La\ probabilidad\ de\ que\ X\ sea\ par. \\ & La\ probabilidad\ de\ que\ Y\ sea\ par. \end{array}$$
  • Si la función de distribución de $X$ está dada por $$F\left ( x\right ) = \left \{ \begin{array}{ll} 0 & para\ x<0 \\ \frac{1} {16} & para\ 0\le x<1 \\ \frac{5} {16} & para\ 1\le x<2 \\ \frac{11} {16} & para\ 2\le x<1 \\ \frac{15} {16} & para\ 3\le x<4 \\ 1 & para\ x\geq 4 \end{array} \right.$$ encuentra la distribución de probabilidad de $X$.
  • Si la función de distribución de $X$ está dada por $$F\left ( x\right ) = \left \{ \begin{array}{ll} 0 & para\ x<1 \\ \frac{1} {3} & para\ 1\le x<4 \\ \frac{1} {2} & para\ 4\le x<6 \\ \frac{5} {6} & para\ 6\le x<10 \ 1 & para\ x\geq 1 \end{array} \right.$$ encuentra: $$\begin{array}{ll} i) & P\left ( 2<X\le 6\right ) \\ ii) & P\left ( X=4\right ) \end{array}$$

Más adelante…

Es importante ahora estudiar algunos casos particulares de distribuciones de probabilidad, para variables aleatorias discretas que surgen de tipos comunes de experimentos, pues el conocimiento de estas, elimina la necesidad de resolver los mismos problemas de probabilidad una y otra vez.

Entradas relacionadas

Probabilidad I-Videos: Función de distribución

Por Aurora Martínez Rivas

Introducción

Ahora que entendemos lo que es una variable aleatoria, Lo que buscamos con estas cantidades es asignarles probabilidades. Nos interesa entonces calcular la probabilidad del evento tal que la variable aleatoria no excede un cierto valor x. Estas probabilidades asociadas  a la variable aleatoria se describen mediante una función llamada función de distribución.

Función de distribución

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

  • Sea $F$ una función de distribución de $X$, prueba que $P(X>x)=1-F(x)$.
  • Sea $X$ una variable aleatoria con función de distribución $F$, Para cualesquiera números reales $x<y$ demuestra que: $$\begin{array}{ll}  i)&P(X<y)=F(y^-)\\ ii)&P \left( X=y \right)=F \left( y \right ) -F \left( y^- \right ) \\ iii)&P \left ( y<X\le z \right ) =F \left ( z \right ) -F(y) \\ iv)&P \left ( y\le X\le z \right ) =F \left ( z \right ) -F(y^-) \\ v)&P \left ( y<X<z \right ) =F \left ( z^- \right ) -F(y) \\ vi)&P\left ( y\le X<z \right ) =F \left ( z^- \right ) -F(y^-) \end{array}$$
  • Demuestra que toda función de distribución tiene a lo más una cantidad numerable de discontinuidades.
  • Una variable aleatoria $X$ tiene función de distribución $F$, Si $a$ y $b$ son números reales ¿Cuál es la función de distribución de $Y=aX+b$?
  • Demuestra que si $F$ y $G$ funciones de distribución y sea $0\le a\le1$ entonces $aF+(1-a)G$ es una función de distribución.

Más adelante…

Gran parte del estudio de las variables aleatorias se dedica a las funciones de distribución, el estudio de estas funciones y sus aplicaciones se vuelve mucho más fácil si concentramos nuestra atención a ciertas subclases de variables aleatorias; estas son las variables aleatorias discretas y las variables aleatorias continuas, que estudiaremos en los próximos videos.

Entradas relacionadas

Probabilidad I-Videos: Definición de variable aleatoria

Por Aurora Martínez Rivas

Introducción

En muchos experimentos estaremos interesados más que en el experimento en sí mismo, en alguna consecuencia de su resultado aleatorio. Tales consecuencias pueden valorarse en términos numéricos, es decir podemos asociar a los resultados aleatorios un número real y esto puede considerarse como una función que mapea al espacio muestral en la recta real.

Estas funciones se denominan «variables aleatorias».

Variables aleatorias

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $X:\Omega\rightarrow\mathbb{R}$ una función y sean $x\le\ y$ dos números reales. Demuestre que $(X\le\ x)\subseteq(X\le\ y)$.
  • Sea $\mathcal{F}$ la familia de todos los subconjuntos de $\Omega$, Demuestra cualquier función $X:\Omega\rightarrow\mathbb{R}$ es una variable aleatoria.
  • Sea $\Omega=\left \{ a,b,c,d,e,f \right \}$ con $\mathcal{F}=\left \{ \emptyset,\left \{ a.c.e \right \} ,\left \{ b,d,f \right \} ,\Omega \right \}$ y sea $X(\omega)=\omega$. Determina si $X$ es una variable aleatoria y justifica por qué.
  • Sea $A$ un evento, es decir, $A\in\mathcal{F}$ y sea $X$ una función tal que $$\\ X(\omega)= \left \{ \begin{matrix} 1 & \mbox{si }\omega\in A \\ 0 & \mbox{si }\omega\notin A \end{matrix} \right.$$ demuestra que $X$ es una variable aleatoria..
  • Sean $X$ y $Y$ variables aleatorias, demuestra que:
    • $X+Y$ es una variable aleatoria.
    • $XY$ es una variable aleatoria.
    • Si $Y\neq0$ entonces $X/Y$ es variable aleatoria.

Más adelante…

Para especificar las probabilidades de los valores de las variables aleatorias tan diversificadas y poder especificarlas de la misma manera, introducimos a continuación en la teoría de la probabilidad el concepto de función de distribución de una variable aleatoria.

Entradas relacionadas

Probabilidad I-Videos: Continuidad de la probabilidad

Por Aurora Martínez Rivas

Introducción

En el video de axiomas de la probabilidad y sus propiedades se dio la definición de medida de probabilidad, así como algunas propiedades básicas que podíamos deducir de dicha definición. En esta ocasión abordaremos otra propiedad que nos será muy útil en los temas siguientes, esta, es conocida como la propiedad de continuidad de la probabilidad.

Continuidad de la probabilidad

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que los incisos $a$ y $b$ de la proposición vista en el video son equivalentes, para esto solo te hace falta probar que el inciso $b$ también implica el inciso $a$.
  • Sea $A_r,\ r\geq 1$, eventos tales que, para toda $r$, $P\left(A_r\right)=1$. Demuestra que $P\left(\displaystyle\bigcap_{r=1}^{\infty}A_r\right)=1$.
  • Una moneda justa se lanza repetidamente. Demuestra que, con probabilidad uno, una cara se muestra tarde o temprano. Demuestra de manera similar que cualquier sucesión finita dada de caras y cruces ocurre eventualmente con probabilidad uno.
  • Teorema de probabilidad total. Demuestra que si $B_1,B_2,\ldots$ es una partición de $\Omega$, entonces para cualquier evento $A$ se cumple que

$P\left(A\right)=\displaystyle\sum_{i=1}^{\infty}{P\left(A\middle|\ B_i\right)P(B_i)}$.

  • Teorema de Bayes. Demuestra que si $B_1,B_2,\ldots$ es una partición de $\Omega$ y sea $A$ un evento tal que $P\left(A\right)\neq 0$ entonces para cada $j=1,2,\ldots$

$P\left(B_j\middle|A\right)=\frac{P\left(A\middle|B_j\right)P\left(B_j\right)}{\displaystyle\sum_{i=1}^{\infty}{P\left(A\middle|B_i\right)P\left(B_i\right)}}$.

Más adelante…

Este resultado proporciona una herramienta para tratar las propiedades correspondientes a la descripción de las probabilidades asociadas a cantidades que se rigen por la aleatoriedad, cuyas funciones están definidas en el espacio de probabilidad y que llamaremos variables aleatorias.

Te invito a ver el siguiente video para saber más sobre este tema.

Entradas relacionadas