Álgebra Lineal I: Determinantes de vectores e independencia lineal

Por Leonardo Ignacio Martínez Sandoval

Introducción

En este cuarto y último bloque del curso comenzamos hablando de transformaciones multilineales y de permutaciones. Luego, nos enfocamos en las transformaciones multilineales antisimétricas y alternantes. Con la teoría que hemos desarrollado hasta ahora, estamos listos para definir determinantes de vectores, de transformaciones lineales y de matrices.

En esta entrada comenzaremos con la definición de determinantes de vectores. En la siguiente entrada hablaremos acerca de determinantes de matrices y de transformaciones lineales. Después de definir determinantes, probaremos varias de las propiedades que satisfacen. Posteriormente, hablaremos de varias técnicas que nos permitirán calcular una amplia variedad de determinantes para tipos especiales de matrices.

Determinantes de vectores

Para empezar, definiremos qué es el determinante de un conjunto de vectores en un espacio de dimensión finita con respecto a una base.

Definición. Sea B=(b1,,bn) una base de un espacio vectorial V de dimensión finita n y x1,,xn vectores de V. Cada uno de los xi se puede escribir como xi=j=1najibj.

El determinante de x1,,xn con respecto a (b1,,bn) es σSnsign(σ)a1σ(1)anσ(n), y lo denotamos por det(b1,,bn)(x1,,xn).

Observa que estamos sumando tantos términos como elementos en Sn. Como existen n! permutaciones de un conjunto de n elementos, entonces la suma de la derecha tiene n! sumandos.

Ejemplo. Consideremos la base b1=1, b2=1+x y b3=1+x+x2 del espacio vectorial R2[x] de polinomios con coeficientes reales y grado a lo más 2. Tomemos los polinomios v1=1, v2=2x y v3=3x2. Vamos a calcular el determinante de v1,v2,v3 con respecto a la base (b1,b2,b3).

Para hacer eso, lo primero que tenemos que hacer es expresar a v1,v2,v3 en términos de la base. Hacemos esto a continuación:
v1=1b1+0b2+0b3v2=2b1+2b2+0b3v3=0b13b2+3b3.

De aquí, obtenemos
a11=1,a21=0,a31=0,a12=2,a22=2,a32=0,a13=0,a23=3,a33=3.

Si queremos calcular el determinante, tenemos que considerar las 3!=321=6 permutaciones en S3. Estas permutaciones son

σ1=(123123)σ2=(123132)σ3=(123213)σ4=(123231)σ5=(123321)σ6=(123312).

Los signos de σ1,,σ6 son, como puedes verificar, 1, 1, 1, 1, 1 y 1, respectivamente.

El sumando correspondiente a σ1 es
(1)sign(σ1)a1σ1(1)a2σ1(2)a3σ1(3)(2)=1a11a22a33(3)=1123=6.

El sumando correspondiente a σ2 es
(4)sign(σ2)a1σ2(1)a2σ2(2)a3σ2(3)(5)=(1)a11a23a32(6)=(1)1(3)0=0.

Continuando de esta manera, se puede ver que los sumandos correspondientes a σ1,,σ6 son +6,0,0,+0,0,+0, respectivamente de modo que el determinante es 6.

La expresión de determinante puede parecer algo complicada, pero a través de ella podemos demostrar fácilmente algunos resultados. Consideremos como ejemplo el siguiente resultado.

Proposición. Sea B=(b1,,bn) una base de un espacio vectorial V de dimensión finita n. El determinante de B con respecto a sí mismo es 1.

Demostración. Cuando escribimos a bi en términos de la base b, tenemos que bi=j=1najibj. Como la expresión en una base es única, debemos tener aii=1 y aji=0 si ji. Ahora, veamos qué le sucede al determinante σSnsign(σ)a1σ(1)anσ(n).

Si σ es una permutación tal que σ(i)i para alguna i, entonces en el producto del sumando correspondiente a σ aparece aiσ(i)=0, de modo que ese sumando es cero. En otras palabras, el único sumando no cero es cuando σ es la permutación identidad.

Como el signo de la identidad es 1 y cada aii es 1, tenemos que el determinante es
σSnsign(σ)a1σ(1)anσ(n)=a11ann=11=1.

◻

El determinante es una forma n-lineal alternante

La razón por la cual hablamos de transformaciones n-lineales antisimétricas y alternantes antes de hablar de determinantes es que, en cierto sentido, los determinantes de vectores son las únicas transformaciones de este tipo. Los siguientes resultados formalizan esta intuición.

Teorema. Sea B=(b1,,bn) una base de un espacio vectorial V sobre F. Entonces la transformación det(b1,,bn):VnF es una forma n-lineal y alternante.

Demostración. La observación clave para demostrar este resultado es que det(b1,,bn) se puede reescribir en términos de la base dual b1,,bn. En efecto, recuerda que bi es la forma lineal que «lee» la coordenada de un vector v escrito en la base B. De esta forma,

det(b1,,bn)(v1,,vn)=σSn(sign(σ)j=1nbj(vσ(j)))

Para cada permutación σ, el sumando correspondiente es una forma n-lineal, pues es producto de n formas lineales evaluadas en los distintos vectores. Así que det(b1,,bn) es suma de formas n-lineales y por lo tanto es forma n-lineal.

Para mostrar que el determinante es alternante, tenemos que mostrar que es igual a 0 cuando algún par de sus entradas son iguales. Supongamos que ij y que vi=vj. Tomemos τ a la transposición que intercambia a i y a j. Cuando se compone una permutación con una transposición, su signo cambia. Así, para cualquier permutación σ, tenemos que στ tiene signo diferente.

Además, para cualquier σ tenemos que a1σ(1)anσ(n) y a1στ(1)anστ(n) son iguales, pues vi=vj. Combinando ambas ideas, podemos emparejar a cada sumando del determinante con otro con el cual sume cero. Esto muestra que el determinante es 0.

◻

Usando la teoría que desarrollamos en la entrada anterior, tenemos el siguiente corolario.

Corolario. La forma n-lineal det(b1,,bn) es antisimétrica.

Los determinantes de vectores son las «únicas» formas n-lineales alternantes

Ya vimos que el determinante es una forma n-lineal alternante. Veamos ahora por qué decimos que es «la única». El siguiente resultado dice que cualquier otra forma n-lineal alternante varía de det(b1,,bn) únicamente por un factor multiplicativo.

Teorema. Sea B=(b1,,bn) una base de un espacio vectorial V. Si f:VnF es cualquier forma n-lineal y alternante, entonces f=f(b1,,bn)det(b1,,bn).

Demostración. Para mostrar la igualdad del teorema, que es una igualdad de transformaciones, tenemos que ver que es cierta al evaluar en cualesquiera vectores x1,,xn. Escribamos a cada xi en términos de la base B: xi=j=1naijbj.

Usando la n-linealidad de f en cada una de las entradas, tenemos que
f(x1,,xn)=i=1na1if(bi,x2,,xn)=i,j=1na1ia2if(bi,bj,x3,,xn)==i1,,in=1na1i1aninf(bi1,,bin).

Aquí hay muchos términos, pero la mayoría de ellos son 0. En efecto, si bik=bil, como f es alternante tendríamos que ese sumando es 0. Así, los únicos sumandos que pueden ser no cero son cuando la elección de subíndices es una permutación, es decir cuando existe σ en Sn tal que para ik=σ(k).

Por lo tanto, podemos simplificar la expresión anterior a
f(x1,,xn)=σSna1σ(1)anσ(n)f(bσ(1),,bσ(n)).

Como f es alternante, entonces es antisimétrica. De este modo, podemos continuar la igualdad anterior como
=σSnsign(σ)a1σ(1)anσ(n)f(b1,,bn)=f(b1,,bn)det(b1,,bn)(x1,,xn).

Esto es justo lo que queríamos probar.

◻

Los determinantes de vectores caracterizan bases

Como consecuencia del último teorema de la sección anterior, los determinantes de vectores caracterizan totalmente a los conjuntos de vectores que son bases. A continuación enunciamos esto formalmente.

Corolario. En un espacio vectorial V de dimensión n son equivalentes las siguientes tres afirmaciones para vectores x1,,xn de V:

  1. El determinante de x1,,xn con respecto a toda base es distinto de 0.
  2. El determinante de x1,,xn con respecto a alguna base es distinto de 0.
  3. x1,,xn es una base de V.

Demostración. La afirmación (1) es más fuerte que la (2) y por lo tanto la implica.

Ahora, probemos que la afirmación (2) implica la afirmación (3). Como x1,,xn son n vectores y n es la dimensión de V, para mostrar que forman una base basta mostrar que son linealmente independientes. Anteriormente, vimos que cualquier forma alternante manda vectores linealmente dependientes a 0. Como la hipótesis de (2) es que existe alguna forma alternante que no se anula en x1,,xn, entonces deben ser linealmente independientes y por lo tanto formar una base.

Finalmente, probemos que (3) implica (1). Tomemos B=(b1,,bn) otra base de V. Como det(x1,,xn) es una forma n-lineal, podemos aplicar el teorema anterior y evaluar en x1,,xn para concluir que
det(x1,,xn)(x1,,xn)=det(x1,,xn)(b1,,bn)det(b1,,bn)(x1,,xn).

El término de la izquierda es igual a 1, de modo que ambos factores a la derecha deben ser distintos de 0.

◻

Ejemplo. En el ejemplo que dimos de polinomios vimos que el determinante de 1, 2x y 3x2 con respecto a la base 1, 1+x y 1+x+x2 es igual a 6. De acuerdo al teorema anterior, esto implica que 1, 2x y 3x2 es un conjunto linealmente independiente de polinomios, y de hecho una base.

Además, el teorema anterior también implica que sin importar que otra base B de R2[x] tomemos, el determinante de 1, 2x y 3x2 con respecto a B también será distinto de 0.

Más adelante…

A lo largo de esta entrada estudiamos la definición de determinantes para un conjunto de vectores y enunciamos sus principales propiedades. En las siguientes entradas vamos a hablar cómo se define el determinante para matrices y para transformaciones lineales. Después de las definiciones, pasaremos a estudiar cómo se calculan los determinantes y veremos cómo se aplican a diferentes problemas de álgebra lineal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cuántos sumandos tendrá el determinante de 5 vectores en un espacio vectorial de dimensión 5 con respecto a cualquier base? Da el número de manera explícita.
  • Verifica que en el primer ejemplo de determinantes de esta entrada, en efecto los sumandos correspondientes a σ1,,σ6 son los que se enuncian.
  • Encuentra el determinante de los vectores (3,1) y (2,4) con respecto a la base ((5,1),(2,3)) de R2.
  • Muestra que los vectores (1,4,5,2), (0,3,2,1), (0,0,1,4) y (0,0,0,1) son linealmente independientes calculando por definición su determinante con respecto a la base canónica de R4.
  • Usa un argumento de determinantes para mostrar que los vectores (1,4,3), (2,2,9), (7,8,27) de R3 no son linealmente independientes. Sugerencia. Calcula su determinante con respecto a la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

4 comentarios en “Álgebra Lineal I: Determinantes de vectores e independencia lineal

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.